Perturbation Method for Variational Problems^{*}

Milen Ivanov

Faculty of Mathematics and Informatics, Sofia University, 5, James Bourchier Blvd., 1164 Sofia, Bulgaria milen@fmi.uni-sofia.bg

Nadia Zlateva

Faculty of Mathematics and Informatics, Sofia University, 5, James Bourchier Blvd., 1164 Sofia, Bulgaria zlateva@fmi.uni-sofia.bg

Received: January 2, 2011

We provide a general method for proving existence of solutions of suitable perturbations of certain variational problems. A novel variational principle enables perturbing only the integrand, thus preserving the form of the problem.

Keywords: Existence of solutions, variational problem, perturbation method

2010 Mathematics Subject Classification: Primary 46N10; Secondary 35A15, 49J45, 90C48

1. Introduction

We prove the following existence theorem.

Theorem 1.1. Let $(X, \|\cdot\|)$ be a Banach space. Let $f : X \to \mathbb{R} \cup \{\infty\}$ be closed, convex and such that $f \ge 0$, f(0) = 0 and $f \ge k \|\cdot\|$ for some k > 0. Let $a \in \text{dom } f \setminus \{0\}$ be fixed.

Consider the optimisation problem

$$(V_{\|\cdot\|}) \begin{cases} \int_0^\infty (\|v(t)\|^2 + f(u(t)) \, dt \to \min \\ u(t) = a + \int_0^t v(s) \, ds, \qquad v \in L^2\left([0,\infty), X\right). \end{cases}$$
(1)

For each $\varepsilon > 0$ there is equivalent norm $|\cdot|$ on X such that

 $\|\cdot\| \le |\cdot| \le (1+\varepsilon)\|\cdot\|$

and the problem $(V_{|\cdot|})$ has a solution.

From the proof it is clear that the statement holds for f with strong minimum at 0, that is, if $x_n \to 0$ whenever $f(x_n) \to 0$.

The above result does not follow directly from Ekeland Variational Principle.

The key to obtaining it is the abstract Theorem 3.2.

*Supported by Bulgarian National Fund for Scientific Research, contract DO 02-360/2008.

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

2. Preliminaries

2.1. Annotations

Even though some of the results can be – in an obvious manner – extended to complete metric spaces, we prefer to work on closed subsets of Banach spaces for the sake of brevity.

For a Banach space $(X, \|\cdot\|)$ the unit ball, resp. sphere, are denoted by $B_X = \{x : \|x\| \le 1\}$, resp. $S_X = \{x : \|x\| = 1\}$. For a nonempty set $A \subset X$ the distance from x to A is denoted by $d(x, A) = \inf\{\|y - x\| : y \in A\}$. The indicator function δ_A of a set $A \subset X$ equals 0 on A and ∞ outside A. We denote $\delta_n = \delta_{nB_X}$ for $n \in \mathbb{N}$.

The function $f: X \to \mathbb{R} \cup \{\infty\}$, where X is a Banach space, is called closed if its *epigraph*

$$epi f = \{(x, t); f(x) \le t\}$$

is closed, and proper if its domain

$$\operatorname{dom} f = \{x; \ f(x) < \infty\}$$

is non-empty.

The topic of epigraph convergence is vast, e.g. [1, 2, 8], and we do not consider full generality. Instead, we fix a metric, ρ_e , which is sufficient for the applications we pursue. For two proper functions $f, g: X \to \mathbb{R} \cup \{\infty\}$ we define

$$\rho_{\infty}(f,g) = \sup\{|f(x) - g(x)|; \ x \in \operatorname{dom} f \cup \operatorname{dom} g\},\$$
$$\rho_{\infty,n}(f,g) = \sup\{|f(x) - g(x)|; \ x \in (\operatorname{dom} f \cup \operatorname{dom} g) \cap nB_X\},\$$

and

$$\rho_e(f,g) = \sum_{n=1}^{\infty} 2^{-n} \rho_{\infty,n}(f,g).$$
 (2)

Obviously, $\rho_{\infty}(f,g) = \rho_e(f,g) = \infty$ if dom $f \neq \text{dom } g$. The meaning of ρ_e is that it implies a kind of uniform on bounded sets convergence, if we adopt the rule $\infty - \infty = 0$. Note also that if $\rho_e(f_n, 0) \to 0$ as $n \to \infty$ (the zero in the brackets stands for zero function) then $\rho_e(f + f_n, f) \to 0$.

