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1. Introduction

We prove the following existence theorem.

Theorem 1.1. Let (X, ‖ · ‖) be a Banach space. Let f : X → R ∪ {∞} be closed,
convex and such that f ≥ 0, f(0) = 0 and f ≥ k‖ · ‖ for some k > 0. Let
a ∈ dom f \ {0} be fixed.

Consider the optimisation problem

(V‖·‖)

{

∫∞

0
(‖v(t)‖2 + f(u(t)) dt → min

u(t) = a+
∫ t

0
v(s) ds, v ∈ L2 ([0,∞), X) .

(1)

For each ε > 0 there is equivalent norm | · | on X such that

‖ · ‖ ≤ | · | ≤ (1 + ε)‖ · ‖
and the problem (V|·|) has a solution.

From the proof it is clear that the statement holds for f with strong minimum at
0, that is, if xn → 0 whenever f(xn) → 0.

The above result does not follow directly from Ekeland Variational Principle.

The key to obtaining it is the abstract Theorem 3.2.
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2. Preliminaries

2.1. Annotations

Even though some of the results can be – in an obvious manner – extended to
complete metric spaces, we prefer to work on closed subsets of Banach spaces for
the sake of brevity.

For a Banach space (X, ‖ · ‖) the unit ball, resp. sphere, are denoted by BX = {x :
‖x‖ ≤ 1}, resp. SX = {x : ‖x‖ = 1}. For a nonempty set A ⊂ X the distance from
x to A is denoted by d(x,A) = inf{‖y − x‖ : y ∈ A}. The indicator function δA of
a set A ⊂ X equals 0 on A and ∞ outside A. We denote δn = δnBX

for n ∈ N.

The function f : X → R ∪ {∞}, where X is a Banach space, is called closed if its
epigraph

epi f = {(x, t); f(x) ≤ t}
is closed, and proper if its domain

dom f = {x; f(x) < ∞}
is non-empty.

The topic of epigraph convergence is vast, e.g. [1, 2, 8], and we do not consider full
generality. Instead, we fix a metric, ρe, which is sufficient for the applications we
pursue. For two proper functions f, g : X → R ∪ {∞} we define

ρ∞(f, g) = sup{|f(x)− g(x)|; x ∈ dom f ∪ dom g},
ρ∞,n(f, g) = sup{|f(x)− g(x)|; x ∈ (dom f ∪ dom g) ∩ nBX},

and

ρe(f, g) =
∞
∑

n=1

2−nρ∞,n(f, g). (2)

Obviously, ρ∞(f, g) = ρe(f, g) = ∞ if dom f 6= dom g. The meaning of ρe is that
it implies a kind of uniform on bounded sets convergence, if we adopt the rule
∞ − ∞ = 0. Note also that if ρe(fn, 0) → 0 as n → ∞ (the zero in the brackets
stands for zero function) then ρe(f + fn, f) → 0.

2.2. Cantor-Kuratowski-De Blasi Lemma

Kuratowski, e.g. [7], proved a generalisation of Cantor Lemma in terms of the
measure of non-compactness he defined. This line was extended by De Blasi [3].
He defined the measure of weak non-compactness of a subset A of a Banach space
X as

β(A) = inf{ε; there is weakly compact B s.t. A ⊂ B + εBX}.
It is obvious that β(A) = 0 if and only if the weak closure of A is compact; β(A) =
β(coA) and β(A1) ≤ β(A2) if A1 ⊂ A2.

Lemma 2.1 ([3]). Let {An}n∈N be a nested (An+1 ⊂ An, ∀n) family of weakly
closed subsets of a Banach space such that

lim
n→∞

β(An) = 0.
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Then A = ∩An is nonempty.

2.3. Optimisation

Let S be a closed convex subset of the Banach space X and let f : S → R ∪ {∞}
be closed, convex, proper and bounded below. Consider the optimisation problem

(f, S)

{

f(x) → min;

x ∈ S.

Following [8] we define

ε-argminS f = {x ∈ S; f(x) ≤ inf f + ε}.

Of course, argminS f = 0-argminS f is the usual set of minima of f on S.

Definition 2.2. We say that the problem (f, S) is weakly well-posed if

lim
ε→0

β (ε-argminS f) = 0. (3)

From Hahn-Banach Theorem and Lemma 2.1 it follows that a weakly well-posed
problem has solutions (that is, argminS f 6= ∅).
We need few simple facts. For similar results see [8].

