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1. Introduction

In this paper we consider optimization problems formulated in the form

(P) inf f(x)
s.t. ft(x) ≤ 0, ∀t ∈ T ;

x ∈ C,

where T is an arbitrary (possibly infinite, possibly empty) index set, ∅ 6= C ⊂ X is
the (abstract) constraint set, the decision space X is a Banach space, and all the
involved functions f, ft, t ∈ T, are extended real-valued, i.e., f, ft : X → R∪{+∞}.
In this paper we analyze the stability of the optimal value function and the optimal
set mapping of (P), say ϑ and Fopt, under different possible types of perturbations
of the data preserving the decision space X and the index set T.

In [17] we studied the effect on the solution set of the constraint system

σ := {ft(x) ≤ 0, t ∈ T ; x ∈ C},

also represented by its corresponding data set, {ft, t ∈ T ; C} , of perturbing any
constraint function ft, t ∈ T, and possibly the constraint set C, under the condition
that these perturbations maintain certain properties of the constraints. In partic-
ular, we analyzed there the continuity properties in different senses ([4], [36], etc.)
of the feasible set mapping associating to each perturbed system its corresponding
solution set. Different parametric spaces were considered in [17], such that each one,
denoted by Θ� (with some subindex) is a given family of systems with the same
decision space and index set, satisfying certain particular properties. The main goal
of [17] was to study the stability of the feasible set mapping F : Θ� ⇉ X such that

F(σ) = {x ∈ X : ft(x) ≤ 0,∀t ∈ T ; x ∈ C}.

Many times in this paper we shall use the so-called marginal function

g := sup{ft, t ∈ T},

provided that T 6= ∅. Then we can also write

F(σ) = {x ∈ X : g(x) ≤ 0; x ∈ C}.

The parametric space in the present paper is

Π :=

{
π = (f, σ) :

f, ft : X → R ∪ {+∞}, t ∈ T , are lsc,
and C is closed

}
,

where σ = {ft, t ∈ T ; C}, and lsc stands for lower semicontinuous. Consequently, g
is lsc too, and it is also upper semicontinuous (usc) whenever ft is usc for all t ∈ T
and |T | <∞.

The first objective of this paper consists of analyzing the optimal value function

ϑ : Π→ R ∪ {±∞} defined as

ϑ(π) := inf{f(x) : x ∈ F(σ)} = inf f(F(σ)), with π = (f, σ),
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under the convention ϑ(π) = +∞ if F(σ) = ∅ (i.e. if σ /∈ domF). If ϑ(π) = −∞
we say that π is unbounded (from an optimization point of view).

The second objective of this paper is the stability analysis of the optimal set mapping

Fopt : Π ⇉ X, i.e.,

Fopt(π) := {x ∈ F(σ) : f(x) = ϑ(π)}, with π = (f, σ).

If π ∈ domFopt (i.e. Fopt(π) 6= ∅) we say that π is (optimally) solvable. Obviously,
if π = (f, σ) ∈ domFopt, then all the constraint functions ft, t ∈ T , are proper.
Obviously, both sets F(π) and Fopt(π) are closed in X (possibly empty).

It is obvious that the stability of ϑ and Fopt will be greatly influenced by the
stability of F , and this is why many results in the present paper rely on suitable
adaptations of some others in [17]. This revision of the stability properties, due to
the fact that the perturbations of C are measured in a different way in this paper,
has been completed with the study of the Lipschitz-like property of F . For the sake
of a greater concreteness, in this paper the decision space X is a Banach space (in
[17] was a locally convex Hausdorff topological vector space).

1.1. Antecedents

Table 1.1 reviews briefly a non-exhaustive list of relevant works on stability of op-
timization problems chronologically ordered. Those works dealing with particular
types of perturbations, usually right-hand side (RHS) perturbations and/or pertur-
bations which fixed constraint set C, are marked with an asterisk. In most previous
works, C = X. Abstract minimization problems subject to perturbations can be
formulated as

inf f (x, π) s.t. x ∈ F (π) ,

with π ∈ Π (the corresponding parameter space), where the implicit constraints
determine the stability properties of F at π, which together with suitable conti-
nuity properties of f (·, π) should guarantee the stability of ϑ and Fopt at π. For
comparison purpose, we represent here the functional constraints as f (t, ·) ∈ K,
where f (t, x) := ft(x) and K is a given subset of certain partially ordered space Y

(e.g., Y = R
T
and K = R

T

− for our problem (P)).

We codify the information in the columns 3–8 of Table 1.1 as follows:

Col. 3: Banach (Ban), normed (nor), metric (met), locally convex Hausdorff topo-
logical vector space (lcH), and topological space (top).

Col. 4: finite (fin), arbitrary (arb), andcompactHausdorff topological space (compH).
In case of abstract minimization problems (abstr), there is no explicit information
on T, f(t, ·), f(·, x), and K.

Col. 5–7: affine (aff), linear (lin), fractional (fract), convex (conv), finite valued
(fin), continuous (cont), lower semicontinuous (lsc), upper semicontinuous (usc),
arbitrary (arb), and continuously differentiable (diff). In case of abstract minimiza-
tion problems, no direct information on the constraints is available and the usual
allowed perturbations are sequential.
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Ref. Year X T f f(t, ·) f(·, x) K ϑ Fopt

[23] 1973 top abstr1 lsc or usc - - - X X

[7] 1982 Rn top lin fract arb RT

−
X X

[4] 1983 met abstr2 lsc or usc - - - X X

[8]∗ 1983 Rn compH cont aff cont RT

−
X

[19] 1983 Rn compH lin aff cont RT

−
X

[9] 1984 Rn compH lin aff cont RT

−
X X

[15] 1984 norm compH cont aff cont RT

−
X

[30] 1985 Rn fin fin conv fin conv/aff - RT

−
X X

[3]∗ 1997 met abstr lsc - - - X

[21] 1998 Rn arb lin aff arb RT

−
X X

[29] 1998 Rn compH3 diff diff cont RT

−
- X

[6] 2000 Ban arb cont cont - cl conv X X

[11] 2001 Rn arb lin aff arb RT

−
X X

[20] 2003 Rn arb fin conv fin conv arb RT

−
X X

[25] 2005 Ban fin fin conv fin conv/aff - cl conv X X4

[32]∗ 2006 met abstr fin usc - - - X

[10]∗ 2007 Rn met compH fin conv fin conv cont RT

−
X

[18]∗ 2007 lcH arb lsc conv lsc conv arb RT

−
X

[24]∗ 2011 Rn compH fin conv fin conv cont RT

−
X

Table 1.1

Col. 8: closed (cl) and convex (conv).

For the sake of brevity we do not include in this table information on the parame-
ters space and the only stability concepts considered here are exclusively lower and
upper semicontinuity and closedness. This precludes, among other stability con-
cepts related with Fopt, the Lipschitzian and Hölder stabilities ([6]), the structural
stability ([26], [27]) or the stability of stationary solutions ([22]).

The closest antecedents of this paper are those works dealing with the stability of
F , ϑ, or Fopt for optimization problems as (P ) with closed constraint set and lsc
constraint functions, whose perturbations are measured by a metric describing the
uniform convergence on certain family of sets covering X. [31] analyzes the stability
of F and [20] the corresponding to ϑ and Fopt when X = Rn and Π� is formed
by those parameters π = (f, {ft, t ∈ T ; C}) such that all the involved functions
are real-valued and convex, and C = Rn is invariant under perturbations. [17]
deals with the stability of F , but there we measure the perturbations of C as those
corresponding to its indicator function. Finally, [24] studies the stability of F and
Fopt when X = Rn and Π� is formed by those parameters π = (f, {ft, t ∈ T ; C})
such that C ⊂ Rn is a fixed closed convex set, T is a given compact metric space,
all the involved functions are real-valued and convex, and f(·) (x) is continuous on
T for all x ∈ Rn. Under these strong conditions, [24] provides sufficient conditions

1§ 4 is devoted to feasible maps determined by a finite number of inequalities involving functions
fi(x), i = 1, 2, ...,m, which are lsc at the nominal problem.
2Feasible maps determined by a possibly infinite number of quasiconvex inequality constraints are
considered several times.
3T is not fixed, it varies with the parameter, but it is always compact and unformly bounded.
4The paper deals with the well posedness of convex programs under linear perturbations of the
objective functions and right-hand side perturbations of the constraints.
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for the lower semicontinuity and the Lipschitz-like property of Fopt. The extension
of the latter results to the more general setting is a challenging task to be handled
in a forthcoming paper. The results in [24] has been extended in [12] and [13] to
vector optimization problems with similar assumptions, analyzing the stability of
the Pareto efficient set instead of the optimal set.

