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1. Introduction

The term "quasi-variational" identifies a class of variational problems having con-
straint sets depending on their own solutions and including several problems, among
which

• Variational Inequality (V I), [5],

• Complementarity Problem (CP ), [6],

• Implicit Variational Problem (IV P ), [37],

• Quasi-Variational Inequality (QV I), [5],

• Generalized Variational Inequality (GV I), [11],

• Generalized Quasi-variational Inequality (GQV I), [18],

• Equilibrium Problem (EP ), [7],

• Social (or Generalized) Nash Equilibrium Problem (SNEP ), [13],

• Mixed Quasivariational-like Inequality (MQI), [9].

All these theoretical problems play an important role in concrete engineering or
economic problems such as electric power market modelization [19], optimal shape
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design [17], topology optimization in structural mechanics [14], traffic equilibrium
[12], transportation network congestion [8], financial derivative models [16], social
and economic networks modelization [38],...
A more general formulation, considered in [37], [5], [23], [25], is the following one.
Given a real Banach space U with dual U∗, let K be a nonempty closed and convex
subset of U , let f be a real-valued function defined in U ×U and S be a set-valued
map from K to K with nonempty values.
Then, the quasi-variational problem (QV P ) (called in [39] and in [1] quasi-equilibrium
problem) looks for the solution set Q defined by

u ∈ Q ⇐⇒ u ∈ S(u) and f(u,w) ≤ 0 ∀w ∈ S(u).

Each one of the above problems can be described considering an appropriate func-
tion and/or a set-valued map:

• (V I) consider S(u) = K and f(u,w) = 〈Au, u − w〉 where A : U → U∗ is an
operator,

• (CP ) consider S(u) = C, where C is a convex, closed cone with apex in the
origin 0 and f(u,w) = 〈Au, u− w〉, where A : U → U∗ is an operator,

• (QV I) consider f(u,w) = 〈Au, u− w〉, where A : U → U∗ is an operator,

• (IV P ) consider S(u) = K and f(u,w) = g(u,w) + φ(u, u) -. φ(u,w) where
g : U × U → R, φ : U × U → R ∪ {+∞} and (+∞)-.(+∞) = −∞,

• (GV I) consider S(u) = K and f(u,w) = minu∗∈T (u) 〈u∗, u − w〉 where T is a
set-valued operator from U to U∗,

• (GQV I) consider f(u,w) = minu∗∈T (u) 〈u∗, u − w〉 where T is a set-valued
operator from U to U∗,

• (EP ) consider S(u) = K,

• (SNEP ) consider f(u,w) = J1(u1, u2) + J2(u1, u2) − J1(u1, w2) − J2(w1, u2)
where J1 and J2 are functions from Y1×Y2 to R and Y1 and Y2 are respectively
nonempty subsets of E1 and E2, real normed vector spaces, S(u) = S(u1, u2) =
Q1(u2)×Q2(u1) where Q1 and Q2 are set-valued functions from Y2 to Y1 and
from Y1 to Y2 respectively,

• (MQV LI) consider f(u,w) = minu∗∈T (u) 〈u∗, η(u,w)〉 + h(u) − h(w) where T
is a set-valued operator from U to U∗, η : K × K → K and h : K → R are
functions.

Classically, in order to avoid very restrictive assumptions in the investigation of
variational inequalities in infinite dimensional spaces, the following linearized vari-
ational inequality (also called Minty variational inequality) is considered [32]:

(LV I) find u ∈ K such that 〈Av, u− v〉 ≤ 0 ∀ v ∈ K

The equivalence between the problems (V I) and (LV I) is provided by the Minty
Lemma [32] which represents the prototype to obtain analogous results for most of
the problems listed before (see Section 2). Therefore, concerning quasi-variational
problems (QV P ), it looks natural to introduce the linearized quasi-variational prob-
lem

(LQV P ) find u ∈ S(u) such that f(w, u) ≥ 0 ∀w ∈ S(u)
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whose solution set is denoted by LQ.
A quasi-variational (respectively linearized quasi-variational) problem depending on
a parameter t is denoted by

(QV P )(t) find u ∈ S(t, u) such that f(t, u, w) ≤ 0 ∀w ∈ S(t, u)

(respectively (LQV P )(t) find u ∈ S(t, u) such that f(t, w, u) ≥ 0 ∀w ∈ S(t, u))

and we aim to investigate the stability properties of the solution sets Q(t) and
LQ(t) for t belonging to a topological space (T, τ).
In this paper, we are interested in the sequential upper and/or lower stability of
Q(t) (resp. of LQ(t)), meaning respectively that for every sequence (tn)n converging
to t in T one has

