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Boulevard des Aiguillettes B.P. 70239, 54506 Vandoeuvre-les-Nancy Cedex, France

antoine.henrot@iecn.u-nancy.fr

Received: December 21, 2010
Revised manuscript received: May 18, 2011

We look for the minimizers of the functional Jλ(Ω) = λ|Ω| − P (Ω) among planar convex domains
constrained to lie into a given ring. We prove that, according to the values of the parameter
λ, the solutions are either a disc or a polygon. In this last case, we describe completely the
polygonal solutions by reducing the problem to a finite dimensional optimization problem. We
recover classical inequalities for convex sets involving area, perimeter and inradius or circumradius
and find a new one.
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1. Introduction

Shape optimization problems for geometric functionals as the volume and the
perimeter have always aroused a large interest; the most famous examples are
inequalities of the isoperimetric type. In particular in the classical isoperimetric
inequality one looks for a set minimizing the perimeter among all the sets of fixed
area or, equivalently, for a set maximizing the area among all the sets of fixed
perimeter. On the other hand one can consider reverse isoperimetric type inequali-
ties. Of course, this makes sense only working with supplementary constraints like
convexity or involving inradius and/or circumradius in order to avoid degenerate
solutions. Namely one can maximize the perimeter among convex sets with fixed
volume contained in some given ball or, analogously, minimize the volume among
sets of fixed perimeter which contain a given ball. The analysis of such classical
problems naturally leads to the study of critical points of functionals of the type

Jλ(Ω) = λ|Ω| − P (Ω), (1)
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where |·| is the area, P (·) is the perimeter and λ stands for some Lagrange multiplier.

Another motivation is to get geometric inequalities for convex sets like in [5] or [8]
(see [10] for a good overview of such inequalities). In particular in [5] J. Favard
investigated some functionals of the area and the perimeter which are homogeneous

in P and |·|1/2; in particular he studied the maximum for the functional P (Ω)/
√
|Ω|

among convex sets contained in an annular ring and he proved that the optimal set
is a polygon which is inscribed in the exterior ball and all of its sides, except at most
one, are tangent to the interior disk. The same functional had been investigated
by K. Ball in [1] where he presents a reverse isoperimetric inequality in the N -
dimensional case substituting the constraints on the inradius and circumradius by
considering classes of affine equivalent convex bodies, rather than individual bodies.
In particular he proved that for any convex set K ⊆ R

N there exists an affine image
F (K) for which

P (F (K))

|F (K)|N−1

N

,

is no larger than the corresponding expression for a regular N -dimensional tetrahe-
dron.

In this paper we choose to consider the following minimization problem for every
value of the parameter λ ≥ 0:

min
Ω∈Ca,b

λ|Ω| − P (Ω), (2)

where:

Ca,b = {K ⊆ R
2 K convex, Da ⊆ K ⊆ Db};

(here and later Dr is the ball of radius r with center at the origin). Notice that the
class Ca,b is compact with respect to the Hausdorff distance, moreover the functional
λ|Ω| − P (Ω) is bounded from below by λ|Da| − P (Db), and continuous thanks to
the convexity constraint (see e.g. [6]); hence the minimum in (2) is in fact achieved
for every value of λ ≥ 0. For a more general existence result for minimum problems
in the class of convex sets, we refer to [3].

In the paper we present a description of optimal sets to problem (2); more precisely
we prove the following result.

Theorem 1.1. For every λ ≥ 0 there exists an optimal set Ωλ which solves problem
(2). In particular

• if 0 ≤ λ ≤ 1
2b

then Ωλ = Db;

• if 1
2b
< λ < 2

a
then Ωλ is a polygon;

• if λ > 2
a

then Ωλ = Da.

The proof of this result can be found in Corollary 2.2 for the case 1
2b
< λ < 2

a
, and

in Theorem 2.13 for λ ≤ 1
2b

or λ ≥ 2
a
. The case of λ = 2/a is discussed in details

in Remark 2.10. A further description of the optimal polygon(s) is presented in
Section 3. Notice that, obviously, the functional is invariant under rotations, thus
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there is no uniqueness of solution. Nevertheless we will see that, except for a finite
number of values for λ, the solution is unique up to rotation.

In order to prove that solutions to problem (2) are either polygons or the given
balls Da or Db, the idea is to analyse optimality conditions for (2) either from a
geometric or from an analytic point of view. In particular the notion of support
function of the set K will be useful: h = hK is the function h : R

2 → R such that

hK(u) = sup
x∈K

< x; u > for every u ∈ R
2.

We consider the functional Jλ defined in (5), on the class of convex subsets of R
2;

hence problem (2) can be rewritten as

min
Ω∈Ca,b

Jλ(Ω).

Moreover, the functional Jλ can be rewritten in terms of its support function as
follows:

Jλ(Ω) =
λ

2

∫ 2π

0

(h2 − h′2) dθ −
∫ 2π

0

h dθ.

Recalling that the convexity of a set K can be expressed in terms of its support
function as h′′K + hK ≥ 0, the class Ca,b is reduced to

Ca,b = {K ⊆ R
2 : a ≤ hK ≤ b, h′′K + hK ≥ 0 for every θ ∈ [0, 2π]}.

A fundamental preliminary result is expressed in theorem below, which is due to
J. Lamboley and A. Novruzi (see [9, Theorem 2.1]). They considered generic func-
tionals of the form ∫ 2π

0

G(θ, u(θ), u′(θ))dθ,

where u stands either for the support function or the gauge function of a planar
convex domain, and they proved that, under a concavity property of G(θ, u, p)
solutions to the associated minimum problem are (locally) polygons. Applying their
result to the formulation of Jλ in terms of support function, we get the following.

Theorem 1.2 ([9]). For every λ ≥ 0, if Ωλ is a solution to (2) then Ωλ is locally
a polygon in the interior of the annulus Db \Da.

Moreover, using [9, Theorem 2.2], it is possible to get a range of values of λ for which
solutions are polygons. However, the application of their result yields a range of
value 1

b
≤ λ ≤ 1

a
while we are able to get the same result for 1

2b
< λ < 2

a
. The

reason is the following: we actually consider more general perturbations of a convex
set that they did. Namely in the proof of Theorem 2.1 we consider perturbations
of a generic set Ω of the form Ωη, expressed by the support functions as

hΩη(θ) = hΩ(θ) + w(θ, η),

with

w(θ, η) =
(
hTη(θ) − hΩ(θ)

)
χ(0,η)(θ) or w(θ, η) =

(
hSη(θ) − hΩ(θ)

)
χ(0,2η)(θ),
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Figure 1.1: A parallel chord movement: optimal sets cannot have “free” sides.

where Tη is the triangle of vertices (0, 0), (b, 0), (b cos η, b sin η) and Sη is the quadri-
lateral of vertices (0, 0), (a, 0), (a, a tan η), (a cos 2η, a sin 2η) (see Figure 2.1 for de-
tails). These kind of perturbations are not of the simple type hΩη(θ) = hΩ(θ)+tη(θ)
considered in [9].

In Section 3 a detailed characterization of optimal polygons is presented. In partic-
ular it is shown that optimal polygons are either inscribed in the exterior ball Db

or circumscribed to the interior ball Da. This is proved via refinements of a natural
geometric argument of “anti-symmetrization”. It is in fact evident that an optimal
polygon Ω cannot contain two consecutive free sides, that is two consecutive sides
which are neither a chord of Db nor tangent to Da. Otherwise the perturbation
in Figure 1.1 would be possible, in contradiction with the optimality of the set Ω.
More precisely, assume there exist two free sides AB,BC; we consider the set Ωt

obtained as a perturbation of the set Ω by moving the vertex B in the direction

v =
−→
AC for a time t ∈ R (notice that all the other vertices are fixed). This is

a so called parallel chord movement, as Ωt is obtained from Ω by moving its lines
(only those contained into the half plane determined by the line AC and the point
B), along the direction v. For small times the set Ωt is still a convex set and in
particular it still belongs to the class Ca,b. Moreover it is clear that |Ωt| = |Ω| for
every t ∈ R and that there exists t̄ such that P (Ωt̄) > P (Ω); hence Ω cannot be
optimal.

2. Main results

2.1. First characterizations

Theorem 2.1. Let Ωλ be a minimizer of (2), then for 1/2b < λ < 2/a, ∂Ωλ does
not contain neither arcs of Da nor arcs of Db.

Corollary 2.2. For every 1/2b < λ < 2/a minimizers to (2) are polygons.

Proof. By Theorem 1.2 for every value of λ ≥ 0 a minimizer can be composed
only by segments and arcs of Da and Db. We will prove in Corollary 2.12 that
the number of segments is necessarily finite. Thus using Theorem 2.1 the thesis
follows.

Proof of Theorem 2.1. We split the proof into two steps.

Step 1: if λ > 1/2b then ∂Ωλ does not contain arcs of ∂Db. Let Ω ∈ Ca,b and assume
that it contains an arc of ∂Db on its boundary, that is there exists a subinterval of



C. Bianchini, A. Henrot / Optimal Sets for a Class of Minimization ... 729
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Figure 2.1: The constructions in Step 1 and Step 2 respectively.

[0, 2π) (which for simplicity is assumed to be (0, γ) for some γ > 0), such that

{θ ∈ [0, 2π) : hΩ(eiθ) = b} ⊇ (0, γ).

Let η ∈ (0, γ/2) be such that cos η ≥ a/b and consider Ωη obtained from Ω by
cutting a part of the arc by a chord of central angle η (see Figure 2.1(a)). Notice
that, as we choose cos η ≥ a/b, the new set Ωη still belongs to the class Ca,b. We
want to show that Jλ(Ω) > Jλ(Ω

η); we get

Jλ(Ω) − Jλ(Ω
η) =

b

2
(η − sin η cos η)

(
λ2b− 4

η − sin η

η − sin η cos η

)
, (3)

for every η ∈ (0, γ/2) sufficiently small. As limη→0 4 η−sin η
η−sin η cos η

= 1 and λ > 1/2b,

for η sufficiently small we get

λ2b− 4
η − sin η

η − sin η cos η
> 0,

which gives the desired result.

