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The convexity of a set of “control variations” is one of the crucial properties needed to prove
sufficient controllability conditions or necessary optimality conditions. Heuristically, if one can
construct control variations in all possible directions, then the considered control system is small-
time locally controllable. As it was shown in [7], the cones generated by needle variations may
fail to be convex. The purpose of the present paper is to define a convex set of high-order control
variations and to prove a sufficient controllability condition. The proof is based on a general Lie
series formalism. One illustrative example is also presented.
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1. Introduction

Let us consider the following control system :

�x(t) = f0(x(t)) + u(t) f1(x(t)), x(0) = x0, (1)

where the state variable x belongs to a smooth n-dimensional manifold M , x0 is a
fixed point of M , f0 and f1 are smooth vector fields with f0(x0) = 0.

Admissible controls are the Lebesgue integrable functions u whose domain is a
compact interval of the form [0, T ], T > 0, and u(t) ∈ [−1, 1] for almost every t
from [0, T ]. By U we denote the set of all admissible controls. A trajectory of (1)
defined on [0, T ], starting from x0 and corresponding to some admissible control u,
is an absolutely continuous function x(t), t ∈ [0, T ], satisfying (1) for almost every
t from [0, T ]. The reachable set R(x0, T ) of (1) from x0 at time T > 0 is defined
as the set of all points that can be reached in time T by means of trajectories of
(1) starting from x0. The system (1) is said to be small-time locally controllable
(STLC) at x0, if x0 belongs to the interior of the set R(x0, T ) for each T > 0.
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National Fund for Science Research under contract DO 02-359/2008.
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The small-time local controllability of the control system (1) is a local property
for the case of bounded controls. Thus, we can take a local point of view, i.e. we
assume that x0 ∈ IRn and the vector fields f0 and f1 are defined on some compact
neighbourhood of the point x0.

There are many possible approaches to study the small-time local controllability,
leading to different results and requiring different assumptions. Here we follow a
geometrical point of view. The underlying philosophy is that for analytic systems of
the form (1) the local properties of the reachable set are determined by the iterated
Lie brackets in the vector fields f0 and f1, evaluated at the initial point (cf. [14],
[25], [26], [28], [30] etc.). These values are in principle easily computable. Thus,
it is very natural to look for conditions for small-time local controllability which
can be expressed in terms of elements of the Lie algebra L(~f) generated by f0 and
f1. Some very general sufficient conditions (cf. [2], [4], [5], [6], [11], [12], [18] [27],
[32] etc.) are known as well as some necessary conditions (cf. [16], [20], [29], [31],
etc.). But to our knowledge, necessary and sufficient conditions for small-time local
controllability are proved only in some special cases (cf. [3], [8], [15], [21], [23], [33],
[34] etc.).

We consider the case of single-input control systems using simple input symmetries.
But, one can easily extend the main result for the case of multi-input systems.
The underlying idea is the following: We consider the family W = {f0 + αf1 :
α ∈ [−1, 1]} of smooth vector fields. It is easy to verify that the Lie algebra gen-

erated by the elements of W is L(~f). Forgetting about rigor, we can think about

the “Lie group� G(~f) with Lie algebra L(~f), and obtain an “action� of G(~f) on

the phase space. Every element g of G(~f) is a product of exponentials of the type
exp(ti gi). Hence, the result g ·x0 of acting on x0 by g is a point obtained by starting
from the point x0 and moving along integral trajectories of the elements of the set
W, with switching of vector fields allowed, and with motion “backwards in time�
also permitted. All finite products of exponentials of the type exp(ti gi) with ti > 0
and gi ∈ W are true trajectories of the considered control system and constitute
a subsemigroup S(~f) of G(~f). Then the reachable set from the point x0 contains

S(~f) · x0. Let Hx0
(~f) denote the usotropy subgroup of G(~f) at the point x0, i.e.

Hx0
(~f) := {g ∈ G(~f) : g · x0 = x0}. Clearly, if the interior of S(~f) contains an

element of Hx0
(~f), then x0 will be an interior point of S(~f) · x0.

To make this rigorous, we use an abstract exponential Lie series formalism deve-
loped in [2], [31] and [32]. It is needed to surround the obstacles arising from the

fact that L(~f) is, in general, infinite dimensional, and hence G(~f) is not a well

defined Lie group. Rather then work with L(~f) we work formally with a free Lie

algebra L( ~X) generated by the indeterminates X0 and X1 and with his completion,

the Lie algebra L̃( ~X) of formal Lie series in X0 and X1. Then the controls can be

embedded in G̃( ~X) as a semigroup S( ~X) by means of a map that assigns to each
control a noncommutative formal power series, obtained by solving the differential
equation of the system formally using indeterminates instead the original vector
fields (cf., for example, [31] and [32]). Since G̃( ~X) is not a true Lie group, we use
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its nilpotent approximation GN( ~X) obtained by killing all Lie brackets of length

greater than N . Now GN( ~X) is a Lie group in the usual sense. We denote by

SN( ~X) the corresponding approximating semigroup.

To get local controllability, we use the fact that the interior of SN( ~X) contains
an exponential of a linear combination of “bad Lie brackets�. These Lie brackets
are the possible obstruction for small-time local controllability. So, if each bad Lie
bracket can be “neutralized� (i.e. each bad Lie bracket can be expressed as a linear
combination of Lie brackets of lower “r-weight� (the notion of r-weight is defined
in the next section)), then the control system is small-time local controllable at x0.
In fact, this is the idea of the general sufficient controllability condition proved by
Sussmann in [32]. In order to “realize� the r-weight of the Lie brackets, we use
families of admissible controls parameterized by the amplitude and by the length
of the time interval where these controls are defined.

However, as it was shown in [17], there exist control systems that are small-time
locally controllable but only by using increasingly faster switching controls, i.e.
controls whose number of switchings increase to infinity as the length of the time
interval goes to zero. To handle this “fast switching phenomenon�, we use the
idea proposed in [2] to study flows generated by semi-groups of diffeomorphisms of

special kind: We choose an arbitrary set Π of Lie brackets of LN( ~X) such that the
free Lie algebra generated by the elements of Π contains all bad Lie brackets. Using
the fact that an exponential of a linear combination Θ of bad Lie brackets belongs
to the interior of SN( ~X), we obtain that the exponential of the sum of Θ and

suitable linear combinations of the elements of Π also belong to SN( ~X). We denote

by SN
Π ( ~X) the semigroup consisting of all finite products of these exponentials.