Q(t) ⊆ lim inf
n→+∞

Q(tn) and/or lim sup
n→+∞

Q(tn) ⊆ Q(t),

(resp. LQ(t) ⊆ lim inf
n→+∞

LQ(tn) and/or lim sup
n→+∞

LQ(tn) ⊆ LQ(t),

where the lim inf and lim sup denote the lower and the upper limit in the sense
of Painlevé-Kuratowski [4] of a family of sets, whose definitions will be recalled in
Section 2.
To our knowledge, the first upper stability results for quasi-variational problems
have been established by the authors in [23] when T is the set of positive integers
N. For other upper stability results on quasi-variational problems see, among others,
[10], [35], [36], [1], [2]. In Section 2 we will show that upper stability results for
the solution maps Q and LQ can be obtained under mild assumptions on the data
while the lower stability of Q and LQ may not be achieved in general, even in very
restrictive conditions. This lack of stability of the exact solutions motivates to in-
troduce approximate solutions that can be simultaneously lower and upper stable.
It is worth mentioning that the lower stability property plays a fundamental role
in the investigation of hierarchical problems. Indeed, some examples show that the
optimal solutions to perturbed bilevel problems, as well as the optimal values, may
not be stable (see Example 4.1 in [24], Example 2.3 in [26]). Therefore, regularized
models have been investigated when the lower level is described by an Optimiza-
tion problem [28], [29], [24], by generalized saddle point equilibria [33], generalized
Nash equilibria [34] or Nash equilibria in mixed strategies [31], considering approxi-
mate solutions to the lower level problem which satisfy the lower stability property.
This approach has been proved to be fruitful, for instance, when applied to a class
of bilevel optimization problems arising in structural optimization [14]. Then, in
this paper we aim to investigate approximate solutions for quasi-variational prob-
lems (QVP) that turn out to be lower stable. In literature, for all of the prob-
lems listed at the beginning, several concepts of approximate solutions have been
defined with different motivations and purposes. In particular we mention the pa-
pers by Lucchetti-Patrone [30], Revalski [40], Lignola-Morgan [22] and [27], related
to approximate solutions for variational inequalities, Morgan-Raucci [34], related
to approximate social Nash equilibria, and the papers by Lignola [20] and Ceng-
Hadjisavvas-Schaible-Yao [9] concerning approximate solutions for quasi-variational
inequalities and mixed quasi-variational-like inequalities. Inspired by these papers,
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we define in Section 3 two concepts of approximate solutions for (QV P )’s and two
concepts for (LQV P )’s investigating, for each of them, upper and lower stability
properties. Previously, in Section 2, after preliminaries and notations, an overview
of the behavior of the exact solutions sets is given.

2. Basic notations and background

The investigation of problems of variational or quasi-variational nature in infinite
dimensional spaces needs some continuity and monotonicity properties, [4] and [18],
in order to avoid very restrictive assumptions. So, we recall here the notions for
bivariate functions and for set-valued maps that will be used throughout the pa-
per. We denote by w and s, respectively, the weak and the strong convergence
on a normed space U ; by intH the strong interior of a set H; by G(F ) the graph
of a set-valued map F : U → V , where V is a topological space, i.e. the set
{(y, v) ∈ U × V : v ∈ F (y)} and, given a positive number r, by B(H, r) the closed
ball around H, i.e. the set {u ∈ E : d(u,H) ≤ r}.
A function f : U × U → R is said to be: monotone if f(u,w) + f(w, u) ≥ 0,
pseudomonotone if f(u,w) ≤ 0 implies f(w, u) ≥ 0, coercive if every net (uα, vα)α,
such that f(uα, vα) ≤ k for every α, has a convergent subnet.
A set-valued map F : (X, τ) → (Y, σ), where (X, τ) and (Y, σ) are topological
spaces, is said to be (τ, σ)-lower semicontinuous at xo ∈ X if for every yo ∈ F (xo)
and every neighborhhood I of yo there exists a neighborhood Q of xo such that
F (x)∩ I 6= ∅ for all x ∈ Q; F is said to be (τ, σ)-closed at xo if for every y /∈ F (xo)
there exist a neighborhood I of yo and a neighborhoodQ of xo such that F (x)∩I = ∅
for all x ∈ Q; F is said to be (τ, σ)-subcontinuous at xo if given a net (xα)α∈A con-
verging to xo, every net (yα)α∈A with yα ∈ F (xα) has a convergent subnet; F is said
to be (τ, σ)-lower semicontinuous (respectively closed or subcontinuous) over a set
H ⊆ X if it is (τ, σ)-lower semicontinuous (respectively closed or subcontinuous) at
x for every x ∈ H. If τ and σ are first countable then the above properties can be
caracterized as follows: F is (τ, σ)-lower semicontinuous at xo iff for every sequence
(xn)n τ -converging to xo in X and every yo ∈ F (xo) there exists a sequence (yn)n
σ-converging to yo in Y such that yn ∈ F (xn) for sufficiently large n ∈ N; F is
(τ, σ)-closed at xo iff for every yo /∈ F (xo) there exist a sequence (xn)n τ -converging
to xo in X and a sequence (yn)n σ-converging to yo in Y such that yn /∈ F (xn) for
sufficiently large n ∈ N; F is (τ, σ)-subcontinuous at xo iff, given a sequence (xn)n
τ -converging to xo in X, every sequence (yn)n such that yn ∈ F (xn) for all n ∈ N

has a σ-convergent subsequence.
Let (Hn)n be a sequence of subsets of Y . The Painlevé-Kuratowski upper and lower
limit of the sequence (Hn)n are defined as follows.

