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1. Introduction

We prove the following existence theorem.

Theorem 1.1. Let (X,|| -||) be a Banach space. Let f: X — RU{oo} be closed,
convexr and such that f > 0, f(0) = 0 and f > k| - | for some k > 0. Let
a € dom f\ {0} be fized.

Consider the optimisation problem

(V||~||){f° (lo@* + f(u(t)) dt — min

u(t) = a+ [ v(s)ds, v e L2 ([0,00), X).
For each € > 0 there is equivalent norm | -| on X such that
< T-T<@+e)-|

and the problem (V||) has a solution.

From the proof it is clear that the statement holds for f with strong minimum at
0, that is, if ,, — 0 whenever f(z,) — 0.

The above result does not follow directly from Ekeland Variational Principle.

The key to obtaining it is the abstract Theorem 3.2.
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2. Preliminaries
2.1. Annotations

Even though some of the results can be — in an obvious manner — extended to
complete metric spaces, we prefer to work on closed subsets of Banach spaces for
the sake of brevity.

For a Banach space (X, || - ||) the unit ball, resp. sphere, are denoted by Bx = {z :
|z|| < 1}, resp. Sx = {z: ||z|| = 1}. For a nonempty set A C X the distance from
x to A is denoted by d(x, A) = inf{||y — z|| : y € A}. The indicator function d 4 of
aset A C X equals 0 on A and oo outside A. We denote é,, = d,,5, for n € N.

The function f : X — RU {oco}, where X is a Banach space, is called closed if its
epigraph
epi f = {(z,t); f(z) <t}

is closed, and proper if its domain
dom f = {z; f(z) < o0}
is non-empty.

The topic of epigraph convergence is vast, e.g. [1, 2, 8], and we do not consider full
generality. Instead, we fix a metric, p., which is sufficient for the applications we
pursue. For two proper functions f,g: X — RU {oco} we define

Poo(fyg) = sup{|f(z) — g(x)|; = € dom f Udom g},
Poon(fs9) = sup{|f(z) — g(z)]; = € (dom fUdomg) NnBx},

and

pe(f,9) = 27" poon( [ 9). (2)

Obviously, ps(f,9) = pe(f,g) = oo if dom f # domg. The meaning of p. is that
it implies a kind of uniform on bounded sets convergence, if we adopt the rule
oo — oo = 0. Note also that if p.(f,,0) — 0 as n — oo (the zero in the brackets
stands for zero function) then p.(f + f., f) — 0.

2.2. Cantor-Kuratowski-De Blasi Lemma

Kuratowski, e.g. [7], proved a generalisation of Cantor Lemma in terms of the
measure of non-compactness he defined. This line was extended by De Blasi [3].
He defined the measure of weak non-compactness of a subset A of a Banach space
X as

B(A) = inf{e; there is weakly compact B s.t. A C B+ eBx}.

It is obvious that 3(A) = 0 if and only if the weak closure of A is compact; B(A) =
B(coA) and B(A;) < B(Ap) if Ay C As.

Lemma 2.1 ([3]). Let {A,}nen be a nested (A4 C Ay, Yn) family of weakly
closed subsets of a Banach space such that

lim B(A,) = 0.

n—oo
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Then A = NA, is nonempty.

2.3. Optimisation

Let S be a closed convex subset of the Banach space X and let f:S — RU {0}
be closed, convex, proper and bounded below. Consider the optimisation problem

(f.5) {f(x) — min;

T eSs.

Following [8] we define
g-argming f = {z € S; f(z) <inf f + }.
Of course, argming f = 0-argming f is the usual set of minima of f on S.

Definition 2.2. We say that the problem (f,S) is weakly well-posed if

li_l}(l)ﬁ (e-argming f) = 0. (3)

From Hahn-Banach Theorem and Lemma 2.1 it follows that a weakly well-posed
problem has solutions (that is, argming f # ().

We need few simple facts. For similar results see [8].

Lemma 2.3. Ifa,b,c > 0 and a-argming f N b-argming g # () then
c-argming (f + ¢g) C (a + b+ c)-argming f.

Proof. Let xy € S be such that f(zg) <infs f +a and g(z¢) < infgg+0b. If x € S
is such that f(z)+ g(x) < infg(f + g) +c then f(z)+ g(x) < f(zo) + g(x) + ¢ and
we can write —b < infg g — g(xo) < g(z) — g(xo) < f(xo) — f(z) + c¢. Therefore,
flz) < f(xg) +b+c<infs f+a+b+ec. O

Lemma 2.4. Assume that S is bounded. If pe(fn, f) — O then for § < /3 and all
n large enough

B (d-argming f,,) < [ (e-argming f) .