Clearly, SN
Π ( ~X) ⊆ SN( ~X). We study the semigroup SN

Π ( ~X) and are able to prove
that an exponential of a linear combination of new “Π-bad Lie brackets� belongs
to the the set SN

Π ( ~X). If each of these Π-bad Lie bracket can be “Π-neutralized�,
i.e. each Π-bad Lie bracket can be expressed as a linear combination of Lie brackets
of lower “(r, σ)-weight� (the notion of (r, σ)-weight is defined in the next section),
then we obtain a set of “control variations� to the reachable set. Heuristically, if
we can construct control variations in all possible directions, then the reachable set
has to be a full neighbourhood of the starting point (note that the cones generated
by needle variations, for example, may fail to be convex as it was shown in [7]
by presenting a series of purposefully constructed examples). We would like to
point out that to “realize� the (r, σ)-weight of the Lie brackets, we use families
of admissible controls parameterized by the amplitude, by the length of the time
interval and by the number of switchings.

Applying the main result of [24], one can construct suitable sets of the so called
S-control variations (also defined in [24]). In the present paper we extend the
class of S-control variations and define a more general class of I-control variations
that contain the class of S-control variations. We prove that the sets of I-control
variations are convex in some extended sense and obtain as a corollary a more
general sufficient STLC condition.
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The paper is organized as follows: We present an abstract exponential Lie series
formalism, formulate the main results and give an illustrative example in Section
2. The corresponding proofs can be found in Section 3.

2. Preliminaries and statement of the main results

Using an abstract exponential Lie series formalism, we study the problem of small-
time controllability of semi-groups of diffeomorphisms of special kind. Following [2],
[31] and [32], we introduce some notations: Let X0 and X1 be two symbols (called

“indeterminates�). We set ~X = (X0, X1) and fix a sufficiently large positive integer

N . By AN( ~X) we denote the free nilpotent associative algebra of order N + 1: If
I = (i1, . . . , ik) is any finite sequence with ij ∈ {0, 1}, then we denote by ‖I‖ its
length k and setXI := Xi1 · · ·Xik .We letX∅ := 1. If I◦J denotes the concatenation

of I and J , then the multiplication in AN( ~X) is given by XI XJ := XI◦J whenever
‖I‖ + ‖J‖ ≤ N . If ‖I‖ + ‖J‖ > N , then the product XI XJ is set equal to zero.

Then the basis of AN( ~X) consists of all monomial XI of length less than or equal
to N .

We denote by LN( ~X) the nilpotent Lie subalgebra of AN( ~X) generated by X0 and
X1 with the Lie bracket defined by

[P,Q] := PQ−QP.

The elements of LN( ~X) will be referred to as Lie polynomials in X0 and X1. We
apply very often the Campbell-Baker-Hausdorff formula (C-B-H formula) (cf., for
example, [1], [9] and [10]) which says that if A and B are Lie polynomials, then
there exists a Lie polynomial C such that

exp(A) exp(B) = exp(C).

Here exp(P ) := 1 +
∑N

i=1
P i

i!
for each Lie polynomial P . The C-B-H formula up to

order three is

C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [B,A]] + · · ·

Let us define GN( ~X) to be the set

GN( ~X) =
{
exp(A) : A ∈ LN( ~X)

}
.

Then, because of the C-B-H formula, GN( ~X) is a group.

Following [31], we consider the following control system on AN( ~X):

�S(t) = S(t)(X0 + u(t)X1), where u(t) ∈ U and S(0) = 1. (2)

Let us remind that by U we have denoted the set of all admissible controls, i.e. the
set of all Lebesgue integrable functions u whose domain is a compact interval of
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the form [0, T ], T > 0, and u(t) ∈ [−1, 1] for almost every t from [0, T ]. The time
T will be referred to as the terminal time of u and will be denoted by T (u). If
ui : [0, T (ui)] → [−1, 1], i = 1, 2, are admissible controls, then by u2 ◦ u1 we denote
an element of U with T (u2 ◦ u1) = T (u2) + T (u1) and defined as follows:

u2 ◦ u1(t) :=

{
u1(t) for t ∈ [0, T (u1)),

u2(t− T (u1)) for t ∈ [T (u1), T (u1) + T (u2)).
(3)

It is proved in [31] that for each control u ∈ U which is defined on the interval
[0, T (u)], the solution S(u) of (2) satisfying S(u)(0) = 1 is well defined on [0, T (u)]
and

S(u)(t) =
∑

‖I‖≤N

sI(u)(t)XI , ∀ t ∈ [0, T (u)],

where s∅(u)(t) := 1 and for each I = (i1, i2, . . . , ik) with ij ∈ {0, 1}, j = 1, . . . , k,

sI(u)(t) :=

∫ t

0

∫ tk

0

∫ tk−1

0

· · ·

∫ t2

0

uik(τk)u
ik−1(τk−1) · · ·u

i2(τ2)u
i1(τ1) dτ1 · · · dτk

(here u0(t) = 1 and u1(t) = u(t) for each t ∈ [0, T (u)]). We define Ser(u) to be
S(u)(T (u)).

The reachable set RN
~X
(T ) of (2) at time T > 0 is defined as the set of all points of

AN( ~X) that can be reached in time T by means of solutions of (2) starting from
1. Some properties of the control system (2) are presented in more details in [31].
Here, we shall remind only one corollary of Lemma 3.1 in [31]:

Ser (u1 ◦ u2) = Ser (u1) Ser (u2) (4)

for every two admissible controls u1 and u2. Also,

if exp(Ai) ∈ RN
~X
(Ti) for i = 1, . . . , k,

then exp(A1) · exp(A2) · · · exp(Ak) ∈ RN
~X
(T1 + T2 + · · ·+ Tk).