• z ∈ σ-lim sup
n
Hn if there exists a sequence (zk)k σ-converging to z in Y such

that zk ∈ Hnk
, for a subsequence (Hnk

) of (Hn)n and for each k ∈ N;

• z ∈ σ-lim infn Hn if there exists a sequence (zn)n σ-converging to z in Y and
such that zn ∈ Hn for n sufficiently large.

During the whole paper, we will assume that the set K is nonempty, closed and
convex and that the following assumptions are satisfied

(Ξ) f(u, u) = 0 ∀u ∈ K,
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and, for parametric problems,

(Ξt) f(t, u, u) = 0 ∀ t ∈ T and ∀u ∈ K.

3. Stability of exact solutions

We start this section extending to quasi-variational problems the classical Minty
lemma [32].

Lemma 3.1. If f is pseudomonotone on K, then every solution uo to the quasi-
variational problem (QV I) is also a solution to the problem

(LQV P ) find u ∈ S(u) such that f(w, u) ≥ 0 ∀w ∈ S(u).

If f(·, w) is lower semicontinuous on the segments of K for every w ∈ K, f(u, ·) is
concave on K for every u ∈ K and S is convex-valued and closed-valued, then every
solution uo to the linearized quasi-variational problem (LQV P ) is also a solution to
the problem (QV P ).

Proof. The proof of the first part is straightforward, so it is omitted.
Let uo ∈ S(uo) such that

f(w, uo) ≥ 0 ∀w ∈ S(uo)

and let wo ∈ S(uo) such that wo 6= uo. For every λ ∈ [0, 1] consider uλ = λuo+(1−
λ)wo. Since f(·, wo) is lower semicontinuous on the segments of K one has

f(uo, wo) ≤ lim inf
λ→1

f(uλ, wo),

so, in order to prove that f(uo, wo) ≤ 0, it is sufficient to prove that f(uλ, wo) ≤ 0
for every λ ∈]0, 1[. This inequality follows from the concavity of f in the second
variable and observing that λf(uλ, uo) ≥ 0:

f(uλ, wo) ≤ f(uλ, wo) + λf(uλ, uo) + λf(uλ, wo)− λf(uλ, wo)

≤ f(uλ, uλ) + λf(uλ, wo) = λf(uλ, wo).

The above lemma can be suitably used to get analogous statements for generalized
quasi-variational or variational inequalites, for implicit variational problems and for
equilibrium problems.
The next two results, that can be proved using standard arguments, concern the
topological properties of the solution set-valued maps Q : t ∈ T → Q(t) ⊆ U and
LQ : t ∈ T → LQ(t) ⊆ U .

Proposition 3.2. Let t ∈ T .
If f(t, ·, ·) is lower semicontinuous on K × Kand S(t, ·) is lower semicontinuous
and closed-valued, then the set Q(t) is closed.
If f is lower semicontinuous on T×K×K and S is closed and lower semicontinuous
on T ×K, then the set-valued map Q is closed.
If f(·, ·, w) is coercive on T × K, for every w ∈ K, then the set-valued map Q is
subcontinuous.
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Proposition 3.3. Let t ∈ T .
If f(t, ·, ·) is upper semicontinuous on K × K and S(t, ·) is lower semicontinuous
and closed-valued, then the set LQ(t) is closed.
If f is upper semicontinuous on T×K×K and S is closed and lower semicontinuous
on T ×K, then the set-valued map LQ is closed.
If −f(·, ·, w) is coercive on T ×K, for every w ∈ K, then the set-valued map LQ
is subcontinuous.

Unfortunately, both propositions contain a semicontinuity assumption on the func-
tion f at the couple (u,w), that could be a very restrictive assumption in the case
where f(u,w) = 〈Au, u − w〉. For instance, if U is an infinite dimensional Hilbert
space and 〈·, ·〉 denotes the scalar product in U , it is known that the function
f(u,w) = 〈u, u− w〉 is not weakly upper semicontinuous on the unitary ball.
Therefore, results avoiding a so restrictive assumption would be desirable. To this
end, we recall the following lemma [21] concerning lower convergent sequences of
convex sets having nonempty interior.

Lemma 3.4 ([21], Lemma 3.1). Let (Hn)n∈N∪{0} be a sequence of nonempty sub-
sets of a Banach space E such that:

i) Hn is convex for every n ∈ N ;

ii) Ho ⊆ LiminfnHn;

iii) there exists m ∈ N such that int
⋂

n≥m
Hn 6= ∅.

Then, for every u ∈ intHo there exists a positive real number δ such that

B(u, δ) ⊆ Hn ∀n ≥ m.

If E is a finite dimensional space, then assumption iii) can be substituted by:

iii ′ ) intHo 6= ∅.

Now, we present closedness results for the solution maps Q and LQ under "nicer"
assumptions.