Step 2: if λ < 2/a then ∂Ωλ does not contain arcs of ∂Da. Consider Ω ∈ Ca,b and
assume that ∂Ω contains an arc of ∂Da, that is there exists an subinterval of [0, 2π)
(which for simplicity is assumed to be (0, γ) for some γ > 0), such that

{θ ∈ [0, 2π) : hΩ(eiθ) = a} ⊇ (0, γ).

Let η ∈ (0, γ/2) be such that cos η ≥ a/b and consider Ωη obtained from Ω by
cutting a part of the arc of Da of width equals to 2η by two tangent lines to Da, as
shown in Figure 2.1(b). Notice that, choosing η > 0 such that cos η ≥ a/b, the set
Ωη still belongs to the class Ca,b. Moreover, comparing Jλ(Ω

η) and Jλ(Ω) we obtain

Jλ(Ω) − Jλ(Ω
η) = −a2 (tan η − η)

(
λ− 2

a

)
,

which is positive as λ < 2/a and hence ∂Ωλ cannot contain arcs of Da for every
λ < 2/a.
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Figure 2.2: The classes of segments L a
b , L a, Lb and the corresponding classes of

angles A a
b , A a, Ab.

2.2. Reduction to an optimization problem of finite dimension

We define three classes of segments which will be useful in what follows. In partic-
ular it will turn out that the sides of an optimal polygon necessarily belong to these
classes; as already noticed, in fact, free sides are not allowed for an optimal polygon.
We here prove that in fact they are necessarily either chord of Db or tangent side
to Da.

A similar representation for convex sets in terms of their central angles has been
used also for other type of functionals in [4].

Definition 2.3. The class L a represents the class of tangent sides to Da which
are not chords of Db. In particular if PiPj and PjPk are segments tangent to Da,
with Pi, Pk ∈ ∂Da, the segments PiPj and PjPk are identified in the class L a as
the same element (and hence they are counted only once).

The class Lb represents the class of segments which are chords of Db not tangent to
Da. In particular the elements of Lb are half chords and each couple of half chords
is in fact identified in the same element of Lb. Hence for each chord PiPj of Db if
Qi is its medium point, the segments PiQi and QiPj are identified in class Lb.

The class L a
b represents the class of segments which are at the same time tangent

to Da and chords of Db. In particular a segment PiPj belongs to L a
b if Pi ∈ ∂Db

and Pj ∈ ∂Da. Again we will count these segments in couples (it will be clear later
that in fact the number of these segments is always even).

In an analogous way we define the corresponding classes of central angles.

Definition 2.4. The class A a is the class of angles which determine a segment in
L a.

The class Ab is the class of angles which determine a segment in Lb.

The class A a
b is the class of angles which determine a segment in L a

b .

Remark 2.5. Figure 2.2(a), represents elements ξ0 in A a
b and the corresponding

segments P1P2 ≡ P3P4 in L a
b ; in particular each couple of segments and angles are

identified, so that in the example it holds |A a
b | = |L a

b | = 1.
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Figure 2.2(b), represents elements θi in the class A
a and the corresponding segments

P1P2 ≡ P2P3, P3P4 ≡ P4P5 in the class L a; in the example it holds |A a| = |L a| =
2.

Figure 2.2(c), represents elements ηj in the class Ab and the corresponding segments
PkQk in the class Lb; as each couple of segments PiQi, QiPi+1 is identified, in the
example it holds |Ab| = |Lb| = 2.

Notice that all the segments in the class L
a
b have the same length equal to

√
b2 − a2

and analogously each angle ξ0 ∈ A a
b has the same value:

sin ξ0 =

√
b2 − a2

b
, cos ξ0 =

a

b
. (4)

Moreover for every Li ∈ L a there exists θi ∈ A a such that Li = a tan θi with
θi < ξ0, while for Lj ∈ Lb there exists ηj ∈ Ab such that Lj = b sin ηj and ηj < ξ0.

By construction it always holds

0 < θi, ηj < ξ0 <
π

2
,

moreover by convexity
∑

x∈A a∪Ab∪A a
b
x ≤ π and

∑
l∈L a

b
∪L a∪Lb

l ≤ P (Ω)/2. More

precisely for an optimal polygon Ω, equality holds in the previous expressions, as
shown in the following crucial theorem.

Theorem 2.6. Let Ωλ be a solution to (2) then its boundary can be decomposed
into unions of arches of ∂Da and ∂Db and segments Li belonging to L

a
b ∪L

a ∪Lb.

Thanks to this result an optimal polygon Ω can be characterized by its classes of
segments L a

b ,L
a,Lb or, analogously, by its classes of central angles A a

b ,A
a,Ab.

In particular by construction it turns out that if ∂Ω is composed only by arcs of
Da and Db and segments in the classes L a

b ,L
a,Lb, then the number of segments

which have one vertex on ∂Db and the other one on ∂Da (that is the segments which
identify the class L

a
b ), is even and hence we are allowed to identify segments of the

type
√
b2 − a2 in couple.

Definition 2.7. We define the class Ka,b as the class of sets Ω such that Da ⊆ Ω ⊆
Db and ∂Ω = ∪i∈ILi, with Li ∈ L

a
b ∪ L

a ∪ Lb.

Hence, for every Ω ∈ Ka,b, the functional Jλ(Ω) can be expressed as:

Jλ(Ω) = λ



∑

ξ0∈A a
b

a2 tan ξ0 + a2
∑

θi∈A a

tan θi + b2
∑

ηj∈Ab

sin ηj cos ηj


 (5)

− 2



∑

ξ0∈A a
b

a tan ξ0 + a
∑

θi∈A a

tan θi + b
∑

ηj∈Ab

sin ηj


 .

Notice that Ka,b ⊆ Ca,b, that is each Ω in the class Ka,b is a convex polygon. Hence
by Corollary 2.2 and Theorem 2.6 it follows

min
Ω∈Ca,b

Jλ(Ω) = min
Ω∈Ka,b

Jλ(Ω),
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(a) (b)
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Figure 2.3: Two different polygons corresponding to the same classes of central
angles. For them the value of the functional Jλ is the same

for every 1/2b < λ < 2/a. In particular for such values of λ the minimum problem
can be expressed as:

min
Ω∈Ka,b

Jλ(Ω) (6)

= min




Jλ(Ω) | Ω ∈ Ka,b;
∑

ξ0∈A a
b

ξ0 +
∑

θi∈A a

θi +
∑

ηj∈Ab

ηj = π; 0 < θi, ηj < ξ0




 .

Notice that the classes A
a

b ,A
a,Ab do not identify a unique shape of polygon, as

shown in Figure 2.3. However the value of Jλ only depends on the values of the
angles and their belonging to a certain class; indeed these possible different polygons
are equivalent for the minimization problem. Hence in what follows we will refer to
a certain polygon Ω regarding only its classes of central angles (or equivalently its
classes of segments).

Proof of Theorem 2.6. Thanks to Theorem 1.2 it is enough to prove that each
segment of ∂Ωλ belongs to L a

b ∪ L a ∪ Lb. Assume there exists a side PQ which

is neither tangent to Da nor a chord of Db with Q ∈ intDb \Da and let R be the
next vertex of Ωλ. We define the angle π − η as the angle between the sides PQ
and QR, as shown in Figure 2.4(a). We consider Ωε

λ a perturbation of Ωλ obtained
slightly moving the vertex Q in a position Qε, which belongs to the same line QR
and which is at distance ε from Q (see Figure 2.4(a)). Notice that the following
argument does not depend neither on the position of P nor on that of the lines PQ
and QR in the annulus.

In the case of an external perturbation, showed in Figure 2.4(b.1), with Qε 6∈ Ωλ,
it holds

Jλ(Ω
ε
λ) − Jλ(Ωλ) = ε sin η

(
λ

2
QP − 1 − cos η

sin η
+
o(ε)

ε

)
,

which implies, by the optimality of Ωλ,

λ

2
≥ tan η/2

QP
. (7)
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Qε′′
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Figure 2.4: Segments of optimal polygons necessarily belong to L a
b ∪ L a ∪ Lb.

In an analogous way, for an interior perturbation, represented in Figure 2.4(b.2)
with Qε ∈ ∂Ωλ, we have

Jλ(Ω
ε
λ) − Jλ(Ωλ) = −ε sin η

(
λ

2
QP − 1 − cos η

sin η
+
o(ε)

ε

)
,

which entails
λ

2
≤ tan η/2

QP
.

By condition (7) we get, as a necessary condition for the optimality of Ωλ,

λ = 2
tan η/2

QP
.

Let us now show that, even in this case, such a set Ωλ cannot be a minimizer.

Fix λ̄ = 2 tan η
2
/ QP . We consider the same perturbation as before, for ε > 0 and

again we assume ε small enough in such a way that Ωε
λ̄

still belongs to Ca,b. We

compute Jλ̄(Ω
ε
λ̄
) − Jλ̄(Ωλ̄) in order to show that Jλ̄(Ω

ε
λ̄
) < Jλ̄(Ωλ̄), and hence that

Ωλ̄ cannot be a minimizer.

Jλ̄(Ω
ε
λ̄) − Jλ̄(Ωλ̄) = sin η

1 − cos η

sin η QP
QQεQP −QQε −QεP +QP

= QP − cos ηQQε −
√
QP

2
+QQε2 − 2 cos η QP QQε, (8)

notice that the quantity (8) is always negative for every positive ε as, if QP −
cos η QQε is non negative, it holds

QP − cos η QQε =

√
QP

2 − 2 cos η QP QQε + cos2 η QQε

<

√
QP

2
+QQε2 − 2 cos η QP QQε.
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Remark 2.8. Notice that, as highlighted in the introduction about the proof of
Theorem 2.1, the perturbations considered in the above proof are not of the linear
form

hΩt(θ) = hΩ(θ) + tv(θ).

This allows us to get more information about the optimal domains.

As already noticed, the class A a
b is composed by copies of the same angle ξ0 which

depends only on the data a, b: cos ξ0 = a/b. Hence A a
b has at most π/ξ0 elements

which in particular implies that it is finite. Regarding A a and Ab the following
theorem holds which implies in particular that A a and Ab are also finite sets (see
Corollary 2.12).