Let us remind that L( ~X) denotes the free Lie algebra generated by the indetermi-

nates X0 and X1, and let Λ be a Lie bracket belonging to L( ~X). We denote by Λ(~f)
that Lie bracket in f0 and f1 which is obtained from Λ by substituting each X0 and
X1 by f0 and f1, respectively. Also, we set (

∑k
i=1 αi Λi)(~f) :=

∑k
i=1 αi Λi(~f) for

each Lie brackets Λi in X0 and X1 and each real numbers αi, i = 1, . . . , k. If S is
a subset of L( ~X), then by spanS we denote the minimal linear subspace of L( ~X)
containing the elements of S,

S(~f) :=
{
Λ(~f) : Λ ∈ S

}
and S(~f)(x0) :=

{
Λ(~f)(x0) : Λ ∈ S

}
.

Let Π1 and Π2 be two sets of Lie brackets from L( ~X). We set

[
Π1,Π2

]
:=
{
[π1, π2] : π1 ∈ Π1, π2 ∈ Π2

}
.
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At last, by B( ~X) we denote the set of all Lie brackets in X0 and X1 of odd length

in which X1 appears an even number of times. We call the elements of B( ~X) “bad
Lie brackets�. The main idea of the obtained sufficient conditions in [2], [5], [31]

and [32] is that the elements of B( ~X) have to be “neutralized� in order not to be
obstructions for small-time local controllability. This idea is also realized in the
present paper but for a different set of bad Lie brackets: Let Π be an arbitrary set
of Lie brackets from L( ~X). By L(Π) we denote the Lie algebra freely generated by
the elements of Π.

Remark 2.1. For simplicity of the notations, we accept the following convention:
Usually, we consider the elements of the set Π as indeterminates that generate the
Lie algebra L(Π). For example, let Y1 := X0, Y2 := [X0, X1] and Y3 := [X0, [X0, X1]]
belong to the set Π. Then [Y1, Y2] and Y3 are different when they are considered
as elements of L(Π). On the other hand, we also consider the Lie brackets in the

elements of Π as elements of L( ~X). For example, [Y1, Y2] and Y3 coincide when they

are considered as elements of L( ~X). We use one and the same notations in both
cases. It will be clear from the context whether a Lie bracket in the elements of Π
is considered as an element of L(Π) or as an element of L( ~X).

For each k = 1, 2, . . . we define recurrently the sets

Π1 := Π, Πk+1 :=
[
Π1, Πk

]
, Π∞ :=

∞⋃

k=1

Πk,

Let us fix a vector r = (r0, r1) whose components are positive integers such that
1 ≤ r0 ≤ r1, and let σ be a positive number not greater than r0. We set

‖Λ‖r := r0|Λ|0 + r1|Λ|1, ‖Λ‖σr := ‖Λ‖r − σk for every Λ ∈ Πk,

where the number of times that Xi, i = 0, 1, appears in Λ is denoted by |Λ|i. Here,
the relation Λ ∈ Πk implies that the Lie bracket Λ is considered as an element
of L(Π). On the other hand, to calculate the numbers |Λ|0 and |Λ|1, we consider

Λ as an element of the Lie algebra LN( ~X) (cf. Remark 2.1). The number |Λ|i is
called degree of Λ with respect to Xi, i = 0, 1. Clearly, the length ‖Λ‖ of Λ is
equal to |Λ|0 + |Λ|1. The positive numbers ‖Λ‖r and ‖Λ‖σr are called “r-weight �
and “(r, σ)-weight� of the Lie bracket Λ, respectively.

For each positive number δ we define the sets

L
δ

r,σ(Π) = {Λ ∈ Π∞ : ‖Λ‖σr = δ} .

and
Lδ

r,σ(Π) = {Λ ∈ Π∞ : ‖Λ‖σr ≤ δ} .

We say that the (r, σ)-weight ‖ · ‖σr is regular if the set {δ : L
δ

r,σ(Π) 6= ∅} has no
limit points.

Also, we define a set of “good� elements of the set Π as follows:

Good (Π) := Π \ B( ~X),
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i.e. good elements of the set Π are those elements of Π that are not bad Lie brackets.
Let Λ be a Lie bracket belonging to Π∞. We say that Λ belongs to BΠ( ~X) iff
Λ ∈ Π2i+1 for some nonnegative integer i and each element of Good (Π) appears an

even number of times in Λ. We call the elements of BΠ( ~X) Π-bad Lie brackets. Let

Λ0 belong to BΠ( ~X). Because each good element of Π appears an even number of

times in Λ0, the total number of times that elements of the set Π ∩ B( ~X) appears
in Λ0 is odd. Since each of these elements is of odd degree with respect to X0 and
of even degree with respect X1, we may conclude that Λ0 is of odd degree with
respect to X0 and of even degree with respect X1, i.e. Λ0 ∈ B( ~X). It is said that
Λ0 can be Π-neutralized if

Λ0(~f(x0)) ∈ span
{
Λ(~f)(x0) : Λ ∈ Π∞ with ‖Λ‖σr < ‖Λ0‖

σ
r

}
.

Also, if Λ0(~f)(x0) = 0, then Λ0 is Π-neutralized.

To formulate our main result, we define a set of a high-order control variations:

Definition 2.2. Let V =
{
V 1, . . . , V k

}
be a finite set of Lie brackets in X0 and X1.