Lemma 2.3. If a, b, c > 0 and a-argminS f ∩ b-argminS g 6= ∅ then

c-argminS (f + g) ⊂ (a+ b+ c)-argminS f.

Proof. Let x0 ∈ S be such that f(x0) ≤ infS f + a and g(x0) ≤ infS g+ b. If x ∈ S
is such that f(x) + g(x) ≤ infS(f + g) + c then f(x) + g(x) ≤ f(x0) + g(x0) + c and
we can write −b ≤ infS g − g(x0) ≤ g(x) − g(x0) ≤ f(x0) − f(x) + c. Therefore,
f(x) ≤ f(x0) + b+ c ≤ infS f + a+ b+ c.

Lemma 2.4. Assume that S is bounded. If ρe(fn, f) → 0 then for δ ≤ ε/3 and all
n large enough

β (δ-argminS fn) ≤ β (ε-argminS f) .

Proof. Since S is bounded, we may assume that ρ∞(fn, f) < δ for all n large
enough. Let gn(x) = fn(x)− f(x) if x ∈ dom f = dom fn and gn(x) = 0 otherwise.
Obviously, δ-argminS gn = S. Since fn = f + gn, by Lemma 2.3 with a = b = c = δ

δ-argminS fn ⊂ ε-argminS f.

2.4. Curves on Banach spaces

For detailed presentation of Bochner integral, see [6].

In short, L2([0,∞), X) is the closure of the stepwise functions

n
∑

i=1

χ(ai,bi)(t)xi, xi ∈ X; χ(ai,bi)(t) =

{

1, t ∈ (ai, bi),

0, otherwise



1036 M. Ivanov, N. Zlateva / Perturbation Method for Variational Problems

in the norm

‖v‖2 =
(
∫ ∞

0

‖v(t)‖2 dt
)1/2

, v : [0,∞) → X.

For v ∈ L2([0,∞), X)

u(t) =

∫ t

0

v(s) ds

is well defined function from [0,∞) to X. Moreover, it satisfies

‖u(t1)− u(t2)‖ ≤ ‖v‖2 |t1 − t2|1/2 , ∀t1,2 ≥ 0.

We denote Y = L2([0,∞), X).

Lemma 2.5. Let X1 be a finite-dimensional subspace ofX and Y1= L2([0,∞), X1).
Then for any v ∈ Y

d2(v, Y1) =

∫ ∞

0

d2(v(t), X1) dt.

Proof. It is immediate that d2(v, Y1) ≥
∫∞

0
d2(v(t), X1) dt.

Assume first that X is separable and ‖ · ‖ is strictly convex. Then d(v(t), X1) =
‖v(t) − w(t)‖ where w(t) ∈ X1 is unique. By construction w(t) is measurable: if
v is almost everywhere limit of stepwise functions then w(t) is almost everywhere
limit of their metric projections over X1 which will be also stepwise. Since 0 ∈ X1

we have ‖w(t)− v(t)‖ ≤ ‖v(t)‖ and therefore ‖w(t)‖ ≤ 2‖v(t)‖, so w ∈ Y1.

If X is separable one can approximate the norm by strictly convex norms, see e.g.
[5]. The result follows by passing to the limit.

If X is arbitrary then it is known that v has essentially countably many values, so
we may restrict our considerations to the separable closed linear span of {v(t) : t ∈
U} ∪X1 where U ⊂ [0,∞) is of full measure.

2.5. One dimensional Lemma

Lebesgue proved that his integral can be approximated by Riemann sums. However,
we need approximation by trapeze formula and – being unable to provide suitable
reference – we prove the partial case we use.

Lemma 2.6. Let f : [0, 1] → R
+ be Lebesgue integrable. Then for each ε, δ > 0

there is a partition ∆ of [0, 1] with diameter < δ (that is, t0 = 0 < t1 < . . . < tn+1 =
1, ti+1 − ti < δ), such that

n
∑

i=0

f(ti) + f(ti+1)

2
(ti+1 − ti) <

∫ 1

0

f(t) dt+ ε. (4)

Proof. Since adding a constant to f changes nothing as far as (4) is concerned, we
may assume that f ≥ 1.
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Let m be the Lebesgue measure. Since
∑∞

n=1 nm ({t : n < f(t) ≤ n+ 1}) < ∞,
for all N ∈ N large enough Nm ({t : N < f(t)}) < min{ε, δ}. We fix a N like this
which also satisfies N > max{f(0), f(1)}.
Let A = {t ∈ (0, 1) : f(t) ≤ N} and B be the set of those t ∈ A which are Lebesgue
points of f . Then m(A \B) = 0.