Proposition 3.5. Assume that the following assumptions hold:

i) S is convex-valued, (τ × s, s)-lower semicontinuous and (τ × s, s)-closed on
T ×K;

ii) f(t, u, ·) is concave on K for every t ∈ T and u ∈ K;

iii) f(t, ·, w) is lower semicontinuous on the segments of K for every t ∈ T and
w ∈ K;

iv) for every (t, u, w) ∈ T × K × K, for every sequence (tn, un, wn)n such that
(tn)n τ -converges to t, (un, wn)n (s× s)-converges to (u,w) one has

− f(t, w, u) ≤ lim inf
n

f(tn, un, wn).

Then, the set-valued map Q is (τ, s)-closed.

Proof. Let (tn)n and (un)n be sequences converging to to and uo, respectively in T
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and in K, such that for every n ∈ N un ∈ Q(tn), that is

un ∈ S(tn, un) and f(tn, un, w) ≤ 0 ∀w ∈ S(tn, un).

Since the closedness of S implies that uo ∈ S(to, uo), in order to prove that uo ∈
Q(to) it suffices only to prove that for every w ∈ S(to, uo) one has f(to, uo, w) ≤ 0.
Being S lower semicontinuous, given w ∈ S(to, uo), there exists a sequence (wn)n
converging to w such that wn ∈ S(tn, un) for n sufficiently large and, by condition
iv), one gets −f(to, w, uo) ≤ 0.
Therefore uo ∈ LQ(to) and the proof can be completed adapting the proof of Lemma
3.1 to parametric quasi-variational problems.

Proposition 3.6. Assume that the following assumptions hold:

i) S is convex-valued, (τ × s, s)-lower semicontinuous and (τ × s, s)-closed on
T ×K;

ii) f(·, u, ·) is upper semicontinuous on T ×K for every u ∈ K;

iii) f(t, ·, w) is upper semicontinuous on the segments of K for every t ∈ T and
w ∈ K;

iv) for every sequence (tn, un)n, tn ∈ T and un ∈ K for all n ∈ N, such that (tn)n
τ -converges in T and (un)n s-converges in K, there exists m ∈ N such that

int
⋂

n≥m

S(tn, un) 6= ∅.

Then, the set-valued map LQ is (τ, s)-closed.
If U is a finite dimensional space, then assumption iv) can be substituted by:

iv ′ ) for every t ∈ T and u ∈ K, intS(t, u) 6= ∅.

Proof. Let (tn)n and (un)n be sequences converging to to and uo, respectively in T
and in K, such that for every n ∈ N

un ∈ S(tn, un) and − f(tn, w, un) ≤ 0 ∀w ∈ S(tn, un).

Since the closedness of S implies that uo ∈ S(to, uo), in order to prove that uo ∈
LQ(to) it suffices only to prove that for every w ∈ S(to, uo) one has −f(to, w, uo) ≤
0.
Given w ∈ intS(to, uo), the lower semicontinuity of S, assumption iv) and Lemma
3.4 imply that w ∈ intS(tn, un) for n sufficiently large and, by condition ii), one
gets −f(to, w, uo) ≤ 0.
When w ∈ S(to, uo) \ intS(to, uo), being S(to, uo) a convex set, there exists a se-
quence (wn)n converging to w along a segment such that wn ∈ intS(to, uo).
Therefore −f(to, wn, uo) ≤ 0 and assumption iii) implies that uo ∈ LQ(to).

Remark 3.7. Propositions 3.5 and 3.6 also provide a (τ, w)-closedness result for
the solution maps Q and LQ if in iv) the weak convergence of the sequence (un)n
is required instead of the strong convergence and in i) the set-valued map S is
assumed to be convex-valued, (τ ×w, s)-lower semicontinuous and (τ ×w,w)-closed
on T ×K.
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Remark 3.8. The assumptions of Proposition 3.5 imply thatQ(t)=LQ(t) for every
t ∈ T , since Lemma 3.1 holds for the function f(t, ·, ·). Thus, Proposition 3.5
gives also a τ × s-closedness result for the map LQ that is not comparable with
Proposition 3.6 in which assumption iv) on the constraint map S (that is not present
in Proposition 3.5) plays an essential role.

As announced in the Introduction, the maps LQ and Q may fail to be lower semi-
continuous even in presence of very regular data.

Example 3.9. Let T = [−1, 1], U = R, S(t, u) = K = [−1, 1], f(t, u, w) = t(u −
w), for each t ∈ T . With such data, the problem (QV P )(t) consists of finding
u ∈ [−1, 1] such that t(u− w) ≤ 0 for any w ∈ [−1, 1]. So, the solutions map Q is

Q(t) =





{1} if t < 0

[−1, 1] if t = 0

{−1} if t > 0

which is not lower semicontinuous at t = 0. More precisely, there exist a sequence
(tn)n converging to 0 and an element u ∈ Q(0), for example u = 0, such that
every sequence (un)n, un ∈ Q(tn) for n large, does not converge to u. Observing
that −f(t, w, u) = f(t, u, w), one gets Q(t) = LQ(t) for every t ∈ T , so also the
set-valued map LQ is not lower semicontinuous at t = 0.