2.2. Cantor-Kuratowski-De Blasi Lemma

Kuratowski, e.g. [7], proved a generalisation of Cantor Lemma in terms of the measure of non-compactness he defined. This line was extended by De Blasi [3]. He defined the *measure of weak non-compactness* of a subset A of a Banach space X as

 $\beta(A) = \inf\{\varepsilon; \text{ there is weakly compact } B \text{ s.t. } A \subset B + \varepsilon B_X\}.$

It is obvious that $\beta(A) = 0$ if and only if the weak closure of A is compact; $\beta(A) = \beta(\overline{\operatorname{co}} A)$ and $\beta(A_1) \leq \beta(A_2)$ if $A_1 \subset A_2$.

Lemma 2.1 ([3]). Let $\{A_n\}_{n\in\mathbb{N}}$ be a nested $(A_{n+1} \subset A_n, \forall n)$ family of weakly closed subsets of a Banach space such that

$$\lim_{n \to \infty} \beta(A_n) = 0.$$

Then $A = \cap A_n$ is nonempty.

2.3. Optimisation

Let S be a closed convex subset of the Banach space X and let $f: S \to \mathbb{R} \cup \{\infty\}$ be closed, convex, proper and bounded below. Consider the optimisation problem

$$(f,S) \begin{cases} f(x) \to \min \\ x \in S. \end{cases}$$

Following [8] we define

$$\varepsilon$$
-argmin_S $f = \{x \in S; f(x) \le \inf f + \varepsilon\}.$

Of course, $\operatorname{argmin}_{S} f = 0$ - $\operatorname{argmin}_{S} f$ is the usual set of minima of f on S.

Definition 2.2. We say that the problem (f, S) is weakly well-posed if

$$\lim_{\varepsilon \to 0} \beta \left(\varepsilon \operatorname{-argmin}_{S} f \right) = 0.$$
(3)

From Hahn-Banach Theorem and Lemma 2.1 it follows that a weakly well-posed problem has solutions (that is, $\operatorname{argmin}_S f \neq \emptyset$).

We need few simple facts. For similar results see [8].

Lemma 2.3. If a, b, c > 0 and $a\operatorname{-argmin}_S f \cap b\operatorname{-argmin}_S g \neq \emptyset$ then

$$c$$
-argmin_S $(f + g) \subset (a + b + c)$ -argmin_S f .

Proof. Let $x_0 \in S$ be such that $f(x_0) \leq \inf_S f + a$ and $g(x_0) \leq \inf_S g + b$. If $x \in S$ is such that $f(x) + g(x) \leq \inf_S (f + g) + c$ then $f(x) + g(x) \leq f(x_0) + g(x_0) + c$ and we can write $-b \leq \inf_S g - g(x_0) \leq g(x) - g(x_0) \leq f(x_0) - f(x) + c$. Therefore, $f(x) \leq f(x_0) + b + c \leq \inf_S f + a + b + c$.

Lemma 2.4. Assume that S is bounded. If $\rho_e(f_n, f) \to 0$ then for $\delta \leq \varepsilon/3$ and all n large enough

 $\beta\left(\delta\operatorname{-argmin}_{S} f_{n}\right) \leq \beta\left(\varepsilon\operatorname{-argmin}_{S} f\right).$

Proof. Since S is bounded, we may assume that $\rho_{\infty}(f_n, f) < \delta$ for all n large enough. Let $g_n(x) = f_n(x) - f(x)$ if $x \in \text{dom } f = \text{dom } f_n$ and $g_n(x) = 0$ otherwise. Obviously, δ -argmin_S $g_n = S$. Since $f_n = f + g_n$, by Lemma 2.3 with $a = b = c = \delta$

$$\delta$$
-argmin_S $f_n \subset \varepsilon$ -argmin_S f .

2.4. Curves on Banach spaces

For detailed presentation of Bochner integral, see [6].