Theorem 2.9. Let Ωλ be an optimal set belonging to the class Ka,b then

1. for λ 6= 2/a there exists θ ∈ (0, π
2
) such that if A a is not empty, then A a =

{θ};
2. there exist x, y ∈ (0, π

2
) such that if Ab is not empty, then either it is a

singleton or Ab = {x, ..., x} or Ab = {x, ..., x, y} with x > y and cosx+cos y =
1/bλ.

Remark 2.10. In the case λ = 2/a the boundary of an optimal set Ωλ only contains
arcs of Da or segments tangent to Da as it follows by Theorem 1.2, Step 1 in
Theorem 2.1, Theorem 2.6 and Lemma 2.15. Hence, for λ = 2/a, either Ωλ = Da

or Ωλ is a circumscribed figure to Da which possibly has both tangent segments
and arcs. Indeed for a polygons Ω circumscribed to Da we have |Ω| = P (Ω)a/2
hence J 2

a
(Ω) = 0; more generally the same arrives if Ω is circumscribed to Da and

it contains arcs of Da. Hence either A a is empty or A a = {θ1, ..., θm} for some m
such that

∑m
i=1 θi ≤ π and cos θi > a/b.

Proof of Theorem 2.9. We analyze first and second order optimality conditions
for problem (6). By the formulation (5) the functional Jλ can in fact be considered
as a function of the angles ξ0 ∈ A a

b , θi ∈ A a, ηj ∈ Ab. As their sum is finite and
each θi, ηj is positive, the sets A

a and Ab have at most countably many elements,
while A a

b is finite.

Consider Ωλ and assume A a
b = {ξ0, ..., ξ0} with |A a

b | = p, A a = {θ1, ..., θi, ...} with
|A a| = qa, Ab = {η1, ..., ηj , ...} with |Ab| = qb; let N = p+ qa + qb, possibly infinity.

Let us indicate by X ∈ R
N the sequence of angles

X = (ξ0, ..., ξ0, θ1, ..., θi, ..., η1, ..., ηj, ...) = (xk)k=1,...,N,

and let X̄ be the vector corresponding to the optimal set Ωλ. With abuse of notation
we write Jλ(X) meaning Jλ(Ω), where Ω is the set corresponding toX. As Ω ∈ Ka,b,
Jλ(Ω) can be expressed in the form (5), under the constraints in (6), namely

gk(X) = xk − ξ0 < 0 and h(X) =

N∑

i=1

xi − π = 0.
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By the first order optimality conditions there exist Lagrange multipliers µ0 ∈ R,
µk ∈ R

+ for k = 1, ..., p such that
{
DJλ(X̄) = µ0Dh(X̄) +

∑p
k=1 µkDgk(X̄),∑P

k=1 µkgk(X̄) = 0;
(9)

this is equivalent to




b2(λ− 2
a
) = µ0 + µk for k = 1, ..., p

a2(λ− 2
a
) 1

cos2 θi
= µ0 for every θi ∈ A a

λb2 cos 2ηj − 2b cos ηj = µ0 for every ηj ∈ Ab.

(10)

From the second condition in (10) it easily follows θi = θj , i, j = 1, ..., qa, and hence
if A a is not empty then it contains only copies of the same angle θ and hence A a

is finite.

Let us consider the third condition in (10); for ηi, ηj ∈ Ab it holds

λ b(cos ηi − cos ηj)(cos ηi + cos ηj) = cos ηi − cos ηj ,

which implies either ηi = ηj or ηi 6= ηj with

cos ηi + cos ηj =
1

bλ
. (11)

Hence Ab contains at most two different angles; let us call them x, y and assume
x > y. This implies that also Ab is a finite set.

By the second order optimality conditions we have that for every d ∈ R
N which

belongs to the critical cone associated to X̄, that is such that d verifies




〈DJλ(X̄); d〉 ≤ 0,

〈Dgk(X̄); d〉 ≤ 0, for k = 1, ..., p

〈Dh(X̄); d〉 = 0,

(12)

it holds
〈D2Jλ(X̄)d, d〉 ≥ 0, (13)

where D2Jλ is the diagonal matrix

[D2Jλ(X)]ii =





2 b2

a2

√
b2 − a2 (a λ− 2) if i = 1, ..., p

2a(a λ− 2) sin θ
cos3 θ

if i = p+ 1, ..., p+ qa

2b(−b λ sin 2ηj + sin ηj) if i = N − qb + 1, ..., N.

(14)

Assume qa = |A a| ≥ 2 and let d be a vector in the critical cone with di = 0 if
i = 1, ..., p, N − qb + 1, ..., N (that is d has non null components only corresponding
to the elements of the class A a). Hence

〈D2Jλ(X̄)d; d〉 = 2a2

(
λ− 2

a

)
sin θ

cos3 θ

p+qa∑

i=p+1

d2
i ,
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which is negative and hence contradicts (13). This proves 1. .

Assume there exist ηj = ηk = z ∈ Ab and consider d ∈ R
N such that dj = −dk and

di = 0 for i 6= j, k. Hence d belongs to the critical cone (12) and hence (13) holds,
that is

2bd2
j sin z(1 − 2b λ cos z) ≥ 0,

which entails cos z ≤ 1/2bλ. Analogously, assume ηj = y, ηk = x with cosx+cos y =
1/bλ by (11); consider the same d as before. Condition (13) gives

2b d2
k(sin y − sin x)(1 − 2b λ cos y) ≥ 0,

which implies that if x > y then cos y ≥ 1/2bλ (and hence by (11) cos x ≤ 1/2bλ).

Assume Ab contains the set {x, y, y} with x > y; then it holds cos y = 1/2bλ which
implies x = y by (11). Hence the thesis holds true.

Remark 2.11. The Hessian matrix D2Jλ is the diagonal matrix given in (14).
Since the critical (tangent) cone is here an hyperplane, three situations can occur:

• all the eigenvalues of D2Jλ are non negative and the second order optimality
condition is automatically fulfilled;

• there exist at least two negative eigenvalues and the quadratic form cannot
be non negative on a hyperplane, thus the second order optimality condition
is not satisfied;

• there exists one and only one negative eigenvalue. In this case, as explained
in [7, Corollary 4.6], the quadratic form with eigenvalues λ1 < 0 < λ2 ≤ λ3 ≤
. . . λN will be non negative on the hyperplane H = (x1, x2, . . . xN )⊥ if and
only if

N∑

i=1

x2
i

λi
≤ 0. (15)

In our situation, to each angle θ ∈ A a or y ∈ Ab corresponds a negative eigenvalue
of D2Jλ. This is the reason why we cannot have more than one of such angles.
Moreover, as soon as one of these angles θ ∈ A a or y ∈ Ab exists, the inequality
(15) gives an information which will be useful in the sequel, see Section 3.

As pointed out in 2. of Theorem 2.9 if there exist two different angles x > y then
cos x ≤ 1/2λb. More precisely this holds true also if the class Ab is composed only
by copies of a same angle x. Indeed if Ab ⊇ {x, x}, the eigenvalue of D2Jλ(Ωλ)
associated to x has to be non negative, that is 2b sin x(1 − 2b λ cosx) ≥ 0, which
gives cos x ≤ 1/2λb.

As already noticed in the proof of Theorem 2.9, the following holds.

Corollary 2.12. Let Ωλ ∈ Ka,b be an optimal set such that ∂Ω = ∪i∈ILi, with
Li ∈ L a

b ∪L a ∪Lb. Then I is a finite set of indices and hence for 1/2b < λ < 2/a
the set Ωλ is a polygon.

This implies that for 1/2b < λ < 2/a the minimum problem (2) can be ex-
plicitly rewritten as a function of the central angles of the polygon. In partic-
ular if Ω is an N -gone, we define X its vector of central angles such that X =
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(ξ0, ..., ξ0, θ, x, ..., x, y) that is xi corresponds to the elements of the classes A
a
b ,A

a,
Ab for i = 1, ..., p, i = N − qb + 1, ..., N , respectively; where |A a

b | = p, |A a| = 1,
|Ab| = qb with p+ 1 + qb = N . Recalling (6) we have

min
Ω∈Ca,b

Jλ(Ω) = min
X∈A

Jλ(X),

where

A =

{
X ∈ R

N such that
N∑

i=1

xi = π, xi < ξ0 for i = p+ 1, ..., N

}
,

and

Jλ(X) = λ

(
p+1∑

i=1

a2 tanxi + b2
N∑

j=N−qb

sin xj cosxj

)

− 2




p+1∑

xi=1

a tan ξ0 + b
N∑

xj=N−qb

sin xj


 .

2.3. Optimal shape for extremal values of λ

We here analyse the case of extremal values of λ. In the limit cases λ = 0 or
λ = +∞ the solution to (2) is evident to be the exterior ball Db and the interior
one Da, respectively. It is in fact the same also for values of λ near to these limit
cases.

Theorem 2.13. Let Ωλ be a minimizer to (2);

1. if λ ≤ 1/2b then Ωλ is unique and Ωλ = Db;

2. if λ > 2/a then Ωλ is unique and Ωλ = Da.

In order to prove this result some preliminary steps are needed. They are collected
in the following lemmas.

Lemma 2.14. For every λ ≤ 2/(a + b), Ωλ does not contain tangent sides to Da

which are not chord of Db.

Lemma 2.15. For every λ ≥ 1/a, Ωλ does not contain chords of Db which are not
tangent to Da.

Proof of Theorem 2.13. This proof is in fact analogous and at the same time
opposite to the proof of Theorem 2.1. Indeed we here consider the same construc-
tions as before, to prove the exact complement: for λ ≤ 1/2b and λ > 2/a, the set
Ωλ does not contains segments.