This lack of lower semicontinuity leads us to introduce suitable concepts of approx-
imate solution maps for quasi-variational problems.

4. Approximate solutions and upper stability

Given a positive real number r, consider the set-valued maps defined on the param-
eters set T by

Q r(t) = {u ∈ K : u ∈ B(S(t, u), r) and f(t, u, w) ≤ r ∀w ∈ S(t, u)} ,
Tr(t) = {u ∈ K : u ∈ B(S(t, u), r)

and f(t, u, w) ≤ r||u− w|| ∀w ∈ B(S(t, u), r)},
LQ r(t) = {u ∈ K : u ∈ B(S(t, u), r) and − f(t, w, u) ≤ r ∀w ∈ S(t, u)} ,

LT r(t) = {u ∈ K : u ∈ B(S(t, u), r)

and − f(t, w, u) ≤ r||u− w|| ∀w ∈ B(S(t, u), r)},

for every t ∈ T .
Arguing as in Proposition 3.2 (respectively Proposition 3.3), one proves that the
maps Qr and Tr (respectively LQ r and LT r) are "upper stable".

Proposition 4.1. If f is lower semicontinuous on T ×K×K and S is closed and
lower semicontinuous on T ×K, then the set-valued maps Qr and Tr are closed.
If f is upper semicontinuous on T×K×K and S is closed and lower semicontinuous
on T ×K, then the set-valued maps LQr and LT r are closed.
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However, a result in line with Proposition 3.5 cannot be expected for the map Qr

since, in general, a Minty Lemma type does not hold for Qr and Lr.

Example 4.2. Consider U = R, S(t, u) = K = [0, 1] and f(u,w) = u(u − w).
Then one easily cheks that Q r = [0,

√
r] ⊂ LQ r = [0, 2

√
r].

Instead, the maps Tr and LT r satisfy the next Minty type lemma.

Lemma 4.3. Consider t ∈ T . If f(t, ·, ·) is monotone on K ×K, then

Qr(t) ⊆ LQr(t) and Tr(t) ⊆ LT r(t).

If f(t, ·, w) is lower semicontinuous on the segments of K for every w ∈ K, f(t, u, ·)
is concave on K for every u ∈ K and S(t, ·) is convex-valued and closed-valued, then

LT r(t) ⊆ Tr(t).

Proof. The proof of the first part is straightforward. In order to prove the second
part, let u ∈ K be such that d(S(t, u), u) ≤ r and

−f(t, w, u) ≤ r||u− w|| ∀w ∈ B(S(t, u), r).

Let w′ 6= u be a point belonging to B(S(t, u), r) and, for every λ ∈ [0, 1], consider
the point uλ = λu + (1 − λ)w′. Since f(t, ·, w′) is lower semicontinuous on the
segments of K one has

f(t, u, w′) ≤ lim inf
λ→1

f(t, uλ, w
′),

so it is sufficient to prove that f(t, uλ, w
′) ≤ r||u − w′|| for every λ ∈]0, 1[; this

inequality follows from the concavity of f in the last variable and observing that
f(t, uλ, uλ) = 0 and λf(t, uλ, u) + λr||u− uλ|| ≥ 0, since uλ ∈ B(S(t, u), r). Indeed
one has

f(t, uλ, w
′) ≤ f(t, uλ, w

′) + λf(t, uλ, w
′)− λf(t, uλ, w

′) + λf(t, uλ, u) + λr||uλ − u||
≤ f(t, uλ, uλ) + λf(t, uλ, w

′) + λ(1− λ)r||u− w′||
= λf(t, uλ, w

′) + λ(1− λ)r||u− w′||.

Now, we give upper stability results for the maps Tr, LT r and LQr under "nicer"
assumptions.

Proposition 4.4. Assume that the following assumptions hold:

i) S is convex-valued, (τ × s, s)-lower semicontinuous, (τ × s, s)-closed and (τ ×
s, s)-subcontinuous on T ×K;

ii) f(t, u, ·) is concave on K for every t ∈ T and u ∈ K;

iii) f(t, ·, w) is lower semicontinuous on the segments of K for every t ∈ T and
w ∈ K;

iv) for every (t, u, w) ∈ T × K × K, for every sequence (tn, un, wn)n such that
(tn)n τ -converges to t, (un, wn)n (s× s)-converges to (u,w) one has

− f(t, w, u) ≤ lim inf
n

f(tn, un, wn).
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Then, the set-valued map T r is (τ, s)-closed.