1.2. Organization

The paper is organized as follows: §2 introduces the basic notation and the stability
concepts considered in this paper, §3 introduces a metric on the parameter space
Π, under which it is a complete metric space, §4 revises the closedness and lower
semicontinuity of F under the current assumption of this paper, §5 analyzes the
Lipschitz-like property of F , §6 is focused on the upper semicontinuity of ϑ, §7
is devoted to the lower semicontinuity of this function and, finally, §8 studies the
stability properties, mainly the closedness and upper semicontinuity, of Fopt.

2. Preliminaries

The dual space of X is denoted by X∗. B denotes the closed unit ball in X whereas
θ denotes indistinctly the zero of X and of X∗. For a set D ⊂ X, we denote
with Dc, convD, and coneD the complement of D, the convex hull of D, and
the convex conical hull of D ∪ {θ} , respectively. If D = {ds, s ∈ S} , denoting by

R(S) the linear space of mappings from S to R with finite support and by R
(S)
+

its positive cone, we can write coneD =
{∑

s∈S λsds : λ ∈ R
(S)
+

}
and convD =

{∑
s∈S λsds : λ ∈ R

(S)
+ ,
∑

s∈S λs = 1
}
.

From the topological side, we denote by N (x) the family of all the neighborhoods
of x ∈ X and by clD the closure of D, if D ⊂ X, and the closure of D w.r.t. the
weak∗ topology, if D ⊂ X∗ × R. The indicator function δD is defined as δD(x) = 0
if x ∈ D, and δD(x) = +∞ if x /∈ D. D is a nonempty closed convex set if and only
if δD is a proper lsc convex function.

Now let h : X → R ∪ {+∞}. The effective domain, the graph, and the epigraph
of h are domh = {x ∈ X : h(x) < +∞}, gphh = {(x, γ) ∈ X × R : h(x) = γ},
and epih = gphh + cone {(θ, 1)}, respectively, whereas the conjugate function of
h, h∗ : X∗ → R ∪ {±∞}, is defined by

h∗(v) = sup{〈v, x〉 − h(x) : x ∈ domh}.

It is well-known that, if h is a proper lsc convex function, then h∗ enjoys the same
properties and its conjugate, denoted by h∗∗ : X → R ∪ {±∞}, defined by

h∗∗(x) = sup{〈v, x〉 − h∗(v) : v ∈ domh∗},

coincides with h. One observes that δ∗C is the support function of C, whose epigraph
epi δ∗C is a closed convex cone.

Let σ = {ft(x) ≤ 0, t ∈ T ;x ∈ C} ∈ domF be a convex system (i.e., ft is convex for
all t ∈ T and C is a convex set), and let v ∈ X∗ and α ∈ R. Then the asymptotic
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Farkas’ Lemma (Theorem 4.1 in [16]) establishes that

ft(x) ≤ 0 ∀t ∈ T, x ∈ C =⇒ 〈v, x〉 ≤ α

if and only if

(v, α) ∈ cl cone

(
⋃

t∈T
epi f ∗

t ∪ epi δ∗C

)
. (1)

Let A1, A2, ..., An, .. be a sequence of nonempty subsets of a first countable Hausdorff
space Y. We consider the set of limit points of this sequence

y ∈ Li
n→∞

An ⇔

{
there exist yn ∈ An, n = 1, 2, ...,

such that (yn)n∈N converges to y;

and the set of cluster points

y ∈ Ls
n→∞

An ⇔

{
there exist n1 < n2 < ... < nk..., and associated ynk

∈ Ank

such that (ynk
)k∈N converges to y.

Clearly Lin→∞An⊂ Lsn→∞An and both sets are closed. We say thatA1, A2, ..., An, ..
is Kuratowski-Painlevé convergent to the closed set A if Lin→∞An = Lsn→∞An =
A, and we write then A = K − limn→∞An.

We recall here some well-known concepts in the theory of multivalued mappings. Let
Y and Z be two topological spaces, and consider a set-valued mapping S : Y ⇉ Z.
We say that S is lower semicontinuous (in the Berge sense) at y ∈ Y (lsc, in brief)
if, for each open set W ⊂ Z such that W ∩S(y) 6= ∅, there exists an open set V ⊂ Y
containing y, such that W ∩ S(y′) 6= ∅ for each y′ ∈ V. S is said to be lsc if it is lsc
at every point of Y.

The following property (used, e.g., in [5] and [38]) is closely related to the lower
semicontinuity of Fopt. We say that S is uniformly compact-bounded at y0 ∈ Y if
there exist a compact set K ⊂ Y and a neighborhood V of y0 such that

y ∈ V =⇒ S(y) ⊂ K.

S is upper semicontinuous (in the Berge sense) at y ∈ Y (usc, in brief) if, for each
open set W ⊂ Z such that S(y) ⊂ W , there exists an open set V ⊂ Y containing
y, such that S(y′) ⊂W for each y′ ∈ V. S is usc if it is usc at every point of Y.

If both Y and Z are first countable Hausdorff spaces, S is closed at y ∈ Y if for
every pair of sequences (yn)n∈N ⊂ Y and (zn)n∈N ⊂ Z satisfying zn ∈ S(yn) for
all n ∈ N, limn→∞ yn = y and limn→∞ zn = z, one has z ∈ S(y). S is said to be
closed if it is closed at every y ∈ Y. Obviously, S is closed if and only if its graph,
gphS := {(y, z) ∈ Y × Z : z ∈ S (y)} , is a closed set in the product space.

We say that π = (f, σ) (or, equivalently, σ) satisfies the strong Slater condition if
there exists some x̄ ∈ intC and some ρ > 0 such that ft(x̄) < −ρ for all t ∈ T (i.e.,
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g (x̄) < −ρ). In such a case, x̄ is called strong Slater (SS) point of π (or σ) with
associated constant ρ.

The SS condition in this paper is stronger than the one introduced in the previous
paper [17] as far as x̄ is required here to be an element of intC instead of C itself.
The reason is the different type of convergence of sequences in both works.

Observe that π satisfies the SS condition if and only if the optimal value of the
following problem (whose structure is similar to that of (P), but with linear objective
function),

(PSS) inf −y
s.t. ft(x) + y ≤ 0, ∀t ∈ T ;

x ∈ intC, y ∈ R,

is negative, in which case it is unnecessary to solve (PSS) until optimality. According
to [17, Theorem 5.1], if C = X and σ is convex, then the SS condition is equivalent

to (θ, 0) 6∈ cl conv
(⋃

t∈T
epi f ∗

t

)
(a condition involving the data).

3. The parameter space

In order to define a suitable topology on the parameter space Π we follow different
steps:

1st. We start by equipping the space V of all functions f : X → R ∪ {+∞} which
are lsc with the topology of uniform convergence on bounded sets of X. It is well
known (see, for instance, [5, p. 79], that a compatible metric for this topology is
given by

d(f, h) :=
+∞∑

k=1

2−k min

{
1, sup

‖x‖≤k

|f(x)− h(x)|

}
.

Here, by convention, we understand that

(+∞)− (+∞) = 0, |−∞| = |+∞| =∞.

It is worth noting that d(f, h) = 0 implies that |f(x)− h(x)| = 0 for all x ∈ X. By
our convention, either f(x) = h(x) = +∞ or f(x) = h(x) ∈ R, and so f = h.