Proof of part 1. . As λ < 2/(a+ b), by Theorem 2.1, Lemma 2.14 and Theorem 2.6
we have that if ∂Ω contains a segment, then it is a chord of Db. Let AB be one of
these chords, A = beiθA, B = beiθB . We define Ωη starting from Ω and substituting
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(a) (b)

DaDa

DbDb

PP

QQ
RR

H

Ω

Ω

Ω̃

Ω̃

x x

MM

N

Figure 2.5: For λ ≤ 2/(a+ b), L a = ∅; for λ ≥ 1/a, Lb = ∅

the chord AB with the corresponding arc on Db; with η = (θA−θB)/2. We compare
Jλ(Ω) with Jλ(Ω

η) getting

Jλ(Ω
η) − Jλ(Ω) =

b

2
(η − sin η cos η)

(
λ2b− 4

η − sin η

η − sin η cos η

)
,

which is negative as λ2b ≤ 1 and

η − sin η

η − sin η cos η
>

1

4
, for every η > 0.

Hence ∂Ωλ does not contain chords of Db, which implies Ωλ = Db since by Step 2
in the proof of Theorem 2.1, ∂Ωλ does not contain neither arcs of Da.

Proof of part 2. . As λ > 1/a, by Lemma 2.15 and Theorem 2.6 we have that Ωλ

can be composed only by arcs of ∂Da and tangent segments to Da; let AB, BC,
with A,C ∈ ∂Da, A = aeiθA , C = aeiθC , be some of them. Let η be such that
tan η = AB/a = BC/a and let us consider the set Ωη obtained from Ω substituting

the segments AB,BC by the corresponding arc of Da, AC. Computing Jλ(Ω), and
Jλ(Ω

η) we get

Jλ(Ω) − Jλ(Ω
η) = a2(tan η − η)

(
λ− 2

a

)
,

which is positive and hence Ωλ cannot contain tangent segments to Da. This entails
that Ωλ = Da.

We now give the proof of Lemmas 2.14 and 2.15. Notice that we here use non-local
perturbations of Ω.

Proof of Lemma 2.14. Let Ω be a set in the class Ca,b with x ∈ A a; let PQ, QR
be the corresponding tangent sides to Da. Notice that we can assume R,P ∈ ∂Db

as by Theorem 2.9 there exists at most one angle in the class A a.

Consider a set Ω̃ as in Figure 2.5(a), obtained from Ω by moving the point Q along
the line RQ, up to the point M on the boundary of Db. Hence,

Jλ(Ω̃) − Jλ(Ω) =
λ

2
QM QP sin 2x− (QM + PM −QP ).
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AsQM =
√
b2 − a2−a tanx, andQP =

√
b2 − a2+a tanx, we obtain PM = 2b sin x

and hence

Jλ(Ω̃) − Jλ(Ω) =
sin x

cosx
(b2 cosx− a2)

(
λ− 2

b cosx+ a

)
,

which is negative since λ ≤ 2/(a + b) < 2/(b cosx + a). This shows that if λ ≤
2/(a+ b) then the class L a has to be empty.

Proof of Lemma 2.15. Assume that ∂Ω contains a chord MP , with M,P ∈ ∂Db,
with MP not tangent to Da. By Lemma 3.3 we can assume Lb = {MN}, where
N is the middle point of MP ; then there exists a side MR which touches Da at a
point H ∈ ∂Ω ∩ ∂Da.

Consider the set Ω̃ obtained from Ω by moving the point M along the line HM up
to the point Q such that QP is tangent to Da (see Figure 2.5(b)). As in the proof
of Lemma 2.14 we get

Jλ(Ω) − Jλ(Ω̃) =
sin x

cosx
(b2 cosx− a2)

(
λ− 2

b cosx+ a

)
,

which is positive for λ ≥ 1/a as b cos x+ a > 2a. This shows that if λ ≥ 1/a then
Lb has to be empty.

3. Further characterizations

This section is devoted to a more precise analysis of optimal sets, in particular re-
garding the total number of sides, and further properties of the classes L a

b ,L
a,Lb.

These results are useful if one wants to describe the optimal sets for a given value
of a, b as shown in Section 4.

3.1. Analysis of large values of λ

In this section we give a complete characterization of optimal sets for sufficiently
large values of λ. In particular in Theorem 3.1 we give the exact number of sides
of an optimal polygon together with a description of its classes of central angles for
1/b ≤ λ < 2/a.

Theorem 3.1. For 1/b ≤ λ < 2/a optimal sets Ωλ are polygons in the class Ka,b

with a minimum number of sides. In particular let p0 be the largest integer such
that p0ξ0 ≤ π, where ξ0 is defined as in (4); then |A a

b | = p0 and either Ab is empty
or so is A a.

More precisely let x = π− p0ξ0; if x 6= 0 then Ωλ is inscribed into Db for 1/b ≤ λ ≤
2/(b cosx+ a) while it is circumscribed to Da for 2/(b cosx+ a) ≤ λ < 2/a and Ωλ

has either p0 or p0 + 1 sides.

Before giving the proof we present some preliminary results, namely Lemma 3.2
and Lemma 3.3.
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Lemma 3.2. Let Ωλ be an optimal set with λ ≥ 1/b. Then its class A
a

b is not
empty.

Proof. Let p = |A a
b |, q = |Ab|. Assume q ≥ 2 hence we have: either Ab = {x, y}

or Ab contains at least two copies of the same angle x.

As pointed out in Remark 2.11, in both cases optimality conditions (10), (12), (13)
imply

cosx ≤ 1

2λb
. (16)

that is x ≥ x0, where cosx0 = 1/2λb. Hence pξ0 + (q− 1)x ≥ pξ0 + (q− 1)x0 which
entails

pξ0 + (q − 1)x0 < π.

If p = 0 then q ≥ 3 as A a
b empty implies A a is empty as well. In particular if

q ≥ 4 then previous argument implies x0 < π/3 which contradicts the fact that
cos x0 = 1/2λb ≤ 1/2. If q = 3 then Ωλ is an isosceles triangle identified by its
central angles as {x, x, π − 2x} with x ∈ [π

3
, ξ0]. By direct computations it turns

out that the functional Jλ is monotone decreasing as function of x, for every λ ≥ 1
b

and hence the optimal isosceles triangle is determined for x = ξ0, which contradicts
the fact that A a

b is empty.

Lemma 3.3. For λ ≥ min{1/2a, 1/b} any optimal set Ωλ has |Lb| ≤ 1.

Proof. Assume |Lb| = |Ab| ≥ 2, then as shown in the proof of Lemma 3.2 the op-
timality conditions (12), (13) implies (16), which gives λ < 1/2a as by construction
cos x > a/b. Hence if λ ≥ 1/2a it holds |Ab| ≤ 1.

Assume now λ ≥ 1/b; as we have already proved the thesis for λ ≥ 1/2a, it is
sufficient to consider the case b > 2a. Let p = |A a

b |, q = |Ab| and N be the total
number of sides of Ωλ. as b > 2a, it holds ξ0 > π/3. Assume Ab contains two
different angles x, y with x > y, hence by Theorem 2.9 Ab contains (q−1) copies of
x and one copy of y with q ≥ 2 and it holds pξ0 + (q− 1)x+ y ≤ π (where equality
holds if there does not exist an angle θ ∈ A a). Notice that as cos x ≤ 1/(2λ b)
and λ > 1/b, it holds x > π/3. Moreover, by construction, ξ0 > x, which gives
π > (p + q − 1)π/3 which implies p + q < 4 that is p + q ≤ 3 and hence the only
possibility is p+ q = 3 either with A a empty, or with A a = {θ} for some θ.

The case A a not empty cannot be optimal as it implies q = 2, p = 1 and by

translation we can easily obtain a new domain Ω̃ whose sides do not belong to

L a
b ∪ L a ∪ Lb such that the value of Jλ is unchanged. As Ω̃ cannot be optimal,

so is not Ω. In the case A a = ∅ we only have two candidates: the triangles T ′

and T ′′ determined by their sets of angles as {ξ0, x, y} and {z, z, u}, respectively.
By a direct computation we obtain that neither T ′ nor T ′′ are optimal; in fact Jλ

can be seen as a function of x, z, respectively, which decreases for x, z ∈ (0, ξ0) for
λ ≥ b/(b2 + ab− 2a2), which is the case for λ ≥ 1/b (or λ ≥ 1/2a). Hence,

Jλ(T
′), Jλ(T

′′) > Jλ(T ),



C. Bianchini, A. Henrot / Optimal Sets for a Class of Minimization ... 741

(a) b = 2a; (b) b > 2a, x ∈ Ab (c) b > 2a, x ∈ A a.

T T ′ T ′′

x

x

Figure 3.1: The triangles T , T ′, T ′′, respectively.

where T is the triangle determined by the angles {ξ0, ξ0, π − 2ξ0}.
Assume now that the class Ab only contains copies of a same angle x, so that
pξ0 + qx ≤ π. We want to prove that q ≤ 1. Indeed if q ≥ 2 then the optimality
conditions (12), (13) implies (16) (see Remark 2.11). In particular for λ ≤ 1/b we
obtain cos x ≤ 1/2 that is x ≥ π/3 and this gives q ≤ 2 and then q = 2. We then
have

π ≥ pξ0 + 2x > (p+ 2)
π

3
,

which entails p < 1 that is p = 0 and hence N = q = 2, which is absurd.

Hence Ωλ is a triangle with the max number of sides which are at the same time
tangent to Da and chord of Db and hence |Lb| ≤ 1.

We finally present the proof of Theorem 3.1.

Proof of Theorem 3.1. We are going to prove that |A a| · |Ab| = 0; we split the
proof in the cases b ≶ 2a.

Case b ≥ 2a. Assume both A a and Ab not empty. By the proof of Lemma 3.3
we have that Ωλ is necessarily a triangle hence we have A a

b = {ξ0}, A a = {θ},
Ab = {x}, which is not optimal as already noticed in the above proof since it can
be translated. Hence either A a is empty and we get the triangles T ′ with Ab = {x},
or so is Ab and we obtain T ′′ with A

a = {θ}, respectively with x = θ = π − 2ξ0.
Otherwise both A a and Ab are empty, hence T is the regular triangle of side√
b2 − a2. By explicit computation we obtain that Ωλ = T if b = 2a (notice that in

this case T is the only triangle which belongs to the class Ka,b), while for b > 2a
we have

Ωλ =

{
T ′ for 1

b
< λ ≤ 2b

(b−a)(b+2a)
,

T ′′ for 2b
(b−a)(b+2a)

≤ λ < 2
a
.