It is said that V is a set of I-control variations of the control system (2) at the point
x0 if there exist positive numbers λ, γ0 and γ1 with γ0 < γ1 < (N + 1)λ, elements

Θi ∈ LN( ~X) with Θi(~f)(x0) = 0, i = 1, . . . , dθ, and ∆j ∈ LN( ~X), j = 1, . . . , d∆,
such that for each vector s = (s1, . . . , sk) whose components belong to the interval
[0, 1] and for each γ from the open interval (γ0, γ1) the following inclusion holds
true

exp

(
η−γ

k∑

l=1

slαl(γ, η)V
l +

dθ∑

i=1

θi(γ, η)Θ
i +

d∆∑

j=1

δj(γ, η)∆
j

)
∈ RN

~X
(ps,γ(η)) (5)

for each sufficiently large positive integer η, where:

i) αl : (γ0, γ1)× [0,+∞) → [0,+∞), l = 1, . . . , k are functions with αl(γ, η) ≥ 1
for each γ ∈ (γ0, γ1) and for each positive integer η and limη→+∞ αl(γ, η) = 1
for each γ ∈ (γ0, γ1);

ii) θi : (γ0, γ1) × [0,+∞) → [0,+∞), i = 1, . . . , dθ, are functions such that
limη→+∞ θi(γ, η) = 0 for each γ ∈ (γ0, γ1);

iii) δj : (γ0, γ1) × [0,+∞) → [0,+∞), j = 1, . . . , d∆, are functions such that
limη→+∞ ηγ δj(γ, η) = 0 for each γ ∈ (γ0, γ1);

iv) ps,γ : [0,+∞) → [0,+∞) is a function with ps,γ(η) < ν η−λ for each positive
integer η, where ν is a positive constant.

We denote by E+
I (x0) the set of all sets of I-control variations at x0.

Proposition 2.3. Let V1 =
{
V 1
1 , . . . , V

k1
1

}
and V2 =

{
V 1
2 , . . . , V

k2
2

}
be two sets of

I-control variations at x0. Then V =
{
V 1
1 , . . . , V

k1
1 , V 1

2 , . . . , V
k2
2

}
is also a set of

I-control variations at x0.

A class of S-control variations is defined in [24]. One can easily verify that each set
of S-control variations is also a set of I-control variations. More about high-order
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control variations can be found in [24]. To formulate the main result, we need also
the following

Definition 2.4. Let V belong to L( ~X). It is said that V is an H-control variation
of the control system (2) at the point x0 if there exist positive numbers ν, γ,
γ1, . . . , γd∆ , θ1, . . . , θdΘ , and λ with

γ < γ̃ := min (γ1, . . . , γd∆ , (N + 1)λ) ,

elements Θi ∈ LN( ~X) with Θi(~f)(x0) = 0, i = 1, . . . , dθ, and ∆j ∈ LN( ~X), j =
1, . . . , d∆, and a continuous function p : R+ → R+ with p(t) < ν tλ such that for
each sufficiently small positive t > 0

exp

(
tγV +

dθ∑

i=1

tθiΘi +
d∆∑

j=1

tγj∆j

)
∈ RN

~X
(p(t)),

We denote by E+
H(x0) the set of all H-control variations at x0.

Remark 2.5. We would like to point out that the inclusion (5) in Definition 2.2
holds true only for countably many values of η. Also, high-order variations similar
to those defined in Definition 2.2 (Definition 2.4) are used in [2], [31], [32] etc. ([13],
[22], [23], [33], [34] etc.) But there exist different definitions of high-order variations
(cf., for example, [6], [7], [11] etc.).

For example, the sufficient controllability conditions proved in [2], [31] and [32]
ensure elements of the set E+

S (x0). Also, the following proposition provides con-
structions of elements of the set E+

H(x0).

Proposition 2.6. The following assertions holds true:

(i) the set E+
H(x0) is a convex cone;

(ii) X1 and −X1 belong to E+
H(x0);

(iii) if V and −V belong to E+
H(x0), then ±[X0, V ] ∈ E+

H(x0).

The idea of the proof of this proposition can be found, for example, in [13], [22],
[23], [33], [34] etc. Let us denote by int S and co S the interior and the convex hull
of the set S, respectively.

Next we formulate the main result:

Theorem 2.7. Let Vi =
{
V 1
i , . . . , V

ki
i

}
, i = 1, . . . , µ, be sets of I-control variations

at x0, let W 1, . . . ,W k ∈ H+(x0) and let the origin belong to the interior of the
convex hull of the set

{
V 1
1 (
~f)(x0), . . . , V

k1
1 (~f)(x0)(x0), . . . , V

1
µ (
~f)(x0)(x0), . . . ,

V kµ
µ (~f)(x0)(x0),W1(~f)(x0)(x0), . . . ,Wk(~f)(x0)(x0)

}
.

(6)

Then the control system (1) is STLC at the point x0.
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In order to apply Theorem 2.7, we can use, for example, the main result of [24].
This result shows how to construct suitable high-order control variations and it can
be formulated as follows:

Theorem 2.8. Let r = (r0, r1) be a vector whose components are positive integers
satisfying the inequalities 1 ≤ r0 ≤ r1, and σ be a positive number not greater than
r0 such that the (r, σ)-weight ‖ · ‖σr is regular. Let Π be an arbitrary set of Lie

brackets belonging to L( ~X). Suppose that

i) the set of all bad Lie brackets B( ~X) is a subset of L(Π);

ii) there exists δ > 0 such that every Lie bracket from BΠ( ~X)
⋂

Lδ
r,σ(Π) can be

Π-neutralized.

Then there exists a set {±Λ1, . . . ,±Λi0} of S-control variations at x0 such that each
Λi is a Lie bracket in the elements of the set Π and

span
{
Λ1(~f)(x0), . . . ,Λi0(

~f)(x0)
}
≡ spanLδ

r,σ(Π)(
~f)(x0).

Remark 2.9. To apply Theorem 2.8, the so called Elimination theorem is quite
useful (to our knowledge, its importance for studying the STLC property is shown
at first in [2]): Let S be an arbitrary subset of a Lie algebra and let s0 belong to
S. Then the linear hull of all elements of S except the element s0, and of all Lie
brackets in the elements of S is a Lie algebra freely generated by the set

{(
adi s0, s

)
: s ∈ S \ {s0}, i = 0, 1, . . .

}
.

To illustrate the application of Theorem 2.7, we consider a nonlinear example. To
the author knowledge, no one of the published sufficient conditions (cf., for example,
[2], [24]) and [32]) implies that the considered control system is STLC at the origin.