The following lemmas will be very useful in the sequel:

Lemma 3.1 (Lemma 3.1 in [17]). Let us define

dk(f, h) := sup
‖x‖≤k

|f(x)− h(x)|, k = 1, 2, ...,

and let k ∈ N and ε > 0 be given. Then, there exists ρ > 0 such that dk(f, h) < ε
for each pair f, h ∈ V satisfying d(f, h) < ρ.

Lemma 3.1 yields the following implication

∀k ∈ N, d(f, fn)→ 0 ⇒ dk(f, fn)→ 0.
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Lemma 3.2 (Lemma 3.2 in [17]). For each ε > 0, there exist k ∈ N and ρ > 0
such that d(f, h) < ε for each pair f, h ∈ V satisfying dk(f, h) < ρ.

A sequence of extended functions fn : X → R∪{+∞}, n ∈ N, converges uniformly
to f : X → R ∪ {+∞} on a set B ⊂ X when, for all ε > 0, there exists n0 ∈ N

such that |fn(x) − f(x)| < ε for all x ∈ B and for all n ≥ n0. Recalling the
above convention, this is equivalent to assert that B ∩ dom fn = B ∩ dom f for all
n ≥ n0 and the restriction of fn to the latter set converges uniformly (in the sense
of finite-valued functions) to the restriction of fn to the same set.

Proposition 3.3. Let f, fn ∈ V, n = 1, 2, .... Then d(fn, f)→ 0 if and only if the

sequence f1, f2, ..., fn, ... converges uniformly to f on the bounded sets of X.

Proof. It is immediate consequence of the previous lemmas.

Proposition 3.4 (Proposition 3.5 in [17]). (V , d) is a complete metric space.

2nd. In the space of closed sets in X we shall consider the Attouch-Wets topology,
which is the inherited topology from the one considered in V under the identifica-
tion C ←→ dC(·), with dC(x) := infc∈C ‖x− c‖ (provided that C 6= ∅, otherwise
d(x, ∅) = +∞). This topology is compatible with the distance

d̃(C,D) :=
+∞∑

k=1

2−k min

{
1, sup

‖x‖≤k

|dC(x)− dD(x)|

}
.

Observe that d̃(C,D) = d(dC , dD). The space of all closed sets in X equipped with

this distance d̃ becomes a complete metric space. It is obvious that in this space, the
sequence of nonempty closed sets (Cn)n∈N converges in the sense of Attouch-Wets
to the nonempty closed set C if the sequence of functions (dCn

)n∈N converges to
dC uniformly on the bounded sets of X. Thanks to the fact that X is Banach, we
can apply Lemma 3.1.1 in [5] to guarantee that if the sequence (dCn

)n∈N converges
uniformly on bounded sets of X to a continuous function h, there exists a nonempty
closed set C such that h = dC .

Moreover, Corollary 3.1.8 in [5] establishes that the sequence of nonempty closed
sets (Cn)n∈N converges in the sense of Attouch-Wets to the nonempty closed C if
and only if

∀k ∈ N : lim
n→∞

max {e(Cn ∩ kB, C), e(C ∩ kB, Cn)} = 0, (2)

where
e(A,B) := sup

a∈A
dB(a) = inf{α > 0 : B + αB ⊃A}.

Remark 3.5. In [17] we used another distance between sets. More precisely, in
that paper we considered as the distance between two closed sets C and D the
distance d(δC , δD), i.e. the distance between their indicator functions. In fact, the

topology associated with d̃ is coarser. Actually, d(δC , δCn
) → 0 if and only if for
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every k ∈ N there exists nk ∈ N such that C ∩ kB = Cn ∩ kB for every n ≥ nk, but
this entails e(Cn ∩ kB, C) = e(C ∩ kB, Cn) = 0 for every n ≥ nk, implying trivially

(2), i.e. d̃(C,Cn)→ 0.

It is said that the sequence of functions (fn)n∈N ∈ V, converges to f ∈ V in the
sense of Attouch-Wets if

lim
n→∞

(epi fn) = epi f

for the topology of Attouch-Wets in X ×R equipped with the box norm ‖(x, α)‖ =
max{‖x‖ , |α|}.

Lemma 7.1.2 in [5] shows that if we consider f, fn ∈ V, n = 1, 2, ..., such that
d(fn, f) → 0, and f is real valued, then (fn)n∈N converges to f in the sense of

Attouch-Wets.

Finally, we consider the parameter spaces of constraint systems

Θ :=

{
σ = {ft, t ∈ T ; C} :

ft ∈ V, ∀t ∈ T ,
C closed

}
,

and optimization problems Π = V ×Θ. We consider Θ equipped with the metric d
such that

d(σ, σ′) := max{sup
t∈T

d(ft, f
′
t), d̃(C,C ′)},

for σ = {ft, t ∈ T ;C}), σ′ = {f ′
t , t ∈ T ;C ′} ∈ Θ, with the convention that

supt∈T d(ft, f
′
t) = 0 whenever T = ∅. In order to get the product topology on

Π = V ×Θ, we define

d(π, π′) := max{d(f, f ′),d(σ, σ′)} (3)

for any pair π = (f, σ), π′ = (f ′, σ′) ∈ Π (for simplicity, we use the same notation
for the metrics on Θ and Π).

Proposition 3.6. (Π,d) is a complete metric space.

Proof. The proof can be adapted from the proof of Proposition 3.7 in [17]. To
show that (Π,d) is a metric space is also here a straightforward consequence that

d and d̃ are metrics (see [17, p. 2265]).

Now we prove that (Π,d) is complete. Let πn = (fn, {fn
t , t ∈ T ;Cn}), n = 1, 2, ...,

be a Cauchy sequence in (Π,d), and we deal with the more complicated case, i.e.,
when T 6= ∅. We must prove that there is a problem π ∈ Π such that d(πn, π)→ 0
as n tends to infinity.

Let ε ∈ ]0, 1[ be fixed. For any k ∈ N, by Lemma 3.1, there is ρk > 0 such that

d(f, h) < ρk ⇒ dk(f, h) < ε. (4)

As (πn)n∈N is a Cauchy sequence, there exists n0 > 0 such that for any m,n ≥ n0,
one has

d(πn, πm) = max{d(fn, fm), sup
t∈T

d(fn
t , f

m
t ), d(dCn

, dCm
)} < ρk,
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which gives, for all m,n ≥ n0,

d(fn, fm) < ρk,

d(fn
t , f

m
t ) < ρk, ∀t ∈ T,

d(dCn
, dCm

) < ρk.

It follows from (4) that, for all m,n ≥ n0 and for all x such that ‖x‖ ≤ k,

|fn(x)− fm(x)| < ε,

|fn
t (x)− fm

t (x)| < ε, ∀t ∈ T, (5)

|dCn
(x)− dCm

(x)| < ε.

By a reasoning similar to the one used in the proof of Proposition 3.5 in [17], and
applying also Lemma 3.1.1 in [5], one concludes the existence of functions f and ft,
t ∈ T , belonging all to V , and a nonempty closed set C such that as n→∞

d(fn, f)→ 0, d(fn
t , ft)→ 0 for all t ∈ T, and d̃(Cn, C)→ 0.

Let π := (f, {ft, t ∈ T ;C}). We now prove that d(πn, π)→ 0 as n→∞.

With ε > 0 fixed, by Lemma 3.2, there exist k0 and ρ0 > 0 such that for any
f, h ∈ V,

dk0(f, h) < ρ0 ⇒ d(f, h) < ε. (6)

Without loss of generality we can take ρ0 < 1. Since (πn)n∈N is a Cauchy sequence,
there exists n1 > 0 such that for all n,m ≥ n1,

d(πn, πm) = max{d(fn, fm), sup
t∈T

d(fn
t , f

m
t ), d(dCn

, dCm
)} < ρ02

−k0−1.

This yields, thanks to the fact that ρ0 < 1,

dk0(f
n, fm) < ρ0/2,

dk0(f
n
t , f

m
t ) < ρ0/2, ∀t ∈ T,

dk0(dCn
, dCm

) < ρ0/2,

which, in turn, implies that (letting m→∞)

dk0(f
n, f) < ρ0,

dk0(f
n
t , ft) < ρ0, ∀t ∈ T,

dk0(dCn
, dC) < ρ0.