Case b < 2a. If both A
a and Ab are not empty, by Lemma 3.3 and Theorem 2.9

it holds A a = {θ}, Ab = {x}. Let p = |A a
b |. By construction p+ 2 ≥ 4 hence

π = pξ0 + θ + x > (p+ 1)x ≥ 3x,
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x

x

ξ0

ξ0

(a) The angle x belongs to A a (b) The angle x belongs to Ab

Figure 3.2: The sets Ωλ
a and Ωλ

b in the proof of Theorem 3.1.

which gives x < π/3, and hence cosx > 1/2. Consider the second order optimality
conditions (12), (13) and let d = (0, ..., 0,−k, k) ∈ R

N be a vector in the critical
cone, where the last two components correspond to the element of A a and Ab

respectively. Computing the second derivatives of Jλ we get

〈D2Jλ(Ωλ)d; d〉 = k2

(
2a(aλ− 2)

sin θ

cos3 θ
+ 2b sin x(1 − 2bλ cosx)

)
,

which is negative as we showed that cosx > 1/2. This is a contradiction.

Hence Ωλ is either inscribed into Db or circumscribed to Da with at most one side
which does not belong to L

a
b . This means that Ωλ is a polygon composed by

the maximum number of segment in L a
b which are completed by a last segment

determined by a central angle which belongs either to A a or to Ab. More precisely,
Ωλ can be represented by its central angles as the set of p copies of ξ0 ∈ A a

b with
a last angle x = π − pξ0 such that x < ξ0. Denote by Ωλ

a the set corresponding to
x ∈ A a and Ωλ

b that corresponding to b ∈ Ab. By a direct computation we get

Jλ(Ωλ
a) − Jλ(Ωλ

b) =
sin x

cosx
(a− b cosx) (λ(a+ b cosx) − 2) ,

and hence

Ωλ =

{
Ωλ

b for 1
b
< λ ≤ 2

b cos x+a
,

Ωλ
a for 2

b cos x+a
≤ λ < 2

a
.

3.2. Analysis of small values of λ

By Lemma 2.14 and Corollary 2.2 for 1/2b < λ < 2/(a + b) an optimal set is
a polygon inscribed into Db with possible tangent sides to Da. In particular by
Lemma 3.3 there exists at least one chord which is tangent to the interior ball, for
λ ≥ min{1/2a, 1/b}
The following proposition expresses the fact that if λ is sufficiently small (but suffi-
ciently large to have a polygonal solution), then optimal sets are strictly inscribed
into Db.
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Da

Db

M
P

Pε

η
Q

Qε

Ω

Ωε
ε

Figure 3.3: The construction of Ωε: for 1
2b
< λ < 1

a+b
, A a

b = ∅.

Proposition 3.4. Let Ωλ be an optimal set, with 1/2b < λ < 1/(a+ b). Then the
classes L a

b and L a are empty.

Proof. Let Ω be a polygon inscribed into Db; assume that there exists a chord PQ
of Db which is tangent to Da, that is PM ∈ L a

b where M is the middle point of
PQ. As shown in Figure 3.3 we consider the set Ωε obtained as a perturbation
of Ω constructing two new points Pε, Qε on ∂Db, such that PPε = QQε = ε (and
hence QεPε is parallel to PQ) with PεQε ∩ Ω = ∅. Let us denote by η = η(ε) the
angle between PQ and PεP . Again we want to show that in fact Jλ(Ω

ε) < Jλ(Ω).
Consider

Jλ(Ω
ε) − Jλ(Ω) = ε sin η(2

√
b2 − a2 − ε cos η)

(
λ− 2 tan(η/2)

2
√
b2 − a2 − ε cos η

)
;

and notice that

lim
ε→0

2 tan(η/2)

2
√
b2 − a2 − ε cos η

=
1

a + b
,

since limε→0 η(ε) = ξ0. Hence, as λ < 1/(a + b), there exists ε > 0 (and hence
η > 0) such that Jλ(Ω

ε) − Jλ(Ω) < 0.

As already noticed for small values of λ optimal polygons are inscribed into Db. In
particular for 1/2b < λ < 1/b either Ωλ contains tangent sides to Da, or it is either
regular or “quasi-regular”, where quasi-regular means that it has all the sides of
equal length, except one. It would be interesting to investigate when each of the
cases arrives.

Now let us consider the case of quasi-regular polygons. Notice that not for every
values of λ, a, b, N an optimal quasi-regular N -gone can be constructed in the class
Ka,b. In particular some estimates of the possible number of sides of an optimal
polygon holds.

Proposition 3.5. Let Ωλ be an optimal polygon, with 1/2b < λ ≤ 1/b and let
p = |A a

b |, q = |Ab|. It holds

p0 + 1 − p ≤ q ≤ π

x0
− p

ξ0
x0

+ 1, (17)

where ξ0 is defined in (4), cos x0 = 1
2λb

and p0 = [ π
ξ0

].
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In particular if Ab ⊇ {x, y} it also holds

π − pξ0 +
√

(π − pξ0)2 − 9
2
x1

2x1

+ 1 ≤ q ≤ π

x1

− p
ξ0
x1

+ 1.

Proof. Notice that p0 represents the maximum number of copies of the angle ξ0 that
a polygon in the class Ka,b can have as central angle. That is p0ξ0 ≤ π < (p0 +1)ξ0.
Hence the minimum number of sides is always at least p0, and equality holds only
in the case p0 = π/ξ0. In the general case π/ξ0 6∈ N, it holds in fact N ≥ p0 + 1,
that is

q ≥ p0 + 1 − p.

In what follows we assume p0 < π/ξ0, in order to treat a more general situation.

Notice that, by optimality conditions, if Ab contains a couple of equal angles {x, x}
or a couple of angles {x, y}, it holds cosx ≤ 1/2λb (see Theorem 2.9 for the case
{x, y} ⊆ Ab and Remark 2.11 for the case {x, x} ⊆ Ab). Hence if q ≥ 2, and Ab

has at least (q − 1) copies of an angle x, it holds x0 ≤ x ≤ ξ0 with cosx0 = 1/2λb.

Assume that Ab only contains q copies of the same angle x, such that pξ0 + qx = π;
we have

q ≤ π

x0

− p
ξ0
x0

.

If Ab contains a couple of angles {x, y}, that is Ab = {x, ..., x, y}, we have x > y
with pξ0 + (q − 1)x+ y = π, which gives

q ≤ π

x0
− p

ξ0
x0

+ 1,

and hence (17) is proved.

Moreover in this case the set Ωλ can be optimal only if it satisfies the optimality
conditions which appears in Theorem 2.9. More precisely by Corollary 4.6 in [7]
(see (15)) it must hold

q − 1 ≤ −µx

µy
,

where µx and µy are the eigenvalues of D2Jλ(Ω) corresponding to the angles x and
y respectively: µx = 2b sin x(1 − 2λb cosx), µy = 2b sin y(1 − 2λb cos y). Indeed Ωλ

can be seen as an optimal polygon for the minimization problem in the class of
(p+ q)-gones with p fixed central angles equal to ξ0, and hence Corollary 4.6 in [7]
applies to the q eigenvalues µx, ..., µx, µy.

We get the following necessary conditions for the optimality of the quasi-regular
N -gone: 




(q − 1)x+ y = π − pξ0,

cosx+ cos y =
1

λb
,

sin x− (q − 1) sin y ≥ 0,

x− y > 0.

(18)
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Ax0 x1x2

B

Cy = x

y = π − pξ0 − (q − 1)x

cosx+ cos y = 1
λb

sin x− (q − 1) sin y = 0

Figure 3.4: Conditions for the existence of a quasi-regular optimal polygon with
|A a

b | = p, |Ab| = q.

Notice that this corresponds to find the intersections between the graph of the
function

φλ(x) = arccos

(
1

λb
− cosx

)
, (19)

and the straight line y = π− (q− 1)x− pξ0, which belong to a certain subset of the
first octant, as shown in Figure 3.4. We denote by A,B,C the points indicated in
the figure: A ≡ (x1, 0), B ≡ (x0, x0), C ≡ (x2, y2) such that

cosx0 =
1

2λb
, cos x1 =

1

λb
− 1, (20)

cosx2 + cos y2 =
1

λb
, and sin x2 = (q − 1) sin y2. (21)

Hence we are interested in finding the zeros of the function

ψλ(x) = φλ(x) − π + pξ0 + (q − 1)x,

which belong to the interval [x2, x1). Notice that the curve cosx + cos y = 1/λb
being concave (for x > y > 0), so is the function ψλ(x). In particular ψ′

λ(x) has a
unique zero at the point x2, since

φ′
λ(x2) = − sin x2

(
1 −

(
1
λb

− cos x2

)2) 1

2

= − sin x2

(1 − cos2 y2)
1

2

= −sin x2

sin y2
= −(q − 1),

and the function ψλ is increasing for every x ∈ (x0, x2) while it decreases for x ∈
(x2, x1). Hence there exists a zero for ψλ in [x2, x1) if and only if ψλ(x2) ≥ 0 and
ψλ(x1) ≤ 0, that is

φλ(x2) − π + pξ0 + (q − 1)x2 ≥ 0 and (22)

φλ(x1) − π + pξ0 + (q − 1)x1 ≤ 0. (23)

As φλ(x1) = 0, condition (23) yields

q ≤ π

x1
− p

ξ0
x1

+ 1,
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which gives an upper bound to the number of possible chords (non-tangent to Da)
of an optimal polygon.

In order to find a lower bound for q using (22), we need to estimate the value of
y2 = φλ(x2), which can explicitly be found solving the system (21):

y2 = arccos

(√
1 +

1

b2λ2

(q − 1)2

q2(q − 2)2
− 1

bλ

1

q(q − 2)

)
.