Example 2.10. Let us consider the following control system

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�x1 = u, x1(0) = 0
�x2 = x1, x2(0) = 0
�x3 = x31, x3(0) = 0
�x4 = x51, x4(0) = 0
�x5 = x71, x5(0) = 0
�x6 = x2, x6(0) = 0
�x7 = x6, x7(0) = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�x8 = x7, x8(0) = 0, u ∈ [−1, 1],
�x9 = x8, x9(0) = 0
�x10 = x9, x10(0) = 0,
�x11 = x10, x11(0) = 0,
�x12 = x11, x12(0) = 0
�x13 = x12, x13(0) = 0
�x14 = x2x5 + x62, x14(0) = 0
�x15 = x3x13 + x62, x15(0) = 0

We set f0 := (0, x1, x
3
1, x

5
1, x

7
1, x2, x6, x7, x8, x9, x10, x11, x12, x2x5+x

6
2, x3x13+x

6
2) and

f1 := (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). One can check directly that the following
Lie brackets in f0 and f1 are nonvanishing at the origin:

f1, [f1, f0] ,
(
ad3 f1, f0

)
,

(
ad5 f1, f0

)
,

(
ad7 f1, f0

)
,

(
adi f0, [f1, f0]

)
, i = 1, . . . , 8,

[(
ad7 f1, f0

)
, [[f1, f0] , f0]

]
,

[(
ad3 f1, f0

)
,
[(
ad8 f0, [f1, f0]

)
, f0
]]

and
(
ad6 [f1, f0] , f0

)
.
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We set S := S1 ∪ S2, where

S1 :=
{
f1, [f1, f0] ,

(
ad3 f1, f0

)
,
(
ad5 f1, f0

)
,
(
ad7 f1, f0

)}

and
S2 :=

{(
adi f0, [f1, f0]

)
, i = 1, . . . , 8

}
.

The Lie brackets

Z1
G :=

[(
ad7 X1, X0

)
, [[X1, X0] , X0]

]
, ZB :=

(
ad6 [X1, X0] , X0

)

and Z2
G :=

[(
ad3 X1, X0

)
,
[(
ad8 X0, [X1, X0]

)
, X0

]]
belong to B( ~X). Their corre-

sponding values Z1
G(
~f)(0), Z2

G(
~f)(0) and ZB(~f)(0) at the origin can be not repre-

sented as a linear combination of the remainder Lie brackets evaluated also at the
origin. Hence we can not apply the sufficient conditions proved in [2] and [32]. To
prove that this control system is STLC at the origin, we set

Π =
{(

adi X1, X0

)
: i = 0, 1, 2, . . .

}
.

Then
Good (Π) =

{(
ad2i+1 X1, X0

)
: i = 0, 1, 2, . . .

}
.

For r1 := (r10, r
1
1) with σ1 ≥ 1, r10 ≥ 2σ1+1 and r11 := 2(r10 −σ1)− 1, we obtain that

∥∥Z1
G

∥∥σ1

r1
= 19(r10 − σ1)− 8,

∥∥Z2
G

∥∥σ1

r1
= 19(r10 − σ1)− 4,

‖ZB‖
σ1

r1
= 19(r10 − σ1)− 6,

while for r2 := (r20, r
2
1) with σ2 ≥ 1, r20 ≥ 2σ1−1 and r21 := 2(r20 −σ2)+1, we obtain

that
∥∥Z1

G

∥∥σ
r2
= 19(r10 − σ1) + 8,

∥∥Z2
G

∥∥σ
r2
= 19(r10 − σ1) + 4,

‖ZB‖
σ
r2
= 19(r10 − σ1) + 6.

The Elimination theorem implies that the set B( ~X) is a subset of L(Π). The
Lie bracket Z1

G is of first degree with respect to
(
ad5 X1, X0

)
and to [X1, X0]

(the last two Lie brackets belong to the set Good (Π)). Hence, it does not be-

long to BΠ( ~X). One can directly check that all Lie brackets belonging to the set

BΠ( ~X)
⋂

L
19(r1

0
−σ1)−8

r1,σ1
(Π) vanish at the origin. Applying Theorem 2.8, we obtain

that the set
−S ∪ S ∪

{
±Z1

G

}
⊂ L19(r1

0
−σ1)−8

r1,σ1
(Π)

is a set of S-control variations.

Analogously, the Lie bracket Z2
G is of first degree with respect to

(
ad3 X1, X0

)
and

to [X1, X0] (the last two Lie brackets belong to the set Good (Π)). Hence, it does

not belong to BΠ( ~X). One can directly check that all Lie brackets belonging to the

set BΠ( ~X)
⋂
L

19(r2
0
−σ2)+4

r2,σ2
(Π) vanish at the origin. Applying Theorem 2.8, we obtain

that the set
−S ∪ S ∪

{
±Z2

G

}
⊂ L19(r2

0
−σ2)+4

r2,σ2
(Π)
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is a set of S-control variations. is a set of S-control variations. According to (ii) of
Proposition 2.6, X1 and −X1 are H-control variation. Since the origin belongs to
the interior of the convex hull of the vectors

±f1(0), ± [f1, f0] (0), ±
(
ad3 f1, f0

)
(0), ±

(
ad5 f1, f0

)
(0),

±
(
ad7 f1, f0

)
(0), ±

(
adi f0, [f1, f0]

)
(0), i = 1, . . . , 8,

±
[(
ad5 f1, f0

)
,
[(
ad4 f0, [f1, f0]

)
, f0
]]

(0),

±
[(
ad3 f1, f0

)
,
[(
ad8 f0, [f1, f0]

)
(0), f0

]]
(0) and ±

(
ad6 [f1, f0] , f0

)
(0)

we obtain according to Theorem 2.7 that this control system is STLC at the origin.

We would like to note that only for r = (r0, r1) with σ ≥ 1, r1 = 2(r0 − σ) and
r0 ≥ 2σ we have that

∥∥Z1
G

∥∥σ
r
=
∥∥Z2

G

∥∥σ
r
= ‖ZB‖

σ
r = 19(r0 − σ).

Unfortunately, we can not apply Theorem 2.8 for this choice of r because the Lie
Bracket ZB is not Π-neutralized.

3. Proofs

Here we present the proofs of Proposition 2.3 and Theorem 2.7.