Moreover, for each t ∈ B there is t̄ ∈ (t, 1) such that t̄− t < δ, f(t̄) < N + 1 and

f(t) + f(t̄)

2
(t̄− t) ≤ (1 + ε)

∫ t̄

t

f(t) dt.

We consider (t, t̄), t ∈ B, in the context of Sierpinski Lemma, e.g. [9, p. 356], and
pick non-intersecting finite system of intervals (tj, t̄j), j = 1, . . . k such that the part
of B not covered by their union has measure less than min{δ, ε/N}.
In an obvious manner this finite system can be completed to form a finite partition
∆ of [0, 1]. Since the total measure of [0, 1]\∪k

1(tj, t̄j) is smaller than 2δ, any interval
of ∆ not belonging to the above finite system will have length less than 2δ. Those
in the finite system are shorter than δ by construction. So, the diameter of ∆ is
smaller than 2δ.

In order to verify (4) we split the sum in the left hand side in two:

The sum over all intervals in the finite system is less than (1 + ε)
∫ 1

0
f(t) dt by

construction.

The sum over remaining intervals is smaller than the sum of their lengths, ergo
< 2ε/N , times maxj{f(tj), f(t̄j)} ≤ N +1 and this product is smaller than 3ε.

2.6. Graphical density of stepwise functions

Let f : X → R ∪ {∞} and a ∈ dom f satisfy the conditions of Theorem 1.1, that
is, f is closed, convex, f ≥ k‖ · ‖ and such that f(0) = 0; and a 6= 0. We can define

F‖·‖ : L
2([0,∞), X) → R ∪ {∞}

by

F‖·‖(v) =

∫ ∞

0

(

‖v(t)‖2 + f(u(t)
)

dt, u(t) = a+

∫ t

0

v(s) ds. (5)

Obviously, the problem (V‖·‖), see (1), is equivalent to minimisation of F‖·‖ over
L2([0,∞), X).

Proposition 2.7. Under the assumptions of Theorem 1.1 the above constructed
F = F‖·‖ is proper, closed, convex and positive.

Moreover, the stepwise functions are graphically dense in domF , that is, for any
v ∈ domF there exists a sequence of stepwise vk such that vk → v and F (vk) →
F (v).

Proof. It is clear that F is convex and positive. Also, considering v = −aχ(0,1)

and using the convexity of f , we see that F is proper.



1038 M. Ivanov, N. Zlateva / Perturbation Method for Variational Problems

If ‖vk − v‖2 → 0 then the corresponding uk tend pointwise (in fact, uniformly on
bounded intervals) to u, so Fatou Lemma gives

lim inf

∫ ∞

0

f(uk(t)) dt ≥
∫ ∞

0

lim inf f(uk(t)) dt ≥
∫ ∞

0

f(u(t)) dt, (6)

using for the latter the closedness of f .

For the graphical density, fix ε ∈ (0, 1) and let v ∈ domF . We may assume
that the corresponding u eventually vanishes. Indeed, there is t1 > 0 such that
f(u(t1)) < kε/2 and

∫∞

t1
(‖v(t)‖2 + f(u(t))) dt < ε/2. Let v1 ≡ v on [0, t1]. If

u(t1) = 0 then v1(t) = 0 for t ≥ t1, otherwise v1(t) = (t−t1)h for t ∈ (t1, t1+‖u(t1)‖),
where h = −u(t1)/‖u(t1)‖, and v1(t) = 0 for t ≥ t1 + ‖u(t1)‖. It is clear that the
corresponding u1 eventually vanishes and – using ‖u(t1)‖ < ε/2 and the convexity
of f – one easily estimates ‖v − v1‖2 <

√
ε and |F (v)− F (v1)| < ε.

So, let us assume that u(t) = v(t) = 0 for t > T . Consider a partition ∆ = {t0 =
0 < t1 < . . . < tn = T} of [0, T ] and define

v∆(t) = (ti+1 − ti)
−1

∫ ti+1

ti

v(s) ds, t ∈ (ti, ti+1).

The corresponding u∆ is piece-wise linear and such that u∆(ti) = u(ti).