In short, $L^2([0,\infty), X)$ is the closure of the *stepwise* functions

$$\sum_{i=1}^{n} \chi_{(a_i,b_i)}(t) x_i, \quad x_i \in X; \qquad \chi_{(a_i,b_i)}(t) = \begin{cases} 1, & t \in (a_i,b_i) \\ 0, & \text{otherwise} \end{cases}$$

1036 M. Ivanov, N. Zlateva / Perturbation Method for Variational Problems in the norm

$$||v||_2 = \left(\int_0^\infty ||v(t)||^2 dt\right)^{1/2}, \quad v: [0,\infty) \to X.$$

For $v \in L^2([0,\infty), X)$

$$u(t) = \int_0^t v(s) \, ds$$

is well defined function from $[0,\infty)$ to X. Moreover, it satisfies

$$||u(t_1) - u(t_2)|| \le ||v||_2 |t_1 - t_2|^{1/2}, \quad \forall t_{1,2} \ge 0.$$

We denote $Y = L^2([0, \infty), X)$.

Lemma 2.5. Let X_1 be a finite-dimensional subspace of X and $Y_1 = L^2([0, \infty), X_1)$. Then for any $v \in Y$

$$d^{2}(v, Y_{1}) = \int_{0}^{\infty} d^{2}(v(t), X_{1}) dt.$$

Proof. It is immediate that $d^2(v, Y_1) \ge \int_0^\infty d^2(v(t), X_1) dt$.

Assume first that X is separable and $\|\cdot\|$ is strictly convex. Then $d(v(t), X_1) = \|v(t) - w(t)\|$ where $w(t) \in X_1$ is unique. By construction w(t) is measurable: if v is almost everywhere limit of stepwise functions then w(t) is almost everywhere limit of their metric projections over X_1 which will be also stepwise. Since $0 \in X_1$ we have $\|w(t) - v(t)\| \le \|v(t)\|$ and therefore $\|w(t)\| \le 2\|v(t)\|$, so $w \in Y_1$.

If X is separable one can approximate the norm by strictly convex norms, see e.g. [5]. The result follows by passing to the limit.

If X is arbitrary then it is known that v has essentially countably many values, so we may restrict our considerations to the *separable* closed linear span of $\{v(t) : t \in U\} \cup X_1$ where $U \subset [0, \infty)$ is of full measure. \Box

2.5. One dimensional Lemma

Lebesgue proved that his integral can be approximated by Riemann sums. However, we need approximation by trapeze formula and – being unable to provide suitable reference – we prove the partial case we use.

Lemma 2.6. Let $f : [0,1] \to \mathbb{R}^+$ be Lebesgue integrable. Then for each $\varepsilon, \delta > 0$ there is a partition Δ of [0,1] with diameter $< \delta$ (that is, $t_0 = 0 < t_1 < \ldots < t_{n+1} = 1$, $t_{i+1} - t_i < \delta$), such that

$$\sum_{i=0}^{n} \frac{f(t_i) + f(t_{i+1})}{2} (t_{i+1} - t_i) < \int_0^1 f(t) \, dt + \varepsilon.$$
(4)

Proof. Since adding a constant to f changes nothing as far as (4) is concerned, we may assume that $f \ge 1$.

Let *m* be the Lebesgue measure. Since $\sum_{n=1}^{\infty} nm \left(\{t : n < f(t) \le n+1\}\right) < \infty$, for all $N \in \mathbb{N}$ large enough $Nm \left(\{t : N < f(t)\}\right) < \min\{\varepsilon, \delta\}$. We fix a *N* like this which also satisfies $N > \max\{f(0), f(1)\}$.

Let $A = \{t \in (0, 1) : f(t) \le N\}$ and B be the set of those $t \in A$ which are Lebesgue points of f. Then $m(A \setminus B) = 0$.

Moreover, for each $t \in B$ there is $\overline{t} \in (t, 1)$ such that $\overline{t} - t < \delta$, $f(\overline{t}) < N + 1$ and

$$\frac{f(t) + f(\bar{t})}{2}(\bar{t} - t) \le (1 + \varepsilon) \int_t^{\bar{t}} f(t) dt.$$

We consider $(t, \bar{t}), t \in B$, in the context of Sierpinski Lemma, e.g. [9, p. 356], and pick non-intersecting finite system of intervals $(t_j, \bar{t_j}), j = 1, \ldots k$ such that the part of B not covered by their union has measure less than min $\{\delta, \varepsilon/N\}$.