By algebraic computations one can prove that

y2 ≤ arccos

(
1 − 9

16(q − 1)2

)
≤ 3

2

√
9

16(q − 1)2
=

9

8(q − 1)
,

and hence by (22) and the fact that x2 < x1, we have

9

8(q − 1)
− π + pξ0 + (q − 1)x1 ≥ y2 − π + pξ0 + (q − 1)x2 ≥ 0,

which implies

q ≥
π − pξ0 +

√
(π − pξ0)2 − 9

2
x1

2x1
+ 1.

Corollary 3.6. For 1/2b < λ ≤ 1/(a + b) there exists at most one N ∈ N such
that an optimal polygon is a quasi-regular N-gone.

Proof. By Proposition 3.4 and Proposition 3.5 we have

π +
√
π2 − 9

2
x1

2x1
+ 1 ≤ q ≤ π

x1
+ 1.

Consider the difference between the upper and lower bounds:

π

x1
+ 1 −




π +

√
π2 − 9

2
x1

2x1
+ 1



 =
π

2x1
− π

2x1

√
1 − 9

2π2x1

≤ π

2x1
− π

2x1

(
1 − 27

8π2
x1

)
=

27

16 π
< 1,

where the first inequality follows from the fact that
√

1 − u ≥ 1 − 3
4
u for u ≤ 8

9
.

Hence there exists at most one value of N such that a quasi-regular optimal N -gone
exists.

As shown in the above proposition, quasi-regular optimal N -gones exist only for
at most a specific value of N . Hence in most cases the solution will be a regular
polygon. In the following proposition we analyze more in details this situation.
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Notice that by Corollary 3.6 and Proposition 3.7 below we can characterize the
number of sides of an optimal polygon, for λ close to 1/2b. In particular the number
of sides tends to infinity as λ tends to 1/2b. This shows that we have some kind
of continuity of the solutions of problem (2) when λ→ 1/2b and this is in contrast
with the situation for λ → 2/a. Indeed, as explained in Theorem 3.1, for λ > 2/a
the optimal solution Ωλ has the minimum number of sides while for λ > 2/a it is
the ball Da.

Proposition 3.7. Let 1/2b < λ < 1/b and consider the minimum problem (2) in
the class

Ka,b ∩ {Ω regular polygon}.

There exists a decreasing sequence {β̂n} which tends to 1/4, such that for λb/2 ∈
[β̂N , β̂N−1] the optimum is either the polygon PN (if PN ∈ Ka,b) or the polygon Pm

with m the minimum such that Pm ∈ Ka,b (if PN 6∈ Ka,b).

Proof. Let 1/2b < λ < 1/b and let PN be a regular N -gone inscribed into Db,
we want to analyse the minimum of Jλ(PN ) with respect to N and the value of λ,
where

Jλ(PN ) = πb

(
λ
b

2

sin(2π/N)

2π/N
− sin(π/N)

π/N

)
.

Let us denote x = π/N , and let β = λb/2; with abuse of notation we will write Jλ(x)
meaning Jλ(PN). Computing the derivatives of Jλ(x), we define h(β, x) = x J′

λ(x):

h(β, x) = −β(sin x cos x− x cos 2x) + sin x− x cosx.

In order to study the minima of Jλ(x), we are interested in the zeros of h for 1/4 <
β < 1/2, and 0 < x ≤ π/3. We define the sequence βn such that h(βn, π/n) = 0,
that is

βn =
sin(π/n) − π/n cos(π/n)

sin(π/n) cos(π/n) − π/n cos(2π/n)
. (24)

Notice that {βn}n∈N is a decreasing sequence which tends to 1/4 as n tends to
infinity.

Consider βn+1 < β < βn, then h(β, π/n) is positive while h(β, π/(n+1)) is negative
hence Jλ has a minimum for x ∈ [π/(n + 1), π/n], which means that either the

optimal number of sides is n or it is (n+1). In particular there exists β̂n ∈ [βn+1, βn)

such that J2β/b(π/n) is minimum for β ∈ [β̂n, β̂n−1] where

β̂n =

(
sin(π/n)

π/n
− sin(π/(n+ 1))

π/(n+ 1)

)/(sin(2π/n)

2π/n
− sin(2π/(n+ 1))

2π/(n+ 1)

)
,

and Jλ̂n
(Pn) = Jλ̂n+1

(Pn+1) for λ̂n = 2β̂n/b.

Hence let n̄ be the minimum number of sides such that Pn̄ belongs to the class

Ka,b and consider 1/2b < λ < 1/b. Let n ∈ N be such that 2λ/b ∈ [β̂n, β̂n−1]. If
n ≥ n̄, then Pn minimizes Jλ among all regular polygons, if n < n̄ then the optimal
is Pn̄.
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y = x

N = 3

N = 4

N = 5

1
bλ

= 3
2

1
bλ

= 1 sin x− 2 sin y = 0

sin x− 3 sin y = 0

(a) (b)

Figure 3.5: Conditions for the existence of a quasi-regular optimal polygon with
A a

b = ∅. Case b ≥ 2a, 1
a+b

≤ λ ≤ 1
b
.

Notice that this result implies that in the case b ≥ 2a, and β̂3 ≤ 2bλ ≤ 1/2 the
optimal regular polygon is the equilateral triangle.

More generally in the case b ≥ 2a and 1/(a + b) ≤ λ ≤ 1/b, we are going to show
that only triangle can be optimal sets.

Proposition 3.8. Let b > 2a and 1
a+b

≤ λ ≤ 1
b
; then Ωλ is a triangle.

Proof. As λ ≤ 1/b ≤ 2/(a + b), the class A a is empty by Lemma 2.14. We split
the proof in two parts, considering the two cases A a

b = ∅ and A a
b 6= ∅.

Assume Ωλ have no tangent sides to Da (that is A a
b = ∅) and that Ωλ is a quasi-

regular polygon; hence condition (18) must hold true. Consider the curve cosx +
cos y = 1/bλ; as 1/(a+ b) ≤ λ ≤ 1/b and b > 2a, it holds

1 ≤ 1

λb
≤ 3

2
.

We compare the graphs of the functions y = arccos( 1
bλ
− cos x) in the extreme cases

1/(bλ) = 1 and 1/(bλ) = 3/2.

Applying Proposition 3.5 we get either N = 3 or N = 4, that is: between quasi-
regular polygons, only triangles and quadrilaterals can be optimal sets. Indeed for
each N ≥ 5 there is no intersection between the curve cosx + cos y = 1/2λb and
the line y = π − (N − 1)x as shown in Figure 3.5(a). In particular quadrilaterals
are not optimal as the (non null) values of x such that there exists a solution to

cosx+ cos y =
1

bλ
, and y = π − (N − 1)x,

for N = 4, does not satisfy sin x ≥ (N − 1) sin y, as shown in Figure 3.5(b). Hence
the only possible quasi-regular optimal polygons with A a

b = ∅ are triangles of the
form Ab = {x, x, y}. Consider now the case of a regular N -gone PN ; it holds
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(a) Case p = 1, q = 2. (b) Case p = 1, q = 3 and p = 2, q = 2.

2π
3

2π
3

π
2

x0

x0

ξ0 = π
3

ξ0 = π
2

π
3

π
3

y = xy = x

p = 1, q = 3

p = 2, q = 2

Figure 3.6: Conditions for the existence of an optimal polygon with A a
b 6= ∅,

Ab ⊇ {x, y}. Case b > 2a, 1
a+b

≤ λ ≤ 1
b
.

Jλ(PN) = 2bN sin π
N

(
λ b

2
cos π

N
− 1
)
.

Notice that, as 1/(a + b) ≤ λ ≤ 1/b with b > 2a, we have λb/2 ∈ (1/3, 1/2) and
hence Proposition 3.7 guarantees N = 3.

Hence if A a
b is empty necessarily Ωλ is a triangle; either equilateral or isosceles.

Suppose now A a
b to be not empty; as b > 2a it holds |A a

b | = p ≤ 2 and Proposition
3.5 guarantees that Ωλ is either a triangle or a quadrilateral. We are going to show
that in fact this latter cannot arrive. Assume Ab ⊇ {x, y} with x > y and let
q = |Ab| ≥ 2. By the first order optimality conditions we have





y = π − pξ0 − (q − 1)x,

x > y

cosx+ cos y = 1
λb
,

(25)

where it holds 1 ≤ 1
λb

≤ 3
2

and π
3
< ξ0 <

π
2
.

Notice that the constant term and the director coefficient of the line in (25) decreases
with respect to p and q, respectively. Hence if (25) admits no solution for some p̄, q̄,
then the same will arrive for every p ≥ p̄, q ≥ q̄. Consider the case p = q = 2, shown
in Figure 3.6(b). Notice that, the line y = π − 2ξ0 − x never intersects the curve
cos x+ cos y = 3

2
for x > y > 0 (and hence it never intersects cos x+ cos y = 1/λb

neither). Indeed, thanks to the concavity of the function φ 2

3b
(x) = arccos(3/2 −

cos x), the curve cosx+ cos y = 3/2 for x > y > 0 stays above the line through the
points (π/3, 0), (x0, x0), where x0 = arccos 3/4, and this latter stays above the line
y = π − 2ξ0 − x for every y > 0. Hence there is no solution to (25) for p = q = 2.
The same arrives for p = 1, q = 3 as shown again in Figure 3.6(b). This implies that
the only possible case is p = 1, q = 2, which corresponds to an isosceles triangle
whose central angles are {ξ0, z, z}, represented in Figure 3.6(a).

Assume now that Ab only contains copies of the same angle x, with |Ab| = q ≥ 2
and pξ0 + qx = π. By the second order optimality conditions (see Remark 2.11),



750 C. Bianchini, A. Henrot / Optimal Sets for a Class of Minimization ...

and the fact that λ ≥ 1/(a+ b) ≥ 2/3b, we have

cosx ≤ 1

2λb
≤ a + b

2b
≤ 3

4
,

that is x ≥ u0 ≥ x0, where u0 is such that cosu0 = (a+ b)/2b. Hence we have

3 − p ≤ q ≤ π

u0

− p
ξ0
u0

≤ π(3 − p)

3 u0

, (26)

where p = 1, 2 by construction, as b > 2a and ξ0 ≥ π/3. Let us analyse these cases
separately; notice that u0 ≥ x0 = arccos(3/4) ≥ 0.72.