Proof. Since S is bounded, we may assume that po(f,, f) < ¢ for all n large
enough. Let g,(x) = f.(z) — f(x) if x € dom f = dom f,, and g,,(xz) = 0 otherwise.
Obviously, d-argming g, = S. Since f, = f + g, by Lemma 2.3 witha=b=c=9¢

d-argming f,, C e-argming f. O

2.4. Curves on Banach spaces
For detailed presentation of Bochner integral, see [6].
In short, L*([0,00), X) is the closure of the stepwise functions

17 te (ai,bi),

0, otherwise

ZX(ai,bi)(t)xia T; € X7 X(ai,bi)(t) = {
=1
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o= ([ otol ar) e - x

For v € L*([0, 00), X)

in the norm

is well defined function from [0, 00) to X. Moreover, it satisfies
lu(t) = )| < fJollz [t = ta]"*, Vi > 0.

We denote Y = L*([0, 00), X).
Lemma 2.5. Let X; be a finite-dimensional subspace of X and Y, = L*([0,00), X;).
Then for anyv € Y

P(v,Y}) = /OO d(u(t), X,) dt.

0

Proof. It is immediate that d*(v,Yy) > [~ d*(v(t), X1) dt.

Assume first that X is separable and || - || is strictly convex. Then d(v(t), X;) =
|v(t) — w(t)|| where w(t) € X; is unique. By construction w(t) is measurable: if
v is almost everywhere limit of stepwise functions then w(t) is almost everywhere
limit of their metric projections over X; which will be also stepwise. Since 0 € X;
we have ||w(t) — v(t)]] < ||v(t)|| and therefore ||w(t)|| < 2[jv(t)]|, so w € Y7.

If X is separable one can approximate the norm by strictly convex norms, see e.g.
[5]. The result follows by passing to the limit.

If X is arbitrary then it is known that v has essentially countably many values, so
we may restrict our considerations to the separable closed linear span of {v(t) : t €
U} U X; where U C [0,00) is of full measure. O

2.5. One dimensional Lemma

Lebesgue proved that his integral can be approximated by Riemann sums. However,
we need approximation by trapeze formula and — being unable to provide suitable
reference — we prove the partial case we use.

Lemma 2.6. Let f : [0,1] — R be Lebesque integrable. Then for each £,0 > 0
there is a partition A of [0, 1] with diameter < § (that is, to =0 <t < ... <tpy =
1, tiy1 —t; < &), such that

S Ay < [0 )

Proof. Since adding a constant to f changes nothing as far as (4) is concerned, we
may assume that f > 1.
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Let m be the Lebesgue measure. Since Y > nm({t: n < f(t) <n+1}) < oo,
for all N € N large enough Nm ({t: N < f(¢)}) < min{e,d}. We fix a N like this
which also satisfies N > max{f(0), f(1)}.

Let A={t € (0,1): f(t) < N} and B be the set of those t € A which are Lebesgue
points of f. Then m(A\ B) = 0.

Moreover, for each t € B there is ¢ € (¢,1) such that t —t < ¢, f(f) < N + 1 and

LGRSOy Hg/f

We consider (¢,t), t € B, in the context of Sierpinski Lemma, e.g. [9, p. 356], and
pick non-intersecting finite system of intervals (¢;,%;), j = 1,...k such that the part
of B not covered by their union has measure less than min{d,e/N}.

In an obvious manner this finite system can be completed to form a finite partition
A of [0,1]. Since the total measure of [0, 1]\ U} (¢;, £;) is smaller than 2§, any interval
of A not belonging to the above finite system will have length less than 20. Those
in the finite system are shorter than § by construction. So, the diameter of A is
smaller than 24.

In order to verify (4) we split the sum in the left hand side in two:

The sum over all intervals in the finite system is less than (1 + ¢ fo t)dt by
construction.

The sum over remaining intervals is smaller than the sum of their lengths, ergo
< 2¢/N, times max;{f(t;), f(t;)} < N+ 1 and this product is smaller than 3e. [

2.6. Graphical density of stepwise functions

Let f: X — RU{oo} and a € dom f satisfy the conditions of Theorem 1.1, that
is, f is closed, convex, f > k|| - || and such that f(0) = 0; and a # 0. We can define

Fj : L*([0,00), X) — R U {00}
by t
Fiy(v) :/OOO(Hv(t)HZJrf(u(t)) dt, u(t):a—l—/o o(s)ds.  (5)
Obviously, the problem (V).), see (1), is equivalent to minimisation of Fj. over
L*([0, ), X).