In an obvious manner this finite system can be completed to form a finite partition Δ of [0, 1]. Since the total measure of $[0, 1] \setminus \bigcup_{1}^{k}(t_{j}, \bar{t_{j}})$ is smaller than 2δ , any interval of Δ not belonging to the above finite system will have length less than 2δ . Those in the finite system are shorter than δ by construction. So, the diameter of Δ is smaller than 2δ .

In order to verify (4) we split the sum in the left hand side in two:

The sum over all intervals in the finite system is less than $(1 + \varepsilon) \int_0^1 f(t) dt$ by construction.

The sum over remaining intervals is smaller than the sum of their lengths, ergo $\langle 2\varepsilon/N$, times $\max_j \{f(t_j), f(\bar{t_j})\} \leq N+1$ and this product is smaller than 3ε . \Box

2.6. Graphical density of stepwise functions

Let $f: X \to \mathbb{R} \cup \{\infty\}$ and $a \in \text{dom } f$ satisfy the conditions of Theorem 1.1, that is, f is closed, convex, $f \ge k \| \cdot \|$ and such that f(0) = 0; and $a \neq 0$. We can define

$$F_{\parallel \cdot \parallel} : L^2([0,\infty), X) \to \mathbb{R} \cup \{\infty\}$$

by

$$F_{\|\cdot\|}(v) = \int_0^\infty \left(\|v(t)\|^2 + f(u(t)) dt, \qquad u(t) = a + \int_0^t v(s) ds.$$
(5)

Obviously, the problem $(V_{\parallel \cdot \parallel})$, see (1), is equivalent to minimisation of $F_{\parallel \cdot \parallel}$ over $L^2([0,\infty), X)$.

Proposition 2.7. Under the assumptions of Theorem 1.1 the above constructed $F = F_{\parallel \cdot \parallel}$ is proper, closed, convex and positive.

Moreover, the stepwise functions are graphically dense in dom F, that is, for any $v \in \text{dom } F$ there exists a sequence of stepwise v_k such that $v_k \to v$ and $F(v_k) \to F(v)$.

Proof. It is clear that F is convex and positive. Also, considering $v = -a\chi_{(0,1)}$ and using the convexity of f, we see that F is proper.

If $||v_k - v||_2 \to 0$ then the corresponding u_k tend pointwise (in fact, uniformly on bounded intervals) to u, so Fatou Lemma gives

$$\liminf \int_0^\infty f(u_k(t)) \, dt \ge \int_0^\infty \liminf f(u_k(t)) \, dt \ge \int_0^\infty f(u(t)) \, dt, \tag{6}$$

using for the latter the closedness of f.

For the graphical density, fix $\varepsilon \in (0,1)$ and let $v \in \text{dom } F$. We may assume that the corresponding u eventually vanishes. Indeed, there is $t_1 > 0$ such that $f(u(t_1)) < k\varepsilon/2$ and $\int_{t_1}^{\infty} (\|v(t)\|^2 + f(u(t))) dt < \varepsilon/2$. Let $v_1 \equiv v$ on $[0, t_1]$. If $u(t_1) = 0$ then $v_1(t) = 0$ for $t \ge t_1$, otherwise $v_1(t) = (t-t_1)h$ for $t \in (t_1, t_1+\|u(t_1)\|)$, where $h = -u(t_1)/\|u(t_1)\|$, and $v_1(t) = 0$ for $t \ge t_1 + \|u(t_1)\|$. It is clear that the corresponding u_1 eventually vanishes and - using $\|u(t_1)\| < \varepsilon/2$ and the convexity of f – one easily estimates $\|v - v_1\|_2 < \sqrt{\varepsilon}$ and $|F(v) - F(v_1)| < \varepsilon$.

So, let us assume that u(t) = v(t) = 0 for t > T. Consider a partition $\Delta = \{t_0 = 0 < t_1 < \ldots < t_n = T\}$ of [0, T] and define

$$v_{\Delta}(t) = (t_{i+1} - t_i)^{-1} \int_{t_i}^{t_{i+1}} v(s) \, ds, \ t \in (t_i, t_{i+1}).$$

The corresponding u_{Δ} is piece-wise linear and such that $u_{\Delta}(t_i) = u(t_i)$.