By (6), the last inequalities yield respectively for all n ≥ n1 :

d(fn, f) < ε, sup
t∈T

d(fn
t , ft) ≤ ε, and d(dCn

, dC) < ε.

Therefore, d(πn, π)→ 0 as n tends to ∞. Consequently, (Π,d) is complete.
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4. Lower semicontinuity of the feasible set mapping revisited

The closedness of the feasible set mapping F is established in the following propo-
sition. It is a consequence of the fact that the topology considered in Θ gives rise
to the uniform convergence on bounded sets.

Proposition 4.1. The feasible set mapping F is closed on Θ.

Proof. The proof follows from the same line of reasoning as in the proof of [17,
Theorem 4.1], but applying the suitable changes concerning the treatment of the

distance of d̃ (as it is done in the proof of Proposition 3.6).

In order to revisit the property of lower semicontinuity of F in the new scenario
considered in this paper, we need some previous technical lemmas.

Lemma 4.2. Let C be a closed set in X, x0 ∈ intC, and consider ε > 0 such that

x0 + εB ⊂ C. Then there is ρ > 0 such that, for any closed set C ′ ⊂ X,

d̃(C,C ′) < ρ =⇒ (x0 + εB) ∩ C ′ 6= ∅.

Proof. Take a positive integer k such that

x0 + εB ⊂ kB.

Given ε and k, apply Lemma 3.1 to conclude the existence of ρ > 0 such that

d̃(C,C ′) < ρ =⇒ sup
‖x‖≤k

|dC(x)− dC′(x)| < ε.

Therefore,
z ∈ x0 + εB =⇒ dC(z) = 0 and dC′(z) < ε. (7)

Now, if (x0 + εB) ∩ C ′ = ∅, we have dC′(x0) ≥ ε, and this contradicts (7).

Lemma 4.3. Consider σ = {ft, t ∈ T ;C} ∈ Θ and suppose that the marginal

function g = supt∈T ft is usc. If x is an SS-point of σ, then there exists ε > 0 such

that
x ∈ x+ εB
d(σ, σ′) < ε

}
=⇒ g′(x) < 0,

with σ′ = {f ′
t , t ∈ T ;C ′} ∈ Θ and g′ := supt∈T f ′

t.

Proof. Let x be an SS-point of π. There exists ρ > 0 such that g(x) ≤ −ρ. Take
ρ1 and ρ2 such that 0 < ρ2 < ρ1 < ρ. Since g is usc there must exist ε1 such that

x ∈ x+ ε1B =⇒ g(x) ≤ −ρ1.

Let k be an integer satisfying x + ε1B ⊂ kB. Lemma 3.1 applies to ensure the
existence of ε2 > 0 such that

d(σ, σ′) < ε2 =⇒ sup
‖x‖≤k

|ft(x)− f ′
t(x)| < ρ1 − ρ2, ∀t ∈ T.
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Let us set ε = min{ε1, ε2}. Combining the previous arguments, if x ∈ x + εB and
d(σ, σ′) < ε, we get

g′(x) = g(x) + g′(x)− g(x) = g(x) + sup
t∈T

f ′
t(x)− sup

t∈T
ft(x)

≤ g(x) + sup
t∈T

[f ′
t(x)− ft(x)] ≤ −ρ1 − ρ2 + ρ1 = −ρ2 < 0,

which is desired.

We now consider a convex set C with intC 6= ∅. Without any loss of generality by
translation, we assume that θ ∈ intC and consider the Minkovski gauge function

defined as
pC(x) := inf{λ ≥ 0 | x ∈ λC},

and, for any positive real number µ ∈ [0, 1[, define a set

Cµ := {x ∈ X | pC(x) ≤ µ}.

It is worth observing (see [38]) that pC is a continuous sublinear function, and hence,
Cµ is a closed and convex set such that Cµ ⊂ intC by the accesibility lemma. The
latter inclusion becomes an equation when C = X for all µ ∈ [0, 1[. The following
proposition shows that one can adjust µ to get Cµ arbitrarily close to C (in the

sense that d̃(C,Cµ) is arbitrarily small).

Lemma 4.4. Let C be a closed convex set in X such that intC 6= ∅. Given ε > 0,
there exists µ ∈]0, 1[ such that

d̃(C,Cµ) ≤ ε.

Proof. We assume w.l.o.g. that θ ∈ intC and let us fix ε > 0. From Lemma 3.2
we know that for this given ε, there exist k ∈ N and ρ > 0 such that

∣∣dCµ
(x)− dC(x)

∣∣ ≤ ρ
∀x such that ‖x‖ ≤ k

}
=⇒ d̃(C,Cµ) ≤ ε. (8)

We now show that there does exist a µ > 0 that satisfies the antecedent of (8).

We can suppose that ρ < 1 and take any µ satisfying

µ ∈ [1−
ρ

2k
, 1[.

Pick any x0 ∈ C ∩ 2kB and represent it as

x0 = µx0 + (1− µ)x0 = µx0 + (1− µ)2k
x0

2k
.

Since µx0 ∈ µC, one has pC(µx0) ≤ µ which entails µx0 ∈ Cµ, and so,

x0 ∈ Cµ + ρB.
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Thanks to the arbitrariness of x0, this proves that

C ∩ 2kB ⊂ Cµ + ρB.

We now apply Lemma 4.34 (c) in [36] (still valid for normed spaces) to conclude
that

dCµ
≤ dC + ρ on kB.

This together with the obvious inequality dCµ
≥ dC yields

|dCµ
(x)− dC(x)| ≤ ρ

for all x satisfying ‖x‖ ≤ k. The conclusion now follows from (8).

The necessary and sufficient conditions for the lower semicontinuity of the feasible
set mapping F are given in the next result. Remember that the system σ is said
to be Tuy regular if there exists ε > 0 such that for any u ∈ RT and for any
nonempty convex set C ′ ⊂ X satisfying max{supt∈T |ut|, d̃(C,C

′)} < ε, the system
σ′ = {ft(x) − ut ≤ 0, t ∈ T ; x ∈ C ′} ∈ domF . The last definition is inspired in a
similar one of H. Tuy ([37]).

Theorem 4.5. Let F : Θ ⇉ X and σ = {ft, t ∈ T ;C} ∈ Θ. If T = ∅, then F is lsc

whenever C is convex and intC 6= ∅. Otherwise, consider the following statements

associated with σ ∈ domF :

(i) F is lsc at σ;

(ii) σ ∈ int domF ;

(iii) σ is Tuy regular ;

(iv) σ satisfies the strong Slater condition;

(v) F(σ) is the closure of the set of SS points of σ.

Then, (i) ⇒ (ii) ⇒ (iii) and (v) ⇒ (iv). Moreover, if C is convex, and intC 6= ∅,
then (i)⇒ (v) and (iii)⇒ (iv).

If, in addition, the functions ft, t ∈ T, are convex and the corresponding marginal

function g = supt∈T ft is usc, then all the statements (i)− (v) are equivalent.

Proof. First we consider T = ∅. Let W be an open set in X such that W ∩C 6= ∅.
Then W ∩ intC 6= ∅ because C = cl intC. Let x0 ∈ X and ε > 0 be such that
x0 + εB ⊂W ∩ intC. By Lemma 4.2, there exists ρ > 0 such that, for all closed set
C ′,

d̃(C,C ′) < ρ =⇒ (x0 + εB) ∩ C ′ 6= ∅.

So, W ∩ C ′ 6= ∅ for all σ′ ∈ Θ such that d (σ, σ′) < ρ.

Now we assume that T 6= ∅. The proofs of the implications (i) =⇒ (ii) and (ii) =⇒
(iii) are the same as in [17, Theorem 5.1].

(v) ⇒ (iv) is trivial because if we denote by FSS(σ) the set of SS points of σ,
σ ∈ domF entails ∅ 6= F(σ) = clFSS(σ) and FSS(σ) cannot be empty.