Proposition 2.7. Under the assumptions of Theorem 1.1 the above constructed
F = Fy. is proper, closed, convex and positive.

Moreover, the stepwise functions are graphically dense in dom F', that is, for any
v € dom F' there exists a sequence of stepwise vy such that vy — v and F(v;) —

F(v).

Proof. It is clear that F' is convex and positive. Also, considering v = —axo,1)
and using the convexity of f, we see that F' is proper.
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If ||vg — v]|2 — O then the corresponding wuy tend pointwise (in fact, uniformly on
bounded intervals) to u, so Fatou Lemma gives

liminf/oOO flug(t)) dt > /000 liminf f(ux(t)) dt > /000 f(u(t)) dt, (6)

using for the latter the closedness of f.

For the graphical density, fix ¢ € (0,1) and let v € dom F. We may assume
that the corresponding w eventually vanishes. Indeed, there is ¢; > 0 such that
f(u(t1)) < ke/2 and ft (lv@®* + f(u(t)))dt < €/2. Let vy = v on [0,¢1]. If
u(t;) = 0thenwvy(t) =0 fort > t1, otherwise vy (t) = (t—t1)h fort € (t1, t1+]||u(t1)]]),
where h = —u(ty)/||u(t1)|], and v1(t) = 0 for t > ¢; + ||u(t1)|]. It is clear that the
corresponding u; eventually vanishes and — using ||u(t;)|| < €/2 and the convexity
of f — one easily estimates ||v — v1]|s < /€ and |F(v) — F(v1)| < €.

So, let us assume that u(t) = v(t) = 0 for t > T. Consider a partition A = {t; =
0<t;<...<t,=T} of [0,7] and define

tit1
va(t) = (tiv1 — ti)l/ v(s)ds, t€ (titir).

ti
The corresponding ua is piece-wise linear and such that ua (t;) = u(t;).

For any partition A with diamA = max;(t;;1 — t;) small enough we have that
|lv — vall2 < e. This is because ||vall2 < ||v]|2, as follows from Cauchy inequality,
and the map v — wp is linear. So, if w is continuous [0, 7], vanishing on [T, c0) and
such that ||v — wl||2 < /3, then

[ = vallz < flv = wlls + lw = walla + [lwa = valls < lw = wallz +2¢/3.

But w is uniformly continuous on [0, 7] and therefore |[w — wall2 < £/3 for diamA
small enough.

We can now complete the proof. By convexity of f
e fu(ts) + flultis))

RCROE :

(tiv1 — t;).

Using this and Lemma 2.6 we can find partitions Ay such that diamA; — 0 as
k — oo and for vy = va, and the respective wuy,

lim sup / Flur(t)) di < / F(ult)) dt

From (6) it follows that fo k(1) dt — fo (t))dt as k — oo. This and
|lvg — v||2 — 0 imply F(vg) —>F( ). O
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3. Variational principle
We elaborate on the method of Deville, Godefroy and Zizler [4], see also [5].

Definition 3.1. Let S be a closed convex subset of a Banach space (X, || - ||). Let
f:S — RU{oo} be closed, convex, proper and bounded below.

A complete metric space (P, p) of positive convex continuous functions from X to
R is called perturbation space relative to (f,5) if:

(i) P is a convex cone, that is, g; € P,i=1,2= ¢, + g, € P,and Vg € P, ¢ >
0=cg € P,

(ii) if g, gx € P and p(gr,0) — 0 then p(g, g + gr) — 0;

(iii) there is ¢ > 0 such that p. < ¢p on P;

(iv) for any & > 0 there is t. > 0 such that: for any x € dom f N S and any § > 0
there is y € dom f N S such that

ly —all <o, |f(x) = Fly)|l <4,
and g € P such that p(g,0) < ¢, g(y) < 0 and

B (t--argming g) < e.

Theorem 3.2. Let S be a closed convex and bounded subset of a Banach space X.
Let f: S — RU{oo} be closed, convex, proper and bounded below. If (P,p) is a
perturbation space relative to (f,S) then for any € > 0 there is g € P such that
p(g,0) < e and (f + g,5) is weakly well posed.

Proof. Consider for n € N the subset A, of P defined by
1
g€ A, < It >0: [(t-argming (f +g)) < - (7)

We will show that A,, is dense and open in P. Then by Baire Category Theorem
there will be g € NA,, such that p(g,0) < € and by Definition 2.2 (f + ¢,.S) will be
weakly well posed.

To this end, fix n € N.

If A,, were not open there would have been ¢, g, € P such that g € A,,, g & A, and
lim p(gx, g) = 0. But if ¢ satisfies (7) with ¢ then by Lemma 2.4 g, will eventually
satisfy (7) with t/3. Contradiction.