For any partition Δ with diam $\Delta = \max_i(t_{i+1} - t_i)$ small enough we have that $\|v - v_{\Delta}\|_2 < \varepsilon$. This is because $\|v_{\Delta}\|_2 \le \|v\|_2$, as follows from Cauchy inequality, and the map $v \to v_{\Delta}$ is linear. So, if w is continuous [0, T], vanishing on $[T, \infty)$ and such that $\|v - w\|_2 < \varepsilon/3$, then

$$\|v - v_{\Delta}\|_{2} \le \|v - w\|_{2} + \|w - w_{\Delta}\|_{2} + \|w_{\Delta} - v_{\Delta}\|_{2} \le \|w - w_{\Delta}\|_{2} + 2\varepsilon/3.$$

But w is uniformly continuous on [0, T] and therefore $||w - w_{\Delta}||_2 < \varepsilon/3$ for diam Δ small enough.

We can now complete the proof. By convexity of f

$$\int_{t_i}^{t_{i+1}} f(u_{\Delta}(t)) \, dt \le \frac{f(u(t_i)) + f(u(t_{i+1}))}{2} (t_{i+1} - t_i).$$

Using this and Lemma 2.6 we can find partitions Δ_k such that $\operatorname{diam}\Delta_k \to 0$ as $k \to \infty$ and for $v_k = v_{\Delta_k}$ and the respective u_k

$$\limsup \int_0^T f(u_k(t)) \, dt \le \int_0^T f(u(t)) \, dt.$$

From (6) it follows that $\int_0^T f(u_k(t)) dt \to \int_0^T f(u(t)) dt$ as $k \to \infty$. This and $\|v_k - v\|_2 \to 0$ imply $F(v_k) \to F(v)$.

3. Variational principle

We elaborate on the method of Deville, Godefroy and Zizler [4], see also [5].

Definition 3.1. Let S be a closed convex subset of a Banach space $(X, \|\cdot\|)$. Let $f: S \to \mathbb{R} \cup \{\infty\}$ be closed, convex, proper and bounded below.

A complete metric space (P, ρ) of positive convex continuous functions from X to \mathbb{R} is called perturbation space relative to (f, S) if:

- (i) P is a convex cone, that is, $g_i \in P$, $i = 1, 2 \Rightarrow g_1 + g_2 \in P$, and $\forall g \in P$, $c \ge 0 \Rightarrow cg \in P$;
- (ii) if $g, g_k \in P$ and $\rho(g_k, 0) \to 0$ then $\rho(g, g + g_k) \to 0$;
- (iii) there is c > 0 such that $\rho_e \leq c\rho$ on P;
- (iv) for any $\varepsilon > 0$ there is $t_{\varepsilon} > 0$ such that: for any $x \in \text{dom } f \cap S$ and any $\delta > 0$ there is $y \in \text{dom } f \cap S$ such that

$$||y - x|| < \delta, \qquad |f(x) - f(y)| < \delta,$$

and $g \in P$ such that $\rho(g, 0) < \varepsilon, g(y) < \delta$ and

 $\beta(t_{\varepsilon}\operatorname{-argmin}_{S} g) < \varepsilon.$

Theorem 3.2. Let S be a closed convex and bounded subset of a Banach space X. Let $f: S \to \mathbb{R} \cup \{\infty\}$ be closed, convex, proper and bounded below. If (P, ρ) is a perturbation space relative to (f, S) then for any $\varepsilon > 0$ there is $g \in P$ such that $\rho(g, 0) < \varepsilon$ and (f + g, S) is weakly well posed.

Proof. Consider for $n \in \mathbb{N}$ the subset A_n of P defined by

$$g \in A_n \iff \exists t > 0: \ \beta(t\operatorname{-argmin}_S(f+g)) < \frac{1}{n}.$$
 (7)

We will show that A_n is dense and open in P. Then by Baire Category Theorem there will be $g \in \cap A_n$ such that $\rho(g, 0) < \varepsilon$ and by Definition 2.2 (f + g, S) will be weakly well posed.

To this end, fix $n \in \mathbb{N}$.