Proof of Proposition 2.3. According to Definition 2.2 there exist positive num-
bers λι, γ

ι
0 and γ

ι
1 with γ

ι
0 < γι1 < (N + 1)λι, elements Θi

ι ∈LN( ~X) with Θi
ι(
~f)(x0) =

0, i = 1, . . . , dθ, and ∆j ∈ LN( ~X), j = 1, . . . , d∆, such that for each vector
sι = (s1ι , . . . , s

k
ι ) whose components belong to the interval [0, 1] and for each γι

from the open interval (γι0, γ
ι
1) the following inclusion holds true

exp

(
η−γ

k∑

l=1

slια
ι
l(γι, η)V

l
ι +

dθ∑

i=1

θιi(γ, η)Θ
i
ι +

d∆∑

j=1

διj(γ, η)∆
j
ι

)
∈ RN

~X
(pιsι,γι(η)) (7)

for each sufficiently large positive integer η, where:

i) αι
l : (γ

ι
0, γ

ι
1)× [0,+∞) → [0,+∞), l = 1, . . . , k are functions with αι

l(γ, η) ≥ 1
for each γι ∈ (γ0, γ1) and for each positive integer η and limη→+∞ αι

l(γ, η) = 1
for each γι ∈ (γι0, γ

ι
1);

ii) θιi : (γι0, γ
ι
1) × [0,+∞) → [0,+∞), i = 1, . . . , dθι , are functions such that

limη→+∞ θιi(γι, η) = 0 for each γι ∈ (γι0, γ
ι
1);

iii) διj : (γι0, γ
ι
1) × [0,+∞) → [0,+∞), j = 1, . . . , d∆ι , are functions such that

limη→+∞ ηγιδιj(γι, η) = 0 for each γι ∈ (γι0, γ
ι
1);

iv) pιs,γ : [0,+∞) → [0,+∞) is a function with pιs,γ(η) < νι η
−λι for each positive

integer η, where νι is a positive constant.

Let us fix two arbitrary vectors sι = (s1ι , . . . , s
k
ι ), ι = 1, 2, whose components

belong to the interval [0, 1]. Two cases are possible: a) (γ10 , γ
1
1) ∩ (γ20 , γ

2
1) 6= ∅; b)

(γ10 , γ
1
1) ∩ (γ20 , γ

2
1) = ∅;



1084 M. I. Krastanov / On the Small-time Local Controllability

Let the case a) hold true. We set γ0 := max(γ10 , γ
2
0) and γ1 := min(γ11 , γ

2
1). Then

(7) holds true for each ι = 1, 2, for each γ ∈ (γ0, γ1) and for each sufficiently large
positive integer η.

Let us assume that the case b) holds true. Without loss of generality we may
assume that γ10 ≥ γ21 . Let us fix an arbitrary positive number γ2 from (γ20 , γ

2
1), and

set γ0 := max(γ10 , γ2γ
1
1/γ

2
1) and γ1 := γ11 . Let us fix an arbitrary γ ∈ (γ0, γ1). Then

the inequalities γ2 < γ21 ≤ γ0 < γ imply that for each positive integer η there exists
a positive integer µ = µ(η) ≥ η such that the following inequalities hold true:

(
1

µ(η)

)γ2

≥

(
1

η

)γ

>

(
1

µ(η) + 1

)γ2

.

These inequalities imply that

1 ≤
ηγ

(µ(η))γ2
,

lim
η→+∞

ηγ

(µ(η))γ2
≤ lim

η→+∞

(µ(η) + 1)γ2

(µ(η))γ2
= lim

η→+∞

(
1 +

1

(µ(η))

)γ2

= 1,

and hence

lim
η→+∞

ηγ

(µ(η))γ2
= 1. (8)

We set α̃2(γ, η) :=
ηγ

(µ(η))γ2
α2(γ2, µ(η)). Clearly α̃2(γ, η) ≥ 1 for each positive integer

η and 1 ≤ limη→+∞ α̃2(γ, η) = limη→+∞ α2(γ2, µ(η)) limη→+∞
ηγ

(µ(η))γ2
= 1. Then the

inclusion (7) (for ι = 2 and η := µ(η)) can be written as follows

exp

(
η−γα̃2(γ, η)

k2∑

j=1

sjV j
2 +

dθ
2∑

i=1

θ̃2i (γ, η)Θ
i
2 +

d∆
2∑

j=1

δ̃2j (γ, η)∆
j
2

)
∈ RN

~X
(p̃2s,γ(η)), (9)

where θ̃2i (γ, η) := θ2i (γ2, µ(η)), i = 1, . . . , dθ2, δ̃
2
j (γ, η) := δ2j (γ2, µ(η)), j = 1, . . . , d∆2 ,

p̃2s,γ(η) := p2s,γ2(µ(η)). Our choice of µ(η), the properties of θ2i , i = 1, . . . , dθ2, and δ
2
j ,

j = 1, . . . , d∆2 and (8) imply that

lim
η→+∞

θ̃2i (γ, η) = lim
η→+∞

θ2i (γ2, µ(η)) = 0,

lim
η→+∞

ηγ δ̃2j (γ, η) = lim
η→+∞

ηγδ2j (γ2, µ(η))

= lim
η→+∞

(µ(η))γ2δ2j (γ2, µ(η)) lim
η→+∞

ηγ

(µ(η))γ2
= 0.

Also, according to (8), we have that

p̃2s,γ(η) := p2s,γ2(µ(η)) ≤ ν2 (µ(η))−λ2 = ν2

(
ηγ/γ2

µ(η)

)λ2

η−(λ2γ)/γ2 ≤ 2ν2η
−(γλ2)/γ2
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for all sufficiently large positive integers η.