Assume that C is convex and intC 6= ∅ and we will show that (iii) =⇒ (iv). The
argument is again the same as in the corresponding part in [17, Theorem 5.1] except
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for the choice of C ′ for σ′. Indeed, if σ is Tuy regular then, for some ε > 0, the
system σ′ := {ft − wt, t ∈ T ;C ′} ∈ Θ is consistent whenever

max

{
sup
t∈T
|wt|; d̃(C,C ′)

}
< ε. (9)

It now follows from Lemma 4.4 that there is µ ∈]0, 1[ such that d̃(C,Cµ) ≤ ε. Note
that here, since C is convex, and µ < 1, we have ∅ 6= Cµ ⊂ intC (see [38], page 4,
and the proof of Lemma 4.4).

Let wt = −
ε
2
for all t ∈ T and C ′ = Cµ. Then σ′ ∈ Θ, and (9) holds, and hence, σ′

is consistent, i.e., F(σ′) 6= ∅. It is obvious that any x̃ ∈ F(σ′) is an SS-point of σ,
so that (iv) holds.

Also under the assumptions that C is convex, and intC 6= ∅, let us prove that (i) =⇒
(v). It is evident that clFSS(σ) ⊂ F(σ) because FSS(σ) ⊂ F(σ) and F(σ) is closed.
Reasoning by contradiction, let us suppose that there exists x1 ∈ F(σ)� clFSS(σ),
and take an open setW such that x1 ∈W andW∩FSS(σ) = ∅. Since x

1 ∈W∩F(σ),
(i) states the existence of ε > 0 such that W ∩ F(σ′) 6= ∅ for every σ′ ∈ Θ such
that d(σ, σ′) < ε.

Take now σ′ = {f ′
t , t ∈ T ;C ′} such that f ′

t := ft +
ε
2
, for all t ∈ T, and C ′ = Cµ

with
Cµ := z + {x ∈ X : pC−z(x) ≤ µ},

where z ∈ intC and µ ∈]0, 1[ satisfies

d̃(C,Cµ) < ε

(see Lemma 4.4). Since d(σ, σ′) < ε, one has W ∩ F(σ′) 6= ∅, but F(σ′) ⊂ FSS(σ),
contradicting W ∩ FSS(σ) = ∅.

Finally we prove that (iv) =⇒ (i) assuming that the functions ft, t ∈ T, are convex,
C is convex with nonempty interior, and the marginal function g is usc. Let x̃ be
an SS-point of σ. Consider an open set W in X such that

W ∩ F(σ) 6= ∅,

and take x̄ ∈ W ∩ F(σ). By the convexity of F(σ) (namely, ft and C are convex),
the point

x = (1− λ)x̃+ λx̄ ∈W ∩ F(σ)

if λ ∈ [0, 1[ is large enough. Moreover, since x̃ ∈ intC and x̄ ∈ C, x ∈ intC is an
SS-point of σ too for all λ ∈ [0, 1[ .

According to Lemma 4.3 there will exist ε > 0 such that

x ∈ x+ εB
d(σ, σ′) < ε

}
=⇒ g′(x) < 0. (10)

We shall take ε small enough to guarantee that

x+ εB ⊂ C ∩W.
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Apply now Lemma 4.2 to get ρ1 > 0 such that, for all closed C ′ ⊂ X,

d̃(C,C ′) < ρ1 =⇒ (x+ εB) ∩ C ′ 6= ∅,

and define ρ := min{ρ1, ε}. Now, if σ′ ∈ Θ, d(σ, σ′) < ρ and x1 ∈ (x + εB) ∩ C ′,
we have g′(x1) < 0 by (10), and x1 ∈ C ′ ∩W . So x1 ∈ W ∩ F(σ′), and this set is
non-empty, entailing the lower semicontinuity of F at σ.

Remark 4.6. The argument of Theorem 4.5 remains valid when Θ is replaced by
some subspace Θ� such that σ = {ft, t ∈ T ;C} ∈ Θ� entails that σ′ := {ft+wt, t ∈
T ;Cµ} ∈ Θ� for all w ∈ RT and µ ∈ [0, 1[ . Families of functions and sets satisfying
this condition are the lsc functions on X whose local minima are global minima
(or the lsc convex functions, or the continuous convex functions, or the continuous
affine functions) together with the closed convex subsets ofX (or the sigleton family
{X}).

We are obtaining straightforward consequences from Theorem 4.5 (actually from its
argument), and from the next results, for two particular subsets of Θ. We denote
by Θ1 the set of parameters of the form {ft, t ∈ T ;C} such that ft is a continuous
affine functional, for all t ∈ T, and C = X, and by Θ2 the set of parameters such
that ft is a usc convex function, for all t ∈ T, and C = X. Obviously, Θ1 ⊂ Θ2. The
next corollary of Theorem 4.5 is also straightforward consequence of [17, Theorem
5.1] and [31, Theorem 4.1].

Corollary 4.7. Let |T | < ∞, and F : Θi ⇉ X with i = 1, 2. Then the statements

(i)− (v) in Theorem 4.5 are equivalent to each other.

5. Lipschitz-like property of the feasible set mapping

This section deals with the Lipschitz-like property of F (or, equivalently, with the
metric regularity of F−1). It is well-known that this property has important conse-
quences in the overall stability of a system σ, as well as in the sensitivity analysis of
perturbed systems, affecting even the numerical complexity of the algorithms con-
ceived for finding a solution of the system. Many authors ([1], [2], [14], [28], [29], [30],
[33], [34], [35], [39], etc.) investigated this property and explored the relationship
of this property with standard constraint qualifications as Mangasarian-Fromovitz
CQ, Slater CQ, Robinson CQ, etc. For instance, in [29] the relationships among
the Lipschitz-like property, Lipschitz-like property with respect to right-hand side
(RHS) perturbations, and the extended Mangasarian-Fromowitz CQ are established
in a non-convex differentiable setting (see Table 1.1). In that paper, the authors
make use of one result in [14] showing that, under mild conditions, Lipschitz-like
property and Lipschitz-like property respect to RHS perturbations are equivalent.
Let us remember the definition of Lipschitz-like property applied to our specific
mapping:

Definition 5.1. F is said to be Lipschitz-like at (σ, x) ∈ gphF if there exist real
numbers ε, δ > 0 and κ ≥ 0 such that

d(σ, σ′) < δ
‖x− x′‖ < ε

}
⇒ d(x′,F(σ′)) ≤ κd(σ′,F−1(x′)). (11)
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(11) means that the distance d(x′,F(σ′)) is bounded from above by κd(σ′,F−1(x′)),
and this is specially useful if the residual d(σ′,F−1(x′)) can be easily computed.

The existence of a constraint set C makes the computation of d(σ′,F−1(x′)) very
difficult, and this is why the Lipschitz-like property is useless in this case. Never-
theless, when we assume that C is the whole space X, the property makes sense,
and it is strongly related to other stability properties already studied in the pre-
vious section. In fact, if C is constantly equal to X and σ′ = {f ′

t , t ∈ T}, it is
straightforward that

d(σ′,F−1(x′)) =

[
sup
t∈T

f ′
t(x

′)

]

+

≡ [g′(x′)]+ , (12)

where g′ = supt∈T f ′
t and [α]+ := max{α, 0}.

Observe that for a system having a constraint set, say σ′ = {f ′
t , t ∈ T,C ′}, we have

d(σ′,F−1(x′)) = max
{
[g′(x′)]+ , d̃(C ′, Cx′(X))

}
, (13)

where Cx′(X) is the family of all the closed convex sets C ⊂ X such that x′ ∈ C,
and

d̃(C ′, Cx′(X)) = inf
{
d̃(C ′, C) : C ∈ Cx′(X))

}
.

It is obvious that this residual (13) is far from being easily computable.

Since C = X throughout this section, we can write σ = {ft, t ∈ T} instead of
σ = {ft, t ∈ T ;X}.

Theorem 5.2. Let F : Θ� ⇉ X and (x, σ) ∈ gphF−1 with σ = {ft, t ∈ T}. Then
the following statements are true:

(i) Let Θ� be the set of parameters whose constraint set is X. If ft is convex for

all t ∈ T, g = supt∈T ft is usc at x, and F is Lipschitz-like at (σ, x), then F
is lsc at σ.