If A_n were not open there would have been $g, g_k \in P$ such that $g \in A_n, g_k \notin A_n$ and lim $\rho(g_k, g) = 0$. But if g satisfies (7) with t then by Lemma 2.4 g_k will eventually satisfy (7) with t/3. Contradiction.

Let now $h \in P$ be arbitrary. Fix $\nu > 0$. We will find $g \in P$ such that $h + g \in A_n$ and $\rho(h, h + g) < \nu$.

By Definition 3.1(ii) there is $\nu_1 > 0$ such that for any $g \in P$ with $\rho(g, 0) < \nu_1$ it follows that $\rho(h+g, h) < \nu$.

Let in Definition 3.1(iv) $\varepsilon = \min\{1/n, \nu_1\}$ and let $\overline{t} = t_{\varepsilon}/3$.

Pick $x \in (\bar{t}/2)$ -argmin_S (f + h). Let $\delta \in (0, \bar{t}/4)$ be such that $||y - x|| < \delta \Rightarrow |h(y) - h(x)| < \bar{t}/4$. By Definition 3.1(iv) there is $y \in S$ and $g \in P$ such that $||x - y|| \le \delta$ and $|f(x) - f(y)| \le \delta$, in particular

$$y \in \bar{t}$$
-argmin_S $(f+h)$,

1040 M. Ivanov, N. Zlateva / Perturbation Method for Variational Problems

 $\rho(g,0) < \varepsilon \leq \nu_1, \ y \in \delta$ -argmin_S $g \subset \overline{t}$ -argmin_S g and

$$\beta(t_{\varepsilon}\operatorname{-argmin}_{S} g) < \varepsilon$$

By Lemma 2.3 with (f + h), g and $a = b = c = \bar{t}$ we get

$$\bar{t}$$
-argmin_S $(f + h + g) \subset t_{\varepsilon}$ -argmin_S g ,

so $\beta(\bar{t}\operatorname{-argmin}_{S}(f+h+g)) < \varepsilon \leq 1/n$. Therefore, $h+g \in A_n$.

In a standard way we can drop boundedness assumption on the set in most cases.

Corollary 3.3. Let S be a closed convex subset of the Banach space X. Let $f : S \to \mathbb{R} \cup \{\infty\}$ be closed, convex, proper and bounded below. If (P, ρ) is a perturbation space relative to (f, S) such that there are $g_k \in P$ with $\rho(g_k, 0) \to 0$ and

$$\lim_{\|x\|\to\infty}g_k(x)=\infty, \quad \forall k\in\mathbb{N},$$

then for any $\varepsilon > 0$ there is $g \in P$ such that $\rho(g, 0) < \varepsilon$ and (f + g, S) is weakly well posed.

Proof. Fix $\varepsilon > 0$. Let $g_1 \in P$ be such that $\rho(g_1, 0) < \varepsilon/2$ and $g_1 \to \infty$ as $||x|| \to \infty$. Consider for r > 0 the optimisation problem $(f + g_1, S \cap rB_X)$. From Theorem 3.2 there is $g_2 \in P$ with $\rho(g_2) < \varepsilon/2$ such that $(f + g_1 + g_2, S \cap rB_X)$ is weakly well posed. But since $f + g_1 + g_2 \to \infty$ as $||x|| \to \infty$, the latter optimisation problem is equivalent to $(f + g_1 + g_2, S)$ if r is large enough. \Box

4. Existence of solutions to (1)

We can now present

Proof of Theorem 1.1. Recall that in terms of (5) the problem (1) may be reformulated simply as

$$F_{\parallel \cdot \parallel}(v) \to \min, \quad v \in Y = L^2([0,\infty), X)$$

for the proper, closed, convex and positive F (see Proposition 2.7).

In order to apply Theorem 3.2, consider the cone P over Y consisting of all functions of the form

$$v \to \int_0^\infty |v(t)|^2 dt,$$

where $|\cdot|$ is some equivalent norm on X. We equip P with the metric ρ inherited from ρ_e on X: for two functions $g_i \in P$, i = 1, 2 obtained from the norms $|\cdot|_1$ and $|\cdot|_2$, respectively, i.e. $g_i(v) = \int_0^\infty |v(t)|_i^2 dt$, i = 1, 2,

$$\rho(g_1, g_2) = \rho_e(|\cdot|_1^2, |\cdot|_2^2).$$

From Corollary 3.3 it is clear that we only need to prove that the so defined (P, ρ) is a perturbation space relative to (F, Y).