Then

E(s1, s2, η, γ) := exp

(
η−γα1(γ, η)

k∑

j=1

sj1V
j
1 +

dθ
1∑

i=1

θ1i (γ, η)Θ
i
1 +

d∆
1∑

j=1

γ1j (γ, η)∆
j
1

)

exp

(
η−γ

k2∑

j=1

α̃j
2(γ,η)s

j
2V

j
2 +

dθ
2∑

i=1

θ̃2i (γ,η)Θ
i
2+

d∆
2∑

j=1

δ̃2j (γ,η)∆
j
2

)
∈RN

~X
(p2s1,γ(η)+p̃

2
s2,γ

(η)),

for all sufficiently large positive integers η. Applying the Campbell-Baker-Hausdorff
formula we obtain that E(s1, s2, η, γ) =

exp

(
η−γ

(
k2∑

ι=1

αι
1(γ, η)s

ι
1V

ι
1 +

k2∑

ι=1

ᾱι
2(γ, η)s

ι
2V

ι
2

)
+

dθ∑

i=1

θi(γ, η)Θ̄
i +

d∆∑

j=1

δj(γ, η)∆̄
j

)

where each Θ̄i, i = 1, . . . , dθ is a Lie bracket of Θi
1, i = 1, . . . , dθ1, and Θi

2, i =

1, . . . , dθ2. Hence Θ̄i(~f)(x0) = 0, i = 1, . . . , dθ. Also, each function θi(γ, η), i =
1, . . . , dθ, is proportional to a product of some of the functions θ1i , i = 1, . . . , dθ1, and
θ̃2i , i = 1, . . . , dθ2. Thus, limη→+∞ θi(γ, η) = 0, i = 1, . . . , dθ. Analogously, each ∆̄j,
i = 1, . . . , d∆ is a Lie bracket of V ι

1 , ι = 1, . . . , k1, V
ι
2 , ι = 1, . . . , k2, Θ

i
1, i = 1, . . . , dθ1,

Θi
2, i = 1, . . . , dθ2, ∆

j
1, j = 1, . . . , d∆1 , and ∆j

2, j = 1, . . . , d∆2 and at last one factor is
V ι
1 , V

ι
2 , ∆

j
1 or ∆j

2. The corresponding function δj is proportional to the product of
the functions multiplying the corresponding factors. Thus each function δj is a prod-
uct of at last two of the before written functions and contains as a factor at last one
function η−γαι

1(γ, η), η
−γα̃ι

2(γ, η), δ
1
j (γ, η) or δ̃

2
jγ, η). Thus limη→+∞ η−γδi(γ, η) = 0.

We have prove in this way that {V ι
1 : ι = 1, . . . , k1}

⋃
{V ι

2 : ι = 2, . . . , k2} is a set of
I-control variations. The case a) is simpler and can be treat in the same way. This
completes the proof.

Proof of Theorem 2.7. According to Proposition 2.3 the set

µ⋃

i=1

{V ι
i : ι = 1, . . . , ki}

is a set of I-control variations. Then there exist positive numbers λ, γ0 and γ1 with
γ0 < γ1 < (N + 1)λ, elements Θi ∈ LN( ~X) with Θi(~f)(x0) = 0, i = 1, . . . , dθ,

and ∆j ∈ LN( ~X), j = 1, . . . , d∆, such that for each vector s = (s11, . . . , s
k1
1 , . . . ,

s1µ, . . . , s
kµ
µ ) whose components belong to the interval [0, 1] and for each γ from the

open interval (γ0, γ1) the following inclusion holds true

exp

(
η−γ

µ∑

i=1

kι∑

ι=1

sιiα
i
ι(γ, η)V

ι
i+

dθ∑

i=1

θi(γ, η)Θ
i+

d∆∑

j=1

γj(γ, η)∆
j

)
∈ RN

~X
(ps,γ(η)) (10)

for each sufficiently large positive integer η, where:
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i) αi
ι : (γ0, γ1) × [0,+∞) → [0,+∞), ι = 1, . . . , ki, i = 1, . . . , k, are functions

with αi
ι(γ, η) ≥ 1 for each γ ∈ (γ0, γ1) and for each positive integer η and

limη→+∞ αi
ι(γ, η) = 1 for each γ ∈ (γ0, γ1);

ii) θi : (γ0, γ1) × [0,+∞) → [0,+∞), i = 1, . . . , dθ, are functions such that
limη→+∞ θi(γ, η) = 0 for each γ ∈ (γ0, γ1);

iii) δj : (γ0, γ1) × [0,+∞) → [0,+∞), j = 1, . . . , d∆, are functions such that
limη→+∞ ηγ δj(γ, η) = 0 for each γ ∈ (γ0, γ1);

iv) ps,γ : [0,+∞) → [0,+∞) is a function with ps,γ(η) < ν η−λ for each positive
integer η, where ν is a positive constant.

According to Definition 2.4, for each index j = 1, . . . , k, there exist positive reals
νj, γ

j, γj1, . . . , γ
j

d∆̂j
, θj1, . . . ,

θj
dΘ̂j

and λj with

γj < γ̂j := min
(
γj1, . . . , γ

j

d∆̂j
, (N + 1)λj

)

elements Θj,α ∈ LN( ~X) with Θj,α(~f)(x0) = 0 for each α = 1, . . . , dΘ̂j , and elements

∆j,β ∈ LN( ~X), β = 1, . . . , d∆̂j , and a family of continuous functions pj : R+ → R+

with pj(η) < νj η
−λj , j = 1, . . . , k, such that

exp

(
tγjWj +

dΘ̂j∑

α=1

t
θjα Θj,α +

d∆̂i∑

β=1

tγ
j
α ∆j,β

)
∈ RN

~X
(pj(t)).

Let us fix an arbitrary γ from (γ0, γ1). We set

s̄ := (s1, . . . , sk, s1, . . . , sµ) with si := (s1i , . . . , s
ki
i ),

where each sαi ∈ [0, 1], α = 1, . . . , ki, i = 1, . . . , µ and each sj ∈ [0, 1], j = 1, . . . , k,
Then

E(s, η, γ) := exp

(
η−γ

µ∑

i=1

kι∑

ι=1

sιiα
i
ι(γ, η)V

ι
i +

dθ∑

i=1

θi(γ, η)Θ
i +

d∆∑

j=1

γj(γ, η)∆
j

)
· · ·

· · · exp

(
s1η

−γW1 +
dΘ̂j∑

α=1

(
s1η

−γ
)θ1α/γ1 Θ1,α +

d∆̂i∑

β=1

(
s1η

−γ
)γ1

α/γ1 ∆1,β

)
· · ·

· · · exp

(
skη

−γWk +
dΘ̂k∑

α=1

(
skη

−γ
)θkα/γk Θk,α +

d∆̂k∑

β=1

(
skη

−γ
)γk

β/γk ∆k,β

)
∈ RN

~X
(ps̄,γ(η)) ,

where
ps̄,γ(η) = ps,γ(η) + p1

((
s1η

−γ
)1/γ1)+ · · ·+ pk

((
skη

−γ
)1/γk) .