For any partition ∆ with diam∆ = maxi(ti+1 − ti) small enough we have that
‖v − v∆‖2 < ε. This is because ‖v∆‖2 ≤ ‖v‖2, as follows from Cauchy inequality,
and the map v → v∆ is linear. So, if w is continuous [0, T ], vanishing on [T,∞) and
such that ‖v − w‖2 < ε/3, then

‖v − v∆‖2 ≤ ‖v − w‖2 + ‖w − w∆‖2 + ‖w∆ − v∆‖2 ≤ ‖w − w∆‖2 + 2ε/3.

But w is uniformly continuous on [0, T ] and therefore ‖w − w∆‖2 < ε/3 for diam∆
small enough.

We can now complete the proof. By convexity of f

∫ ti+1

ti

f(u∆(t)) dt ≤
f(u(ti)) + f(u(ti+1))

2
(ti+1 − ti).

Using this and Lemma 2.6 we can find partitions ∆k such that diam∆k → 0 as
k → ∞ and for vk = v∆k

and the respective uk

lim sup

∫ T

0

f(uk(t)) dt ≤
∫ T

0

f(u(t)) dt.

From (6) it follows that
∫ T

0
f(uk(t)) dt →

∫ T

0
f(u(t)) dt as k → ∞. This and

‖vk − v‖2 → 0 imply F (vk) → F (v).
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3. Variational principle

We elaborate on the method of Deville, Godefroy and Zizler [4], see also [5].

Definition 3.1. Let S be a closed convex subset of a Banach space (X, ‖ · ‖). Let
f : S → R ∪ {∞} be closed, convex, proper and bounded below.

A complete metric space (P, ρ) of positive convex continuous functions from X to
R is called perturbation space relative to (f, S) if:

(i) P is a convex cone, that is, gi ∈ P , i = 1, 2 ⇒ g1 + g2 ∈ P , and ∀g ∈ P, c ≥
0 ⇒ cg ∈ P ;

(ii) if g, gk ∈ P and ρ(gk, 0) → 0 then ρ(g, g + gk) → 0;

(iii) there is c > 0 such that ρe ≤ cρ on P ;

(iv) for any ε > 0 there is tε > 0 such that: for any x ∈ dom f ∩ S and any δ > 0
there is y ∈ dom f ∩ S such that

‖y − x‖ < δ, |f(x)− f(y)| < δ,

and g ∈ P such that ρ(g, 0) < ε, g(y) < δ and

β (tε-argminS g) < ε.

Theorem 3.2. Let S be a closed convex and bounded subset of a Banach space X.
Let f : S → R ∪ {∞} be closed, convex, proper and bounded below. If (P, ρ) is a
perturbation space relative to (f, S) then for any ε > 0 there is g ∈ P such that
ρ(g, 0) < ε and (f + g, S) is weakly well posed.

Proof. Consider for n ∈ N the subset An of P defined by

g ∈ An ⇐⇒ ∃t > 0 : β(t-argminS (f + g)) <
1

n
. (7)

We will show that An is dense and open in P . Then by Baire Category Theorem
there will be g ∈ ∩An such that ρ(g, 0) < ε and by Definition 2.2 (f + g, S) will be
weakly well posed.

To this end, fix n ∈ N.

If An were not open there would have been g, gk ∈ P such that g ∈ An, gk 6∈ An and
lim ρ(gk, g) = 0. But if g satisfies (7) with t then by Lemma 2.4 gk will eventually
satisfy (7) with t/3. Contradiction.

Let now h ∈ P be arbitrary. Fix ν > 0. We will find g ∈ P such that h + g ∈ An

and ρ(h, h+ g) < ν.

By Definition 3.1(ii) there is ν1 > 0 such that for any g ∈ P with ρ(g, 0) < ν1 it
follows that ρ(h+ g, h) < ν.

Let in Definition 3.1(iv) ε = min{1/n, ν1} and let t̄ = tε/3.

Pick x ∈ (t̄/2)-argminS (f + h). Let δ ∈ (0, t̄/4) be such that ‖y − x‖ < δ ⇒
|h(y) − h(x)| < t̄/4. By Definition 3.1(iv) there is y ∈ S and g ∈ P such that
‖x− y‖ ≤ δ and |f(x)− f(y)| ≤ δ, in particular

y ∈ t̄-argminS (f + h),
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ρ(g, 0) < ε ≤ ν1, y ∈ δ-argminS g ⊂ t̄-argminS g and

β (tε-argminS g) < ε.