(ii) Let Θ� be the set of parameters whose constraint functions are convex and

whose constraint set is X. If X is a Hilbert space, and F is lsc at σ, then F
is Lipschitz-like at (σ, x).

Proof. The constraint set in the systems considered here is X, so that we can just
write σ′ = {f ′

t (x) ≤ 0, t ∈ T} for all σ′ ∈ Θ�.

(i) We are assuming the existence of real numbers ε, δ > 0 and κ ≥ 0 such that
(11) holds. Since g is usc at x, there must exist ε1 such that

x′ ∈ x+ ε1B =⇒ g(x′) ≤ g(x) + 1 ≤ 1.

Let k be an integer satisfying x + ε1B ⊂ kB. Lemma 3.1 applies to ensure the
existence of δ1 > 0 such that

d(σ, σ′) < δ1 =⇒ sup
‖x‖≤k

|f ′
t(x)− ft(x)| < 1, ∀t ∈ T.
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Let us set ε2 := min{ε, ε1} and δ2 := min{δ, δ1}. Combining the previous argu-
ments, if x′ ∈ x+ ε2B and d(σ, σ′) < δ2, we get

g′(x′) = g(x′) + g′(x′)− g(x′) = g(x′) + sup
t∈T

f ′
t(x

′)− sup
t∈T

ft(x
′)

≤ g(x′) + sup
t∈T

[f ′
t(x

′)− ft(x
′)] ≤ 2,

which entails
d(σ, σ′) < δ2
‖x− x′‖ < ε2

}
⇒ d(x′,F(σ′)) ≤ 2κ,

and the finiteness of d(x′,F(σ′)) implies F(σ′) 6= ∅, provided that d(σ, σ′) < δ2. In
other words, σ is in the interior of the effective domain of F when it is restricted
to those systems in Θ for which C = X. The conclusion follows from Remark 4.6.

(ii) We are assuming that X is a Hilbert space, F is lsc at σ, and that x ∈ F(σ).

Take an arbitrary fixed ε > 0. Since F(σ) is the closure of the set of strong Slater
points by Remark 4.6, there must exist ŷ ∈ x + εB and ρ > 0 such that g(ŷ) ≡
supt∈T ft(ŷ) ≤ −ρ. A standard argument yields the existence of a positive scalar
δ that g′(ŷ) ≡ supt∈T f ′

t(ŷ) ≤ −ρ/2 if d(σ, σ′) < δ and σ′ = {f ′
t , t ∈ T}, with

f ′
t , t ∈ T, being convex. Observe that ŷ ∈ F(σ′) and so, (x+ εB)∩F(σ′) 6= ∅.

Now we take an arbitrary x′ ∈ x+ εB and σ′ = {f ′
t , t ∈ T} ∈ Θ such that f ′

t , t ∈ T,
are convex, and d(σ, σ′) < δ.

Since we are in a Hilbert space, there will exist a point yσ′ ∈ F(σ′) such that
d(x′,F(σ′)) = ‖x′ − yσ′‖ , and this point is characterized by the inequality 〈x′ − yσ′ ,
y − yσ′〉 ≤ 0 for all y ∈ F(σ′). We shall analyze only the nontrivial case x′ /∈ F(σ′).

Now, 〈x′ − yσ′ , y〉 ≤ 〈x′ − yσ′ , yσ′〉 is a consequent relation of the system σ′, and we
apply the Farkas’ Lemma to conclude, by (1), that

(x′ − yσ′ , 〈x′ − yσ′ , yσ′〉) ∈ cl cone

(
⋃

t∈T
epi(f ′

t)
∗

)
.

Then there exist nets {λα}α∈∆ ⊂ R
(T )
+ , {uα

t }α∈∆ ⊂ dom(f ′
t)

∗, t ∈ T , and {βα}α∈∆ ⊂
R+, such that

lim
α

∑

t∈T
λα
t u

α
t = x′ − yσ′ ,

lim
α

(
∑

t∈T
λα
t (f

′
t)

∗(uα
t ) + βα

)
= 〈x′ − yσ′ , yσ′〉 .

(14)

Therefore, from (14) we get

lim
α

{
∑

t∈T
λα
t [〈u

α
t , x

′〉 − (f ′
t)

∗(uα
t )]− βα

}
= ‖x′ − yσ′‖

2
. (15)
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Since for each α ∈ ∆ and t ∈ T ,

〈uα
t , x

′〉 − (f ′
t)

∗(uα
t ) ≤ (f ′

t)
∗∗(x′) = f ′

t(x
′),

from (15) we derive
‖x′ − yσ′‖

2
≤ λ sup

t∈T
f ′
t(x

′), (16)

where λ̄ := lim supα
∑

t∈T λα
t , λ̄ ∈ R ∪ {+∞}.

From (14) we also obtain

〈x′ − yσ′ , ŷ − yσ′〉 = lim
α

{
∑

t∈T
λα
t [〈u

α
t , ŷ〉 − (f ′

t)
∗(uα

t )]− βα

}
≤ −λ

ρ

2
,

which gives rise to

λ ≤
2

ρ
‖x′ − yσ′‖ ‖ŷ − yσ′‖ ,

that together with (16) yields

d(x′,F(σ′)) = ‖x′ − yσ′‖ ≤
2

ρ
‖ŷ − yσ′‖ sup

t∈T
f ′
t(x

′). (17)

Moreover

‖ŷ − yσ′‖ ≤ ‖ŷ − x′‖+ ‖x′ − yσ′‖ (18)

≤ 2 ‖ŷ − x′‖ ≤ 4ε.

Combining (12), (17), and (18), we conclude that (11) is satisfied with κ = 8ε
ρ
.

The next example shows that Theorem 5.2 fails when the convexity assumption
on the constraint functions ft, t ∈ T, is replaced by the weaker one that the local
minima of the marginal function g are global minima (under which Theorem 4.5
remains valid according to [17, Theorem 5.1] provided that C = X).

Example 5.3. Let X = R, T = {1} , f1 (x) = −x2, and σ = {f1 (x) ≤ 0} . Let
W 6= ∅ be an arbitrary open set in R and take z ∈W and k ∈ N such that |z| ≤ k.
Let σ′ = {f ′

1 (x) ≤ 0} ∈ Θ be such that d (σ′, σ) = d (f ′
1, f1) < 2−kz2. Then,

2−k |f ′
1 (z) + z2| < 2−kz2, so that f ′

1 (z) < 0 and z ∈ F (σ′) ∩W. Hence F is lsc at
σ. Now we assume that F is Lipschitz-like at (σ, 0) . Let ε, δ > 0 and κ ≥ 0 be such
that (11) holds. Let σn = {fn

1 (x) ≤ 0} , with fn
1 (x) = f + 1

n
, and xn = 0, n ∈ N.

Then, for sufficient large n, we must have d(xn,F(σn)) ≤ κd(σn,F
−1(xn)), i.e.,

1√
n
≤ κ

n
. Multiplying by n both members of the latter inequality and taking limits

as n → ∞ we get a contradiction. Hence F is not Lipschitz-like at (σ, 0) and
statement (ii) in Theorem 5.2 does not hold.

Corollary 5.4. Let F : Θi ⇉ X with i = 1, 2 and (σ, x) ∈ gphF . If F is lsc at

σ and X is a Hilbert space, then F is Lipschitz-like at (σ, x). Conversely, if F is

Lipschitz-like at (σ, x) and |T | <∞, then F is lsc at σ.
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6. Upper semicontinuity of the optimal value function

We now study the upper semicontinuity of the optimal value function ϑ.

Theorem 6.1. Let π = (f, σ) ∈ Π. The following statements hold:

(i) If F is lsc at σ then ϑ is usc at π provided that f is usc.

(ii) If ϑ is usc at π then F is lsc at σ provided that the functions ft, t ∈ T,
are convex, C is convex, intC 6= ∅, and the corresponding marginal function

g = supt∈T ft is usc.