Let now h € P be arbitrary. Fix v > 0. We will find g € P such that h+ g € A,
and p(h,h+g) < v.

By Definition 3.1(ii) there is 1 > 0 such that for any g € P with p(g,0) < 14 it
follows that p(h + g, h) < v.

Let in Definition 3.1(iv) ¢ = min{1/n, 11} and let ¢ = ¢./3.

Pick = € (t/2)-argming (f + h). Let 6 € (0,¢/4) be such that ||y — z|| < § =
|h(y) — h(x)| < t/4. By Definition 3.1(iv) there is y € S and g € P such that
|l —y|| < dand |f(x) — f(y)| <4, in particular

y € t-argming (f + h),
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p(g,0) <e <1,y € d-argming g C t-argming g and
B (t--argming g) < €.
By Lemma 2.3 with (f +h),g and a = b= c =t we get
t-argming (f + h + g) C t.-argming g,
so B(t-argming (f + h + g)) < e < 1/n. Therefore, h + g € A,,. O

In a standard way we can drop boundedness assumption on the set in most cases.

Corollary 3.3. Let S be a closed convexr subset of the Banach space X. Let f :
S — RU{oo} be closed, converx, proper and bounded below. If (P, p) is a perturbation
space relative to (f,S) such that there are g, € P with p(gx,0) — 0 and

lim gx(z) =00, Vk €N,

[[]|—o0

then for any € > 0 there is g € P such that p(g,0) < e and (f + g, S) is weakly well
posed.

Proof. Fixe > 0. Let g; € P be such that p(g1,0) < £/2 and g; — oo as ||z|| — oc.

Consider for r > 0 the optimisation problem (f + g1, S NrBx). From Theorem 3.2
there is go € P with p(g2) < /2 such that (f 4+ g1 + g2, S N rBx) is weakly well
posed. But since f + g1 + g2 — o0 as ||z|| — oo, the latter optimisation problem is
equivalent to (f + g1 + go, S) if r is large enough. O

4. Existence of solutions to (1)

We can now present

Proof of Theorem 1.1. Recall that in terms of (5) the problem (1) may be re-
formulated simply as

Ej(v) = min, veY = L*([0,00), X)

for the proper, closed, convex and positive F' (see Proposition 2.7).

In order to apply Theorem 3.2, consider the cone P over Y consisting of all functions

of the form
- / (D)2 dt,
0

where | - | is some equivalent norm on X. We equip P with the metric p inherited
from p, on X: for two functions g; € P, i = 1,2 obtained from the norms | - |; and
| - |2, respectively, i.e. g;(v) = [57 [v(t)[Z dt, i = 1,2,

p(g1,92) = pel| - 13,1+ 13)-

From Corollary 3.3 it is clear that we only need to prove that the so defined (P, p)
is a perturbation space relative to (F,Y).
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The first three axioms of Definition 3.1 are immediately fulfilled.
Set

M=3 o (8)
n=1

Let ¢ € (0,1). We will show that ¢, = 2/(2M) does the job.

Fix v; € dom F and § > 0. From Proposition 2.7 there is stepwise w; € dom F
such that ||v; —wila < § and |F(vy) — F(wy)| < d. It is easy to see that 0 ¢ dom F'
and thus w; # 0. Let X; = spanw;([0,00)). Then dim X; < oco.

Take r > 0 such that » < min{1,d/(||w||3 + 1)} and define

|2t = d*(2, X1) + rll2|*.

Obviously, | - |; is an equivalent norm on X. Let g; € P be the function ¢;(v) =
I3 [v|f dt. Then
gi(wr) = rlwlz <4, (9)
and, having in mind (8),
2 —
p(glao)zpe(l’hao)é(1+7“)22—n<M7 (10)
n=1

since r < 1.

Finally, let g = (¢/M)gy. Obviously, g(w;) < ¢ by (9) and, moreover,

p(g,0) = (e/M)p(g1,0) < ¢
by (10).

Consider the ball A = r~!By,, where Y; = L*([0,00), X;). Note that Y; is reflexive
and therefore A is weakly compact. We will use it to estimate ((t.-argming g). By
Lemma 2.5

61 (v) = / ot dt = / T(@(0(t), X0) + rllo(t)]?) de
= d2(v,Y1) —i—rHng, Yv eY.

Obviously min g = 0. If g(v) < t. then g, (v) = (¢/M)g(v) < (et.)/M = &3/(2M?) <
e? and therefore d(v,Y;) < e and v € r ' By. So, d(v, A) < e. Thus, 3(t.-argming g)
<e. [
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