By Lemma 2.3 with (f + h), g and a = b = c = t̄ we get

t̄-argminS (f + h+ g) ⊂ tε-argminS g,

so β(t̄-argminS (f + h+ g)) < ε ≤ 1/n. Therefore, h+ g ∈ An.

In a standard way we can drop boundedness assumption on the set in most cases.

Corollary 3.3. Let S be a closed convex subset of the Banach space X. Let f :
S → R∪{∞} be closed, convex, proper and bounded below. If (P, ρ) is a perturbation
space relative to (f, S) such that there are gk ∈ P with ρ(gk, 0) → 0 and

lim
‖x‖→∞

gk(x) = ∞, ∀k ∈ N,

then for any ε > 0 there is g ∈ P such that ρ(g, 0) < ε and (f + g, S) is weakly well
posed.

Proof. Fix ε > 0. Let g1 ∈ P be such that ρ(g1, 0) < ε/2 and g1 → ∞ as ‖x‖ → ∞.

Consider for r > 0 the optimisation problem (f + g1, S ∩ rBX). From Theorem 3.2
there is g2 ∈ P with ρ(g2) < ε/2 such that (f + g1 + g2, S ∩ rBX) is weakly well
posed. But since f + g1 + g2 → ∞ as ‖x‖ → ∞, the latter optimisation problem is
equivalent to (f + g1 + g2, S) if r is large enough.

4. Existence of solutions to (1)

We can now present

Proof of Theorem 1.1. Recall that in terms of (5) the problem (1) may be re-
formulated simply as

F‖·‖(v) → min, v ∈ Y = L2([0,∞), X)

for the proper, closed, convex and positive F (see Proposition 2.7).

In order to apply Theorem 3.2, consider the cone P over Y consisting of all functions
of the form

v →
∫ ∞

0

|v(t)|2 dt,

where | · | is some equivalent norm on X. We equip P with the metric ρ inherited
from ρe on X: for two functions gi ∈ P , i = 1, 2 obtained from the norms | · |1 and
| · |2, respectively, i.e. gi(v) =

∫∞

0
|v(t)|2i dt, i = 1, 2,

ρ(g1, g2) = ρe(| · |21, | · |22).

From Corollary 3.3 it is clear that we only need to prove that the so defined (P, ρ)
is a perturbation space relative to (F, Y ).
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The first three axioms of Definition 3.1 are immediately fulfilled.

Set

M =
∞
∑

n=1

n2

2n−1
. (8)

Let ε ∈ (0, 1). We will show that tε = ε2/(2M) does the job.

Fix v1 ∈ domF and δ > 0. From Proposition 2.7 there is stepwise w1 ∈ domF
such that ‖v1 −w1‖2 < δ and |F (v1)−F (w1)| < δ. It is easy to see that 0 6∈ domF
and thus w1 6= 0. Let X1 = spanw1([0,∞)). Then dimX1 < ∞.

Take r > 0 such that r < min{1, δ/(‖w1‖22 + 1)} and define

|x|21 = d2(x,X1) + r‖x‖2.

Obviously, | · |1 is an equivalent norm on X. Let g1 ∈ P be the function g1(v) =
∫∞

0
|v|21 dt. Then

g1(w1) = r‖w1‖22 < δ, (9)

and, having in mind (8),

ρ(g1, 0) = ρe(| · |21, 0) ≤ (1 + r)
∞
∑

n=1

n2

2n
< M, (10)

since r < 1.

Finally, let g = (ε/M)g1. Obviously, g(w1) < δ by (9) and, moreover,

ρ(g, 0) = (ε/M)ρ(g1, 0) < ε

by (10).

Consider the ball A = r−1BY1
, where Y1 = L2([0,∞), X1). Note that Y1 is reflexive

and therefore A is weakly compact. We will use it to estimate β(tε-argminS g). By
Lemma 2.5

g1(v) =

∫ ∞

0

|v(t)|21 dt =
∫ ∞

0

(d2(v(t), X1) + r‖v(t)‖2) dt

= d2(v, Y1) + r‖v‖22, ∀v ∈ Y.

Obviously min g = 0. If g(v) < tε then g1(v) = (ε/M)g(v) < (εtε)/M = ε3/(2M2)<
ε2 and therefore d(v, Y1) < ε and v ∈ r−1BY . So, d(v, A) < ε. Thus, β(tε-argminS g)
< ε.
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