Proof. (i) Assume that F is lsc at σ and f is usc. We need to prove that if µ is a
real number such that ϑ(π) < µ, there exists a neighborhood U of π such that

ϑ(π′) ≤ µ, ∀π′ = (f ′, σ′) ∈ U.

Since ϑ(π) < µ, there exists x0 ∈ F(σ) such that

f(x0) < µ.

Consider a natural number k such that x0 ∈ kB. Then V1 := (k + 1)B is a neigh-
borhood of x0.

Set ε := 1
2
(µ− f(x0)). We now can apply Lemma 3.1 to conclude the existence of

ρ > 0 such that
d(f, f ′) < ρ =⇒ dk+1(f, f

′) < ε.

In other words,
d(f, f ′) < ρ =⇒ sup

x∈V1

|f(x)− f ′(x)| < ε. (19)

Since f is usc at x0 there must exist V2, a neighborhood of x0, such that

f(x) ≤ f(x0) + ε, ∀x ∈ V2. (20)

If x ∈ V := V1 ∩ V2 and d(f, f ′) < ρ, we have from (19) and (20)

f ′(x) < f(x) + ε ≤ f(x0) + 2ε = µ. (21)

Since F is lsc at σ by assumption, and F(σ) ∩ V 6= ∅ (it contains x0), there is a
neighborhood of σ, W , such that

σ′ ∈W =⇒ F(σ′) ∩ V 6= ∅.

Consider U := {f ′ ∈ V : d(f, f ′) < ρ} ×W , that is a neighborhood of π. Given
π′ = (f ′, σ′) ∈ U we can select an arbitrary x1 ∈ F(σ′) ∩ V. Then by (21), we
conclude

f ′(x1) < µ,

and hence, ϑ(π′) < µ.

(ii) Assume that ϑ is usc at π ∈ Π, and that the functions ft, t ∈ T, are convex, C
is convex, intC 6= ∅, and the corresponding marginal function g = supt∈T ft is usc.
This ensures that, for any fixed µ with ϑ(π) < µ, there exists ρ > 0 such that

ϑ(π′) < µ
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whenever π′ ∈ Π, d(π, π′) < ρ. This particularly means that for these π′ = (f ′, σ′),
F(σ′) 6= ∅. In other words, π ∈ int domF . The conclusion now follows from Theo-
rem 4.5.

Corollary 6.2. Let |T | <∞, Πi = Θi × V with i = 1, 2, F : Θi ⇉ X, ϑ : Πi ⇉ R,
and π = (f, σ) ∈ Πi. If F is lsc at σ and f is usc, then ϑ is usc at π. Conversely,
if ϑ is usc at π and |T | <∞, then F is lsc at σ.

7. Lower semicontinuity of the optimal value function

We shall consider from now on the so-called sublevel sets mapping L : Π×R ⇉ X
defined as follows:

L(π, λ) := {x ∈ F(σ) : f(x) ≤ λ}, with π = (f, σ).

Obviously, if λ < ϑ(π) trivially L(π, λ) = ∅. Moreover, L(π, ϑ(π)) = Fopt(π).

Theorem 7.1. The mapping L is closed.

Proof. We have to prove the closedness of L at any (π, λ) ∈ Π × R such that
L(π, λ) is nonempty. To this aim take a sequence (πk, λk) ∈ Π× R, πk = (fk, σk),
k = 1, 2, ..., such that limk→∞(πk, λk) = (π, λ) = ((f, σ), λ), and a sequence xk ∈
L(πk, λk), k = 1, 2, ..., such that limk→∞ xk = x.

Since F is closed on Θ by Proposition 4.1, and xk ∈ F(σk), k = 1, 2, ..., we get
x ∈ F(σ). In addition, if k0 ∈ N is big enough to satisfy (xk)k∈N ⊂ k0B, we can
write

f(xk) = fk(xk) + f(xk)− fk(xk)

≤ fk(xk) + dk0(f, f
k)

≤ λk + dk0(f, f
k).

The lower semicontinuity of f leads us to

f(x) ≤ lim inf
k→∞

f(xk) ≤ lim
k→∞

(λk + dk0(f, f
k)) = λ,

and so x ∈ L(π, λ).

Theorem 7.2. If L is uniformly compact-bounded at (π, ϑ(π)) ∈ Π× R, then ϑ is

lsc at π.

Proof. Since L is uniformly compact-bounded at (π, ϑ(π)), if we take a convenient
λ > ϑ(π), we have that L(π, λ) is compact. Then Theorem 2.6 in [6] applies to
conclude that Fopt(π) = L(π, ϑ(π)) is a nonempty compact set.

Given ε > 0 we shall prove the existence of δ > 0 such that

d(π, π′) < δ =⇒ ϑ(π′) ≥ ϑ(π)− ε. (22)

Since L is uniformly compact-bounded at (π, ϑ(π)), Proposition 6.3.2 and Theorem
6.1.16 in [5], together with Theorem 7.1, apply to conclude that L is usc at (π, ϑ(π)).
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Take now the open set

W :=
{
x ∈ X : f(x) > ϑ(π)−

ε

2

}
.

Obviously L(π, ϑ(π)) ⊂ W. The upper semicontinuity of L at (π, ϑ(π)) entails the
existence of δ > 0 such that

d(π, π′) < δ, |ϑ(π)− λ′| < δ =⇒ L(π′, λ′) ⊂ W.

We shall take δ small enough to guarantee that actually we have

d(π, π′) < δ, |ϑ(π)− λ′| < δ =⇒ L(π′, λ′) ⊂ W ∩K, (23)

K being a compact set.

Now we choose in (23) λ′ = ϑ(π) and π′ satisfying d(π, π′) < δ. Two cases may
arise:

a) If L(π′, ϑ(π)) = ∅, then ϑ(π′) ≥ ϑ(π) > ϑ(π)− ε (possibly, ϑ(π′) = +∞).

b) If L(π′, ϑ(π)) 6= ∅, then Theorem 2.6 in [6] and (23) provide

∅ 6= Fopt(π′) ⊂ L(π′, ϑ(π)) ⊂ W ∩K. (24)

Pick now x0 ∈ F
opt(π′) and k ∈ N such that ‖x0‖ ≤ k. Again by Lemma 3.1, if δ is

small enough, we can be sure that

‖x‖ ≤ k =⇒ |f ′(x)− f(x)| ≤
ε

2
. (25)

Combining (24) and (25), and recalling the definition of W, we get

ϑ(π′) = f ′(x0) = f(x0) + f ′(x0)− f(x0)

> ϑ(π)−
ε

2
−

ε

2
= ϑ(π)− ε.

Hence (22) holds.

Theorem 7.3. Consider π = (f, σ) = (f, {ft, t ∈ T ;C}) ∈ Π with X = Rn.
Suppose that the functions f, ft, t ∈ T, are convex and that C is convex. If Fopt(π)
is a nonempty compact set, then L is uniformly compact-bounded at (π, ϑ(π)).

Proof. Let us consider the system in Rn

σ̃ := {ft(x) ≤ 0, t ∈ T ; f(x)− ϑ(π) ≤ 0; dC(x) ≤ 0} .

Obviously, we can represent σ̃ as

σ̃ :=
{
ft(x) ≤ 0, t ∈ T̃ ; dC(x) ≤ 0

}
,

with index set T̃ := T ∪ {t0}, t0 /∈ T, and ft0(x) := f(x)− ϑ(π).
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It is evident that, if we represent by F̃ the feasible set mapping for convex systems
having T̃ as index set, aside the constraint x ∈ C ⇔ dC(x) ≤ 0 (C is closed), we

have F̃(σ̃) = Fopt(π). Then, the assumption of compactness and non-emptyness of

this set implies that F̃ is usc at σ̃, according to [17, Proposition 7.5].

Now let us define

W := Fopt(π) + {x ∈ Rn : ‖x‖ < 1} and K := Fopt(π) + B.

For the extended index set, we shall consider perturbed systems of σ̃ of the form

σ̃′ = {f ′
t(x) ≤ 0, t ∈ T ; f ′(x)− λ′ ≤ 0; dC′(x) ≤ 0} .