The first three axioms of Definition 3.1 are immediately fulfilled. Set

$$M = \sum_{n=1}^{\infty} \frac{n^2}{2^{n-1}}.$$
(8)

Let $\varepsilon \in (0,1)$. We will show that $t_{\varepsilon} = \varepsilon^2/(2M)$ does the job.

Fix $v_1 \in \text{dom } F$ and $\delta > 0$. From Proposition 2.7 there is stepwise $w_1 \in \text{dom } F$ such that $||v_1 - w_1||_2 < \delta$ and $|F(v_1) - F(w_1)| < \delta$. It is easy to see that $0 \notin \text{dom } F$ and thus $w_1 \neq 0$. Let $X_1 = \text{span } w_1([0, \infty))$. Then $\dim X_1 < \infty$.

Take r > 0 such that $r < \min\{1, \delta/(||w_1||_2^2 + 1)\}$ and define

$$|x|_1^2 = d^2(x, X_1) + r||x||^2.$$

Obviously, $|\cdot|_1$ is an equivalent norm on X. Let $g_1 \in P$ be the function $g_1(v) = \int_0^\infty |v|_1^2 dt$. Then

$$g_1(w_1) = r \|w_1\|_2^2 < \delta, \tag{9}$$

and, having in mind (8),

$$\rho(g_1, 0) = \rho_e(|\cdot|_1^2, 0) \le (1+r) \sum_{n=1}^{\infty} \frac{n^2}{2^n} < M,$$
(10)

since r < 1.

Finally, let $g = (\varepsilon/M)g_1$. Obviously, $g(w_1) < \delta$ by (9) and, moreover,

$$\rho(g,0) = (\varepsilon/M)\rho(g_1,0) < \varepsilon$$

by (10).

Consider the ball $A = r^{-1}B_{Y_1}$, where $Y_1 = L^2([0,\infty), X_1)$. Note that Y_1 is reflexive and therefore A is weakly compact. We will use it to estimate $\beta(t_{\varepsilon}\operatorname{-argmin}_S g)$. By Lemma 2.5

$$g_1(v) = \int_0^\infty |v(t)|_1^2 dt = \int_0^\infty (d^2(v(t), X_1) + r ||v(t)||^2) dt$$

= $d^2(v, Y_1) + r ||v||_2^2, \quad \forall v \in Y.$

Obviously min g = 0. If $g(v) < t_{\varepsilon}$ then $g_1(v) = (\varepsilon/M)g(v) < (\varepsilon t_{\varepsilon})/M = \varepsilon^3/(2M^2) < \varepsilon^2$ and therefore $d(v, Y_1) < \varepsilon$ and $v \in r^{-1}B_Y$. So, $d(v, A) < \varepsilon$. Thus, $\beta(t_{\varepsilon}\operatorname{-argmin}_S g) < \varepsilon$.

References

- G. Beer, P. Kenderov: On the argmin multifunction for lower semicontinuous functions, Proc. Amer. Math. Soc. 102 (1988) 107–113.
- [2] G. Beer, R. T. Rockafellar, R. J.-B. Wets: A characterisation of epi-convergence in terms of convergence of level sets, Proc. Amer. Math. Soc. 116 (1992) 753–761.

- F. S. De Blasi: On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 21 (1977) 259–262.
- [4] R. Deville, G. Godefroy, V. Zizler: A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. 111 (1993) 197– 212.
- [5] R. Deville, G. Godefroy, V. Zizler: Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman Scientific & Technical, Harlow (1993).
- [6] J. Diestel, J. J. Uhl: Vector Measures, American Mathematical Society, Providence (1977).
- [7] K. Kuratowski: Topology II, Academic Press, New York (1968).
- [8] R. T. Rockafellar, R. J.-B. Wets: Variational Analysis, Comprehensive Studies in Mathematics 317, Springer, Berlin (1998).
- [9] E. C. Titchmarsh: The Theory of Functions, 2nd Ed., Oxford University Press, London (1952).