Proof. Let (tn)n and (un)n be sequences converging, respectively in T and in K,
to to and uo, such that for every n ∈ N

d(un, S(tn, un)) ≤ r and f(tn, un, w) ≤ r||un − w|| ∀w ∈ B(S(tn, un), r). (1)

The closedness and the subcontinuity of S imply that uo ∈ B(S(to, uo), r).
Indeed, if we assume that d(uo, S(to, uo)) > a > r ≥ d(un, S(tn, un)) for every
n ∈ N, there exists a sequence (vn)n such that vn ∈ S(tn, un) and ||un− vn|| < a for
every n ∈ N. A subsequence (vnk

)k must strongly converge to a point vo ∈ S(to, uo)
and this leads to a contradiction.
Therefore, in order to prove that uo ∈ Tr(to) it suffices only to prove that for every
w ∈ B(S(to, uo), r) one has f(to, uo, w) ≤ r||uo − w||.
We claim that for every w ∈ B(S(to, uo), r) there exists a sequence (wn)n converging
to w such that wn ∈ B(S(tn, un), r) for n sufficiently large.
Indeed, if d(w, S(to, uo)) < r, there exists z ∈ S(to, uo) such that ||w − z|| < r.
Since S is lower semicontinuous, there exists a sequence (zn)n converging to z such
that zn ∈ S(tn, un) for n large and the sequence defined by wn = w+zn−z satisfies
the required conditions.
If d(w, S(to, uo)) = r, then w may be approximated by a sequence (vn) wholly
contained in intB(S(to, uo), r). Then, for every n ∈ N there exists a sequence (ṽn

k
)k

such that

lim
k

ṽn
k
= vn and d(ṽn

k
, S(tk, uk)) < r ∀ k ∈ N.

Applying a diagonalization argument (see Corollary 1.18 in [3]), there exists an
increasing sequence (k(n))n such that the sequence (wn)n, defined by wn = ṽn

k(n),

converges to w and wn ∈ B(S(tk(n), uk(n)), r) for n large, so conditions (1) and iv)
imply that −f(to, w, uo) ≤ r||uo − wo||.
Therefore uo ∈ LT r(to) and the result follows from Lemma 4.3.

Proposition 4.5. Assume that the following assumptions hold:

i) S is convex-valued, (τ × s, s)-lower semicontinuous, (τ × s, s)-closed and (τ ×
s, s)-subcontinuous on T ×K;

ii) f(·, u, ·) is upper semicontinuous on T ×K for every u ∈ K;

iii) f(t, ·, w) is upper semicontinuous on the segments of K for every t ∈ T and
w ∈ K;

iv) for every sequence (tn, un)n, tn ∈ T and un ∈ K for all n ∈ N, such that (tn)n
τ -converges in T and (un)n s-converges in K, there exists m ∈ N such that

int
⋂

n≥m

S(tn, un) 6= ∅.

Then, the set-valued map LQ r and LT r are (τ, s)-closed.
If U is a finite dimensional space, then assumption iv) can be substituted by:

iv ′ ) for every t ∈ T and u ∈ K, intS(t, u) 6= ∅.
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Proof. Let (tn)n and (un)n be sequences converging, respectively in T and in K to
to and uo, such that for every n ∈ N

un ∈ B(S(tn, un), r) and − f(tn, w, un) ≤ r||un − w|| ∀w ∈ B(S(tn, un), r).

As in Proposition 4.4 one can prove that uo ∈ B(S(to, uo), r). Then, in order to
show that uo ∈ LT r(to) it suffices to prove that for every w ∈ B(S(to, uo), r) one
has −f(to, w, uo) ≤ r||uo − w||.
If w ∈ intB(S(to, uo), r) one has that w ∈ intB(S(tn, un), r) for n sufficiently
large since the lower semicontinuity of S allows to apply Lemma 3.4 taking Hn =
B(S(tn, un), r) for n ∈ N and Ho = B(S(to, uo), r). Therefore, for such indexes n,
−f(tn, w, un) ≤ r||un−w|| and condition ii) implies that−f(to, w, uo) ≤ r||uo−w||.
If w ∈ B(S(to, uo), r) \ intB(S(to, uo), r), there exists a sequence (wn)n converging
to w such that wn ∈ intB(S(to, uo), r) for every n ∈ N and one gets −f(to, wn, uo) ≤
r||uo − wn||. Hence, assumption iii) implies that uo ∈ LT r(to). The proof for the
set-valued map LQ r is similar and is omitted.

As observed in Remark 3.7, results concerning the (τ × w)-closedness of the set-
valued maps LQ r, LT r and T r can be also achieved.

5. Lower stability of approximate solutions

In this section we investigate the lower stability of the approximate solution maps
and we start proving a lower semicontinuity result for a kind of approximate fixed
points.

Proposition 5.1. Assume that U is a reflexive Banach space and the following
assumptions hold:

i) the set-valued map S is closed-valued, convex-valued and (τ×s, s)-lower semi-
continuous on T ×K;

ii) for every sequence (tn, un)n, tn ∈ T and un ∈ K for all n ∈ N, such that (tn)n
τ -converges in T and (un)n s-converges in K, there exists m ∈ N such that

int
⋂

n≥m

S(tn, un) 6= ∅.

Then, for every t ∈ T , for every sequence (tn)n τ -converging to t, every u ∈ K such
that u ∈ B(S(t, u), r), there exists a sequence (un)n strongly converging to u such
that un ∈ intB(S(tn, un), r) for n sufficiently large and the set-valued map

Fr : t ∈ T → {u ∈ K : d(u, S(t, u)) ≤ r}

is lower semicontinuous.
If U is a finite dimensional space, then assumption ii) can be substituted by:

ii ′ ) for every t ∈ T and u ∈ K, intS(t, u) 6= ∅.