For p = 1 we obtain 2 ≤ q ≤ 2.9, which implies that the only possible polygon
with A a

b = {ξ0} is the triangle with Ab = {x, x}. For p = 2 condition (26) reads as
1 ≤ q ≤ 1.44 which gives q = 1 and hence again the only possibility is a triangle,
which can be identified by its central angles as {ξ0, ξ0, z}.

Hence the optimal polygons are triangles, in particular they are of the form:

T = {π/3, π/3, π/3}, T ′ = {x, x, y},
T ′′ = {ξ0, z, z}, T ′′′ = {ξ0, u, v} T ′v = {ξ0, ξ0, w},

where the polygons are indicated using their central angles and z = π−ξ0
2

, w = π−2ξ0
are fixed. The values of x, y and u, v are given accordingly to Theorem 2.9. It is
possible to simply compare these five kind of triangles by splitting them in two (non
disjoint!) classes:

• the class of triangles with at least one central angle ξ0;

• the class of isosceles triangle.

Let us consider first the class of triangles with at least one central angle ξ0. All of
them can be represented as triangles whose central angles are {ξ0, u, π−ξ0−u} with

u ∈ (π
2
− ξ0

2
, ξ0). Notice that the limit cases u = π

2
− ξ0

2
and u = ξ0 correspond to

the triangles T ′′ and T ′v respectively. Writing down the functional Jλ as a function
of u, we get three different optimal triangles depending on the value of λ:

T ′′ = {ξ0, π
2
− ξ0

2
, π

2
− ξ0

2
} for 1

a+b
≤ λ ≤ 2b2

(b−a)(b+2a)
,

T ′′′ = {ξ0, ū, π − ξ0 − ū} for 1√
2b
√

b−a
≤ λ ≤ 2b2

(b−a)(b+2a)
,

T ′v = {ξ0, ξ0, π − 2ξ0} for 2b2

(b−a)(b+2a)
≤ λ ≤ 1

b
.

where ū is such that sin(ū+ ξ0
2
)(2λb sin ξ0

2
) = 1. Hence there exists only one possible

optimal triangle of the type T ′′′ corresponding to u = ū.

On the other hand, in the class of isosceles triangles determined by their central
angles {x, x, y}, with x ∈ [π

3
, ξ0], we have seen that there exists at most one triangle

of type T ′ which can be optimal. More precisely the functional Jλ is an increasing
function of x if λ ≤ 8

9b
or if 2a ≤ b ≤ 4a for every λ and hence in these cases the

only possible optimal isosceles triangles is T ′v. In the case b > 4a with 8
9b
< λ ≤ 1

b
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there could exist a unique optimal triangle T ′, corresponding to the unique possible
point x̄ of local minimum for Jλ:

cos x̄ =
1 +

√
9 − 8λb

4
.

Hence for each 1
a+b

≤ λ ≤ 1
b

the solution to problem (2) is a triangle and the

comparison between the two above classes yields the precise optimal one. Let us
remark that, using a straightforward but tedious calculation, it is possible to prove
that the optimal triangle is always one of the following: T , T ′ with x = x̄ or T ′v.

4. An example

Let us consider in detail an example to explain how the previous results allow us to
easily get any solution of the problem for any value of the parameter λ. We choose
here to fix a = 1, b = 3. Then ξ0 = arccos(a/b) ≃ 1.2310.

The cases λ > 2
a

= 2 and λ ≤ 1
2b

= 1
6

are covered by Theorem 2.13 and the solutions
are respectively Da and Db.

For λ = 2, as explained in Remark 2.10, any polygon circumscribed to Da and any
combination of sides tangent to Da and arcs of the circle Da solves the problem.

Let us consider the case 1/2b < λ < 2/a. First we want to apply Theorem 3.1.
Since ξ0 ≃ 1.2310, we have p = 2 and x = π− 2ξ0 ≃ 0.6797. The critical value of λ
which is equal to 2/(b cosx+ a) equals

λ̃ =
2

1 − 3 cos 2ξ0
=

2b

b2 + ab− 2a2
= 0.6 .

Therefore, for λ ≥ 0.6, the optimal solution is the isosceles triangle circumscribed
to Da while for 1/3 < λ ≤ 0.6 the optimal solution is the isosceles triangle inscribed
into Db, see Table 4.1.

Now for λ between 0.25 = 1/(a+b) and 1/b, we use the analysis done in Proposition
3.8 and the comparison between all triangles. This shows that the isosceles triangle
inscribed into Db (and defined by its three angles ξ0, ξ0, π−2ξ0 remains the optimal
domain for λ ∈ (0.308, 1/3) while the equilateral triangle becomes the optimal
domain for λ ∈ (0.25, 0.3080).

For λ < 1/(a + b) = 0.25, according to Proposition 3.4, we know that the optimal
domain is inscribed in Db (and does not touch Da). Moreover, by Proposition
3.7, we are able to compare all regular polygons. More precisely, the following
table shows the values of λ for which we switch from the regular N -gone to the
regular (N + 1)-gone (e.g. we switch from the equilateral triangle to the square for
λ ≤ 0.2191).

λ 0.2191 0.1951 0.1847 0.1792 0.1759 0.1738 0.1723 0.1713
N 3 4 5 6 7 8 9 10

Now we have seen in Theorem 2.9 that the only other possible optimal domain is
a quasi-regular polygon with N − 1 angles x and one angle y = π − (N − 1)x.
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Moreover, Proposition 3.6 shows that there exists at most one possible value of N
for such a quasi-regular polygon (and we have explicit bounds for this N), therefore
the numerical study is easy. In our case, it turns out that we are able to find such

Interval for Optimal Class of Angles
λ Solution A a

b A a Ab Figure Area

(2; +∞) disk Da ∅ ∅ ∅ π

(0.6; 2)
isosceles
triangle

1.2310
×2

0.6797 ∅ 6.4650

(0.3080;
0.6)

isosceles
triangle

1.2310
×2

∅ 0.6797 10.0566

(0.2222;
0.3080)

equilateral
triangle

∅ ∅ π
3
× 3 11.6913

(0.2187;
0.2222)

quasi-
regular
quadrilater

∅ ∅
3 × x

= 1.0135
y = 0.1012

13.0245

(0.19525;
0.2187)

square ∅ ∅ π
4
× 4 18

(0.19506;
0.19525)

quasi-
regular
pentagone

∅ ∅
4 × x

= 0.7829
y = 0.0098

18.0879

(0.1847;
0.19506)

regular
pentagone

∅ ∅ π
5
× 5 21.3988

(0.1792;
0.1847)

regular
hexagone

∅ ∅ π
6
× 6 23.3827

(2β̂N/3;

2β̂N−1/3)

regular
N -gone

∅ ∅ π
N
×N

...
...

(0; 1/6) disk Db ∅ ∅ ∅ 9π

Table 4.1: Optimal sets for a = 1, b = 3, 0 ≤ λ ≤ +∞.

quasi-regular polygons only twice (for two small intervals):

• If λ ∈ (0.21874; 0.22222) the optimal domain is a quasi-regular quadrilateral.

• If λ ∈ (0.19506; 0.19525) the optimal domain is a quasi-regular pentagon (with
a very small angle y, thus it is not easy to recognize a pentagon in the corre-
sponding figure of Table 4.1).

For the other values of λ, the optimal domain is the regular N -gone and we just
have to follow the Table in the Appendix (Section 6). Thus, we have represented



C. Bianchini, A. Henrot / Optimal Sets for a Class of Minimization ... 753

the solutions in Table 4.1 only up to the regular hexagon. Let us remark that, in
this table, the values of the angles x and y for the quasi-regular polygons are given
as an example for one choice of λ.

5. Some related problems

In this section we begin by investigating the same problem when we remove one of
the unilateral constraintDa ⊂ Ω or Ω ⊂ Db. We show that the previous study allows
to handle also these cases. Then, choosing particular values for the parameter λ, we
are able to recover a classical inequality due to Bonnesen and Fenchel involving the
area, the perimeter and the inradius. Then we recover another one due to J. Favard
which involves the area, the perimeter and the circumradius. We are also able to
find a refinement of such inequality for large perimeter. We close this section with
a discussion about the problem of maximizing perimeter with a volume constraint
in the class Ca,b.

5.1. Variation of constraints

It is interesting to investigate problem (2) with different constraints. In particular
it is often useful to consider convex sets which either contain a common fixed ball or
which are contained in it. This corresponds to consider the class of convex sets with
not too small inradius, or on the opposite side, the class of not too large convex
sets.

5.1.1. Analysis of convex sets with not too small inradius

For a fixed positive real number a we define the class Ia as the class of convex sets
which contain the ball Da and we consider the problem

min
Ω∈Ia

Jλ(Ω), (27)

where Jλ is defined as in (1).

Notice that not for every values of λ a solution exists. Indeed for small values of λ
the perimeter has in fact the heaviest weight, and it is not bounded. More precisely,
solutions to (27) can be seen as limit of solutions to problem (2) in the class Ca,b

for b which tends to infinity. Hence for 0 ≤ λ < 2
a

a possible solution should be the

limit of the triangle T ′′ in Figures 3.1(c). However limb→∞ Jλ(T
′′) = −∞ and hence

a minimum does not exists.

More generally, as for values of λ ≥ 2
a

solutions to (2) do not depend on the exterior

ball Db, they solve problem (27) as well. Indeed let Ωλ be a solution to (27); then
either Ωλ is contained in a ball Db or it is a limit of a sequence {Ωn} with Ωn ⊆ Dbn

for some bn, since otherwise the functional could not be defined. Hence we can
apply the analysis of problem (2) and we get the following.

Proposition 5.1. For λ < 2
a

there is no solution to problem (27) while for λ ≥ 2/a

solutions exist and they coincide with the corresponding solutions to problem (2).
More precisely for λ = 2/a there exist an infinite number of solutions, which are
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circumscribed figures composed by arcs of Da and tangent segment, while for λ > 2
a

the ball Da is the unique solution.