The upper semicontinuity of F̃ at σ̃ entails the existence of ε > 0 such that

d̃(σ̃, σ̃′) < ε ⇒ F̃(σ̃′) ⊂ W, (26)

where

d̃(σ̃, σ̃′) = max{sup
t∈T̃

d(ft, f
′
t), d(dC , dC′)}

= max{d(f − ϑ(π), f ′ − λ′), sup
t∈T

d(ft, f
′
t), d(dC , dC′)}.

Let us take the problem π′ = (f ′, σ′) = (f ′, {f ′
t , t ∈ T ;C ′}) with f ′, f ′

t , t ∈ T , convex
and C ′ convex, such that d(π, π′) < ε/2, and the scalar λ′ such that |ϑ(π)− λ′| <
ε/2. Then

d(f − ϑ(π), f ′ − λ′) ≤ d(f, f ′) + |ϑ(π)− λ′| < ε,

implying d̃(σ̃, σ̃′) < ε. Now (26) gives rise to the implication

d(π, π′) < ε/2
|ϑ(π)− λ′| < ε/2

}
⇒ F̃(σ̃′) = L(π′, λ′) ⊂ K,

and this means that L is included in the compact set K around (π, ϑ(π)).

The next result generalizes [20, Theorem 3.1 (ii)] to convex semi-infinite problems
with extended constraint functions and a constraint set (here the involved functions
are not necessarily finite-valued and the constraint set is not necessarily the whole
space).

Corollary 7.4. Consider π = (f, σ) ∈ Π with X = Rn. Suppose that the functions

f, ft, t ∈ T, are convex and that C is convex. If Fopt(π) is a nonempty compact set,

then ϑ is lsc at π.

Proof. It is a straightforward consequence of Theorems 7.2 and 7.3.

The next example shows that Theorem 7.3 and Corollary 7.4 fail when the convexity
assumption on the objective f and the constraint functions ft, t ∈ T, is replaced by
the weaker one that all the local minima of f and g = supt∈T ft are global minima
of f and g, respectively, even though C = X = Rn.
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Figure 7.1: gph f

Figure 7.2: gph f 1

Example 7.5. Let X = R and π = (f, σ) ∈ Π, where f (x) = min
{
x2, 1

|x|+1

}
and

σ is as in Example 5.3. We have Fopt(π) = {0} and ϑ (π) = 0. Consider the sequence
(πn)n∈N such that πn = (fn, σ) and fn is the result of replacing the branch of gph f

on [n,+∞[ by the union of the segment
[(
n, 1

n+1

)
,
(

n2+10n+5
(n+1)2

,−1
4

)]
(tangent to

gph f at (n, f (n))) with the half line
(

n2+10n+5
(n+1)2

,−1
4

)
+ R+ (1, 0) . In other words,

fn (x) =





f (x) , if x < n,
−x+2n+1
(n+1)2

, if n ≤ x ≤ n2+10n+5
(n+1)2

,

−1, otherwise.

Then d (fn, f) ≤ 21−n for all n ∈ N and so d (πn, π) = d (fn, f)→ 0. Since L(πn, 0)
= {0} ∪ [2n+ 1,+∞[ is unbounded for all n ∈ N, L is not uniformly compact-
bounded at (π, 0). Moreover, ϑ (π) > −1 whereas ϑ (πn) = −

1
4
< −1 for all n ∈ N,

so that ϑ is not lsc at π.

8. Stability analysis of the optimal set mapping

This section starts with a sufficient condition for the closedness of Fopt.

Theorem 8.1. Consider π = (f, σ) ∈ Π such that f is usc and F is lsc at σ. Then
Fopt is closed at π.

Proof. We shall analyze the nontrivial case Fopt (π) 6= ∅. Take a sequence πk =
(fk, σk) ∈ Π, k = 1, 2, ..., such that limk→∞ πk = π, and a sequence xk ∈ F

opt(πk),
k = 1, 2, ..., such that limk→∞ xk = x. We shall prove that x ∈ Fopt(π).
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Since F is closed on Θ by Proposition 4.1, and xk ∈ F(σk), k = 1, 2, ..., we get
x ∈ F(σ). Moreover if k0 ∈ N is big enough to satisfy (xk)k∈N ⊂ k0B, we write this
time

f(xk) = fk(xk) + f(xk)− fk(xk)

≤ ϑ(πk) + dk0(f, f
k).

Taking limits:
f(x) = lim

k→∞
f(xk) ≤ lim inf

k→∞
ϑ(πk). (27)

But thanks to Theorem 6.1 (i) one gets

lim sup
k→∞

ϑ(πk) ≤ ϑ(π). (28)

From (27) and (28) finally we derive

f(x) ≤ ϑ(π),

and x ∈ Fopt(π).

Theorem 8.2. Consider π = (f, σ) ∈ Π such that f is usc, F is lsc at σ, and L is

uniformly compact-bounded at (π, ϑ(π)) ∈ Π × R. Then, ϑ is continuous at π and

Fopt is usc at π.

Proof. The assumption on L guarantees that ϑ is finite-valued in some neighbor-
hood of π. The continuity of ϑ comes from Theorem 6.1 and Theorem 7.2. Moreover
Fopt is closed at π by Theorem 8.1. Let us see that Fopt is also uniformly compact-
valued at π.

Because L is uniformly compact-bounded at (π, ϑ(π)) there exist a compact set K
in X and a δ > 0 such that

d(π, π′) < δ, |ϑ(π)− λ′| < δ =⇒ L(π′, λ′) ⊂ K. (29)

The continuity of ϑ entails the existence of δ1 > 0 such that

d(π, π′) < δ1 =⇒ |ϑ(π)− ϑ(π′)| < δ.

Thus, if d(π, π′) ≤ min{δ, δ1} we have d(π, π
′) < δ and |ϑ(π)− ϑ(π′)| < δ. By (29)

L(π′, ϑ(π′)) = Fopt(π′) ⊂ K.

Now we conclude that Fopt is usc at π by applying again Lemma 6.3.2 in [5] because
Fopt is closed and uniformly compact-bounded at π.

Corollary 8.3. Consider π = (f, σ) ∈ Π with X = Rn. Suppose that the functions

f, ft, t ∈ T, are convex, f is in addition usc, and that C is convex. If Fopt(π) is a

nonempty compact set and F is lsc at σ, then ϑ is continuous at π and Fopt is usc

at π.
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Proof. It is a straightforward consequence of Theorem 7.3 and Theorem 8.2. It is
also a consequence of Theorem 4.3.3 in [4].

Example 7.5 shows once again that the convexity assumption on the objective func-
tion f and the constraint functions ft, t ∈ T, cannot be replaced by the weaker one
that all the local minima of f and g = supt∈T ft are global minima of f and g, re-
spectively, even though C = X = Rn. Indeed, Fopt(π) = {0} is obviously compact
and F is lsc at σ (recall Example 5.3), but Fopt is not usc at π (consider a bounded
neighborhood of 0 and observe that Fopt (πn) is unbounded for all n ∈ N).
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Optimization, Birkhäuser, Basel (1983).

[5] G. Beer: Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht (1993).

[6] J. F. Bonnans, A. Shapiro: Perturbation Analysis of Optimization Problems,
Springer, New York (2000).

[7] B. Brosowski: Parametric Semi-Infinite Optimization, Peter Lang, Frankfurt am
Main (1982).

[8] B. Brosowski: On the continuity of the optimum set in parametric semi-infinite
programming, in: Mathematical Programming with Data Perturbations II, A. V.
Fiacco (ed.), Lecture Notes in Pure and Appl. Math. 85, Marcel Dekker, New York
(1983) 23–48.

[9] B. Brosowski: Parametric semi-infinite linear programming. I: Continuity of the fea-
sible set and of the optimal value, Math. Program. Study 21 (1984) 18–42.
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Goberna, M. A. López (eds.), Kluwer, Dordrecht (2001) 101–120.

[32] R. Lucchetti: Convexity and Well-Posed Problems, Springer, New York (2006).

[33] S. M. Robinson: Stability theory for systems of inequalities. I: Linear systems, SIAM
J. Numer. Anal. 12 (1975) 754–769.
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