Proof. We start considering u ∈ intB(S(t, u), r), i.e. d(u, S(t, u)) < r.
Let z ∈ S(t, u) be such that ||z − u|| < r. There exists a sequence (zn)n converging
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to z such that zn ∈ S(tn, u); since ||zn − u|| < r for n sufficiently large, one can put
un = u for every n ∈ N.
Now, we assume that d(u, S(t, u)) = r. Since S(t, u) is convex and U is a reflexive
Banach space, there exists z ∈ S(t, u) such that ||u− z|| = r.
Assume that z ∈ intS(t, u) and let (λn)n be a sequence of nonnegative real numbers
in ]0, 1] converging to 0. The sequence obtained setting un = λnz + (1 − λn)u
converges to u, ||un−z|| = (1−λn)||u−z|| < r for every n ∈ N and z ∈ intS(tn, un)
for n large in light of condition ii) and Lemma 3.4.
Finally, assume that z ∈ S(t, u) \ intS(t, u). Let (zn)n be a sequence strongly
converging to z wholly contained in intS(t, u). Then, for every n ∈ N there exists
a sequence (ũ n

k
)k strongly converging to zn and such that d(ũ n

k
, S(tk, ũ

n

k
)) < r

for every k ∈ N. Applying a diagonalization argument (see [3], Corollary 1.18),
there exists an increasing sequence (k(n))n such that (ũn

k(n))n converges to u and

d(ũ n

k(n), S(tk(n), ũ
n

k(n))) < r.

The next two propositions are concerned with the lower semicontinuity of the set-
valued map LQr and Qr.

Proposition 5.2. Assume that the following assumptions hold:

i) the set-valued map S has convex graph;

ii) the set-valued map S is (τ × s, s)-lower semicontinuous, (τ × s, s)-closed and
(τ × s, s)-subcontinuous on T ×K;

iii) the function f(t, ·, ·) is strictly quasi-concave on K ×K, for every t ∈ T ;

iv) for every (t, u) ∈ T ×K, for every sequence (tn)n converging to t in τ , there
exists a sequence (u′

n
)n which strongly converges to u in K such that for every

w ∈ K and every sequence (wn)n strongly converging to w in K one has

f(t, w, u) ≤ lim inf
n

f(tn, wn, u
′
n
);

v) for every t ∈ T there exists z ∈ K such that

d(z, S(t, z)) < r and − f(t, w, z) < r ∀w ∈ S(t, z).

Then, the set-valued map LQr is (τ, s)-lower semicontinuous on T .

Proof. The proof consists in two steps.

Step 1. For every t ∈ T ,

LQr(t) ⊆ cl L̃Qr(t),

where

L̃Qr(t) = {u ∈ K : d(u, S(t, u)) < r and − f(t, w, u) < r ∀w ∈ S(t, u)} .

Assume that there exist to ∈ T and uo ∈ LQr(to) such that uo /∈ cl L̃Qr(to).
Assumption v) says that there exists zo ∈ K such that

d(zo, S(to, zo)) < r and − f(to, w, zo) < r ∀w ∈ S(to, zo).
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Given a sequence (λn)n converging to 0 in [0,1], consider, for every n ∈ N, the point

un = λnzo + (1− λn)uo

and observe that, in light of assumptions i) and ii), one has d(un, S(to, un)) < r,
since, for every t ∈ T, the function u ∈ K → d(u, S(t, u)) turns to be convex (see,
for example, [15]).
Moreover, for every n ∈ N, S(to, un) ⊆ λnS(to, zo) + (1 − λn)S(to, uo) so, if wn ∈
S(to, un), there exist pn ∈ S(to, zo) and qn ∈ S(to, uo) such that wn = λnpn + (1 −
λn)qn. Therefore, being uo 6= zo since uo /∈ L̃Qr(to), assumption iii) implies that

−f(to, wn, un) < max {−f(to, pn, zo),−f(to, qn, uo)} ≤ r

and one gets a contradiction considering that un ∈ L̃Qr(to) for every n ∈ N and

that uo = limn un ∈ cl L̃Qr(to).

Step 2. The set-valued map

L̃Qr : t ∈ T → L̃Qr(t)

is (τ, s)-lower semicontinuous on T .

In fact, assume that the set-valued map L̃Qr is not lower semicontinuous on T and
find t′ ∈ T , u′ ∈ L̃Qr(t

′) and a sequence (t′
n
)n τ -converging to t′ in T such that

u′ /∈ lim infn L̃Qr(t
′
n
).

Consequently, for the sequence (u′
n
)n, corresponding to (t′, u′) and (t′

n
)n in assump-

tion iv), there exists a subsequence (u′
nk
)k such that

u′
nk

/∈ L̃Qr(t
′
nk
) ∀ k ∈ N.