5.1.2. Analysis of not too large convex sets

For b > 0 we define the class Ob as the class of convex sets contained in the ball Db

and we consider the problem
min
Ω∈Ob

Jλ(Ω), (28)

where Jλ is defined as in (1).

Since for every fixed b > 0 the class Ob is compact for the Hausdorff distance, the
existence of a solution to problem (28) is guaranteed for every λ ≥ 0. We would like
to solve problem (28) passing to the limit a→ 0 in problem (2), but this cannot be
done directly since we cannot assume that an optimal set Ωλ to (28) contains the
ball Da, even for very small a > 0. However we can circumvent this difficulty by
considering a “translated” problem.

Let Ω ∈ Ob be given. If the origin is in the exterior of Ω, it means that Ω lies in an
open half-disc and we can translate it (without changing the value of the functional)
to assume either that the origin is in the interior of Ω or that it is on its boundary.
If the origin is in the interior of Ω there exists ε > 0 such that Ω ∈ Cε,b which entails

Jλ(Ω) ≥ Jλ(Ω
ε
λ), (29)

where Ωε
λ is an optimal set for the problem (2) in the class Cε,b. We can now use

the analysis done for problem (2). Hence for λ ≤ 1/2b the set Ωε
λ is the ball Db,

while for 1
2b
< λ ≤ 1

b+ε
the set Ωε

λ is strictly inscribed into Db and it is either regular

or quasi-regular. For 1
b
≤ λ ≤ 2b

(b−ε)(b+2ε)
we have Ωε

λ = T ′
b the set in Figure 3.1(b)

whose circumradius is b and inradius is ε, while for 2b
(b−ε)(b+2ε)

≤ λ ≤ 2
ε

the set Ωε
λ is

the triangle T ′′
b in Figure 3.1(c), with circumradius b and inradius ε. Passing to the

limit for ε which tends to zero we get inequality (29) with Ωλ equal to the optimal
set of problem (2) for 0 ≤ λ ≤ 1/b, while for λ ≥ 1/b we obtain as optimal set a
double diameter.

If Ω contains the origin on its boundary then we consider a translation of the origin
such that Oε = O − ε, Ωε = Ω − ε. Hence Ωε ∈ Cε,bε for sufficiently small ε and
bε = b + ε. As |Ωε| = |Ω|, P (Ωε) = P (Ωε), inequality (29) still holds true, with Ωε

λ

an optimal set for the problem (2) in the class Cε,bε. The same argument as before
(passing to the limit when ε→ 0) leads to the following result.

Proposition 5.2. For every λ ≥ 0 there exists a solution Ωλ to the problem (28).
In particular Ωλ coincides with the optimal set in problem (2) for λ < 1/b, while
Ωλ is a double diameter for λ ≥ 1/b.

5.2. Inequalities for convex sets

In the study of the theory of convex sets, geometric inequalities play a crucial
rule as they allow to connect important geometric quantities (as the area and the
perimeter) and to have an estimate of them. We refer to [10] for a summary of the
most famous.
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5.2.1. Area, perimeter and inradius

A well known inequality involving the area |Ω|, the perimeter P (Ω) and the inradius
r(Ω) of a convex set Ω is due to Bonnesen and Fenchel (see [2]). They proved that
for every planar convex set Ω,

P (Ω) ≤ 2
|Ω|
r(Ω)

. (30)

Notice that Theorem 2.13 offers a new proof of this result. Indeed: let Ω be a planar
convex set, up to translation of the origin we can assume Dr ⊂ Ω, where r = r(Ω);
moreover there exists R > r such that Ω ⊂ DR and hence Ω ∈ Cr,R. Then Remark
2.10 entails

2

r
|Ω| − P (Ω) ≥ 2

r
|Dr| − P (Dr) = 0,

which corresponds to Bonnesen-Fenchel inequality (30) and in particular equality
holds in (30) for every polygon circumscribed to Da as well as for every convex set
Ω whose boundary is composed by arcs of Dr and tangent sides to it.

5.2.2. Area, perimeter and circumradius

Another interesting inequality regards the area, the perimeter and the circumradius
R(Ω). In [5] it is proved that for every planar convex set Ω it holds

|Ω| ≥ R(Ω)(P (Ω) − 4R(Ω)), (31)

with equality for linear segments.

Using Theorem 3.1 for λ = 1/b, we can recover this result. Indeed, let Ω be a planar
convex set and let R = R(Ω) be its circumradius; up to translation of the origin we
can assume Ω ⊆ DR. If Ω contains the origin in its interior, then there exists ε > 0
such that Dε ⊂ Ω and hence Ω ∈ Cε,R, which implies

1

R
|Ω| − P (Ω) ≥ 1

R
|T ′

ε| − P (T ′
ε) = 4

√
R2 − ε2

(
ε3

R3
− ε

R
− 1

)
, (32)

where T ′
ε is the triangle in Figure 3.1(b), whose inradius is ε. Passing to the limit

for ε which tends to zero, we obtain

1

R
|Ω| − P (Ω) ≥ −4R,

with equality for segments, which are in fact obtained as limits of triangles T ′
ε. If

the origin is on the boundary of Ω then using the same argument than in Section
5.1.2 we have Ωε = Ω − ε ∈ Cε,R+ε. Applying Theorem 3.1 for λ = 1/(R + ε), we
get inequality (32) for Rε = R + ε,

1

Rε

|Ω| − P (Ω) ≥ 4
√
R2

ε − ε2

(
ε3

R3
ε

− ε

R ε
− 1

)
,
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and passing to the limit for ε which tends to zero, we get (31), with equality for
diameters of the ball DR.

Actually, we can get another similar inequality which improves the previous one
for “large” perimeter. Indeed if we choose now λ = 1/2b in Proposition 5.2, the
optimal domain is the ball Db. Thus, for any domain included in the ball Db, the
following inequality holds

1

2b
|Ω| − P (Ω) ≥ πb2

2b
− 2πb = −3πb

2
.

In particular, replacing b by the circumradius yields the following proposition:

Proposition 5.3. For a convex set Ω the following inequality holds

|Ω| ≥ R(Ω)(2P (Ω) − 3πR(Ω)) (33)

with equality for a ball. Moreover inequality (33) improves inequality (31) when
P (Ω) ≥ (3π − 4)R(Ω).

5.3. Maximum for the perimeter

Let us consider the following problem

max
Ω∈Ca,b,
|Ω|≤c

P (Ω), (34)

where c > 0 is a given constant. If πa2 ≤ c ≤ πb2 then a solution exists by
the compactness of the class Ca,b ∩ {|Ω| ≤ c} and the continuity of P (·) (for the
Hausdorff distance). In particular using the formulation of the perimeter in terms
of the so called gauge function, Theorem 2.1 of [9] guarantees that all the possible

solutions are locally polygons in the interior of the annulus Db \Da.

Notice that each solution Ωc to (34) in fact saturates the constraint on the volume,
that is |Ωc| = c. Indeed, for every set Ω ∈ Ca,b with volume strictly smaller than c,
there exists Ω′ ∈ Ca,b, with |Ω′| = c and Ω′ ⊃ Ω; as Ω,Ω′ are planar convex sets, it
holds P (Ω′) > P (Ω).

Let Ωc be a solution to (34) for some fixed c; hence Ωc is a critical point for the
functional Jλ with λ corresponding to a Lagrange multiplier associated to the area
constraint. However Ωc is not necessarily a minimum for it. In particular, as shown
in the graph below (see Figure 5.1), there are many values of c ∈ (πa2, πb2) for
which there is no solution to (2) of volume c, and hence an optimal set to (34) for
those values of c cannot be a solution to (2). The main difference between the two
problems is that in problem (34) solutions are not necessarily polygons and hence
they could contain parts of arcs of Db and Da, as explained below. Notice that, in
fact, the proof of Theorem 2.1 does not work for problem (34) as the considered
perturbations do not preserve the volume.

As an example, consider the case of a fixed volume closed to that of the ball Db:
c = πb2 − ε, for some positive small ε. The class of sets belonging to Ca,b with
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replacemen

|Ωλ|

1
2b

1
a+b

2
a+b

2b
(b−a)(b+2a)

2
a

Figure 5.1: Graph of the possible values of the volume of solutions to (2), as λ
varies.

volume equal to c only contains sets closed to the ball Db and hence each possible
side is not tangent to the interior ball Da. This allows us to assume that each
side of the boundary is a chord of Db since otherwise a technique of parallel chord
movements would increase the perimeter. Hence if a polygon is a critical point for
problem (34), the first order conditions (10) hold and they imply that the polygon
has at most two different values for its central angles: x, y with x > y. In particular,
following Remark 2.11, we can check that the second order optimality conditions
guarantee that there are at most two copies of the angle y (we have here two equality
constraints, thus the critical cone is of codimension 2). Hence a possible critical
polygon for (34) is determined by its central angles as q copies of an angle x with
either zero, one or two copies of an angle y < x; the value of the central angles are
established using the volume constraint.

However direct computations show that all the possible critical polygons have a
perimeter less than the set Ωc whose boundary is composed by an arc of the circle
Db and a chord of Db and hence for values of c closed to πb2, solutions to problem
(34) are not polygons.

6. Appendix

A list of values for the constants β̂N of Proposition 3.7.

N β̂N

3 0.32862
4 0.29260
5 0.27706
6 0.26881
7 0.26388
8 0.26068
9 0.25848

10 0.25690
11 0.25572
12 0.25483

N β̂N

13 0.25413
14 0.25357
15 0.25312
16 0.25275
17 0.25244
18 0.25218
19 0.25196
20 0.25177
21 0.25161
22 0.25147

N β̂N

23 0.25135
24 0.25124
25 0.25114
26 0.25106
27 0.25098
28 0.25091
29 0.25085
30 0.25080
31 0.25075
32 0.25070

N β̂N

33 0.25066
34 0.25062
35 0.25059
36 0.25056
37 0.25053
38 0.25050
39 0.25048
40 0.25045
41 0.25043
42 0.25041

N β̂N

43 0.25039
44 0.25037
45 0.25036
46 0.25034
47 0.25033
48 0.25032
49 0.25030
50 0.25029
51 0.25028
52 0.25027
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