Taking into account the estimations for ps,γ(·) and for pj(·), j = 1, . . . , k, we obtain
that

ps̄,γ(η) < ν η−λ +
k∑

j=1

νj
(
sjη

−γ
)λj/γj < ν η−λ, (11)



M. I. Krastanov / On the Small-time Local Controllability 1087

where ν := (ν +
∑k

j=1 νj) and λ := min(λ, γ
λ1

γ1
, . . . , γ

λk

γk
). The inequalities 0 < γ <

(N + 1)λ, and 0 < γj < (N + 1)λj, j = 1, . . . , k, imply that 0 < γ < (N + 1)λ.
Applying the C-B-H formula, we obtain that

E(s, η, γ) (12)

= exp


η−γ

(
µ∑

i=1

kι∑

ι=1

sιiα
i
ι(γ, η)V

ι
i +

k∑

j=1

sjWj

)
+

dθ∑

i=1

θs̄i (γ, η)
Θi +

d∆∑

j=1

δs̄j (γ, η)
∆j




∈ RN
~X
(ps̄,γ(η)) ,

where

i) Θi ∈ LN( ~X) with Θi(~f)(x0) = 0 for each α = 1, . . . , dθ;

ii) θs̄i : (γ0, γ1) × [0,+∞) → [0,+∞), i = 1, . . . , dθ, are functions such that
limη→+∞

θs̄i (γ, η) = 0 uniformly with respect to s̄;

iii) δs̄j : (γ0, γ1) × [0,+∞) → [0,+∞), j = 1, . . . , d∆, are functions such that

limη→+∞ ηγ δs̄j (γ, η) = 0 uniformly with respect to s̄.

If we expand the right-hand side of (12), it turns out that

E(s, η, γ) = 1 + η−γ

(
µ∑

i=1

ki∑

α=1

sjiV
j
i +

k∑

j=1

sjWj

)
+ Y2(η, s̄, γ) + Y3(η, s̄, γ),

where Y2(η, s̄, γ) is a sum of powers of θs̄i (γ, η)
Θi and Y3(η, s̄, γ) is a sum

of products of the factors η−γ
(∑µ

i=1

∑ki
α=1 s

j
iV

j
i +

∑k
j=1 sjWj

)
, θs̄i (γ, η)

Θi and

δbarsj (γ, η) ∆j and at last one factor is δs̄j (γ, η)
∆j or η−γ

∑d
i=1

∑ki
j=1 s

j
iV

j
i . Since

each Lie bracket Θi(~f)(x0) = 0, then every power of Θi(~f)(x0) = 0 vanishes as

well. Hence Y2(η, s̄, γ)(~f)(x0) = 0. Also, the definition of Y3(η, s̄, γ) implies that
limη→∞ η−γY3(η, s̄, γ) = 0 uniformly with respect to s̄.

According to (11) and (12), there exists an element uη,s,γ ∈ Upc defined on some

interval [0, Tη,s,γ ] with Tη,s,γ < νη−λ such that Ser (uη,s,γ) = E(s, η, γ). Reminding
that γ < (N + 1)λ and denoting x (ps,γ(η), uη,s,γ , x0) by π(η, s, γ), we obtain that
for each coordinate function φi, i = 1, . . . , n,

φi (π(η, s, γ)) = φ(x0) + η−γ

(
µ∑

i=1

ki∑

α=1

sjiV
j
i +

k∑

j=1

sjWj

)
(~f)(φi)(x0) + os

(
η−γ
)
,

where os(t) means that limt→0
os(t)
t

→ 0, the convergence being uniform with respect

to s. Clearly, Λ(~f)(φj)(x0) is the j-th component of the vector Λ(~f)(x0). Thus we
find that

π(η, s, γ) = x0 + η−γ

(
µ∑

i=1

ki∑

α=1

sjiV
j
i +

k∑

j=1

sjWj

)
(~f)(x0) + os

(
η−γ
)
. (13)
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Now, let H−1 : Rn → Rχ with χ := k+ k1 + · · ·+ kµ be a left pseudo inverse of the
linear map

s→

(
µ∑

i=1

ki∑

α=1

sjiV
j
i +

k∑

j=1

sjWj

)
(~f)(x0),

where s =
(
s1, . . . , sk, s

1
1, . . . , s

kµ
µ

)
belongs to the subset Σχ of Rχ consisting of all

vectors with nonnegative components and such that the sum of their components
is equal to 1, and define the map ϕ(η, y) := π (η,H−1(y), γ) − x0 for y ∈ H(Σχ)
and each positive integer η. Let B be a compact ball in Rn centered at the origin,
and such that H−1(B) ⊂ Σχ. Then the maps ψη,γ(y) → ηγϕ(η, y) are well defined
for y ∈ B and for each positive integer η, and converge to the identity map of B
as η → ∞. Hence, ψη,γ(B) contains a neighbourhood of the origin if η > 0 is big
enough. Thus, the set Cη := η−γ{ψη,γ(y) : y ∈ B} also contains a neighbourhood
of the origin, if the positive integer η > 0 is big enough.

Now, if z ∈ Cη, then x0 + z = π(η,H−1(y), γ) for some y ∈ B. We set s = H−1(y)
and obtain that x0 + z = π(η, s, γ) for some s ∈ Σχ. Therefore x0 + z is reachable

from the point x0 in time Tη,s,γ with Tη,s,γ < νη−λ, i.e. x0 + z is reachable from

x0 in time less than νη−λ. Since R(x0, t1) ⊆ R(x0, t2) whenever 0 ≤ t1 ≤ t2,

x0 + Cη ⊆ R
(
x0, νη

−λ
)
and Cη contains a neighbourhood of the origin for all

sufficiently small η > 0, we obtain that R(x0, t) contains a neighbourhood of the
point x0 for each t > 0. This completes the proof of Theorem 2.7.
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