Since d(u′, S(t, u′)) < r, from assumption ii) one can infer that d(u′
nk
, S(t′

nk
, u′

nk
)) <

r for k ∈ N sufficiently large, so, for such indexes k there exist w′
k
∈ S(t′

nk
, u′

nk
)

such that −f(t′
nk
, w′

k
, u′

nk
) ≥ r.

Since the map S is closed and subcontinuous, the sequence (w′
k
)k has a subsequence,

still denoted by (w′
k
)k, converging to w′ ∈ S(t′, u′), and, using assumption iv), one

gets −f(t′, w′, u′) ≥ r that is in contradiction with u′ ∈ L̃Qr(t
′).

Finally, whatever is the sequence (tn)n τ -converging to t ∈ T , one gets

LQr(t) ⊆ cl L̃Qr(t) ⊆ cl lim inf
n

L̃Qr(tn) = lim inf
n

L̃Qr(tn) ⊆ lim inf
n

LQr(tn)

and the proof is complete.

Similarly one can prove:

Proposition 5.3. Assume that the following assumptions hold:

i) the set-valued map S has convex graph;

ii) the set-valued map S is (τ × s, s)-lower semicontinuous, (τ × s, s)-closed and
(τ × s, s)-subcontinuous on T ×K;
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iii) the function f(t, ·, ·) is strictly quasi-convex on K ×K, for every t ∈ T ;

iv) for every (t, u) ∈ T ×K, for every sequence (tn)n converging to t in τ , there
exists a sequence (u′

n
)n which strongly converges to u in K such that for every

w ∈ K and every sequence (wn)n strongly converging to w in K one has

f(t, u, w) ≥ lim sup
n

f(tn, u
′
n
, wn);

v) for every t ∈ T there exists z ∈ K such that

d(z, S(t, z)) < r and f(t, z, w) < r ∀w ∈ S(t, z).

Then, the set-valued map Qr is (τ, s)-lower semicontinuous on T .

Remark 5.4. We point out that analogous lower semicontinuity results do not
hold, in general, for the approximate solutions maps Tr and LT r. Indeed, consider
T = U = R, K = [−1, 1], S(t, u) = K for every (t, u) ∈ R× [−1, 1] and f(t, u, w) =
w − u+ t. Then, one can see that Tr(0) = {1} while Tr(1/n) = ∅ for all n ∈ N and
r < 1, so Tr(0) 6⊆ lim infn Tr(1/n).

Concluding, among the approximate solution maps considered in this paper, only
the maps Qr and LQr can be simultaneously upper and lower stable under suitable
assumptions, as summarized in the following corollaries.

Corollary 5.5. Assume that the following assumptions hold:

i) the set-valued map S has convex graph;

ii) the set-valued map S is (τ × s, s)-lower semicontinuous, (τ × s, s)-closed and
(τ × s, s)-subcontinuous on T ×K;

iii) the function f(t, ·, ·) is strictly quasi-concave on K ×K, for every t ∈ T ;

iv) for every (t, u) ∈ T ×K, for every sequence (tn)n converging to t in τ , there
exists a sequence (u′

n
)n which strongly converges to u in K such that for every

w ∈ K and every sequence (wn)n strongly converging to w in K one has

f(t, w, u) ≤ lim inf
n

f(tn, wn, u
′
n
);

v) the function f(·, u, ·) is upper semicontinuous on T ×K, for every u ∈ K;

vi) the function f(t, ·, w) is upper semicontinuous on the segments of K, for every
t ∈ T and w ∈ K;

vii) for every sequence (tn, un)n, tn ∈ T and un ∈ K for all n ∈ N, such that (tn)n
τ -converges in and (un)n s-converges in K, there exists m ∈ N such that

int
⋂

n≥m

S(tn, un) 6= ∅;

viii) for every t ∈ T there exists z ∈ K such that

d(z, S(t, z)) < r and − f(t, w, z) < r ∀w ∈ S(t, z).

Then, the set-valued map LQr is (τ, s)-lower semicontinuous and (τ, s)-closed on
T .
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Corollary 5.6. Assume that the following assumptions hold:

i) the set-valued map S has convex-graph;

ii) the set-valued map S is (τ × s, s)-lower semicontinuous, (τ × s, s)-closed and
(τ × s, s)-subcontinuous on T ×K;

iii) the function f(t, ·, ·) is strictly quasi-convex on K ×K, for every t ∈ T ;

iv) the function f is lower semicontinuous on T ×K ×K;

v) for every (t, u) ∈ T ×K, for every sequence (tn)n converging to t in τ , there
exists a sequence (u′

n
)n which strongly converges to u in K such that for every

w ∈ K and every sequence (wn)n strongly converging to w in K one has

f(t, u, w) ≥ lim sup
n

f(tn, u
′
n
, wn);

vi) for every t ∈ T there exists z ∈ K such that

d(z, S(t, z)) < r and f(t, z, w) < r ∀w ∈ S(t, z).

Then, the set-valued map Qr is (τ, s)-lower semicontinuous and (τ, s)-closed on T .
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