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We calculate the convex hull of the so-called counting function restricted to a ball of Rp, and we
then use it, with a result of A. S. Lewis, to recover the convex hull of the rank function restricted
to a ball of Mm,n(R).
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1. Introduction

Some optimization problems on R
p involve (in the objective function or in the

functions defining the constraints) the counting function c : Rp → R as follows:

∀x = (x1, . . . , xp) ∈ R
p, c(x) := the number of i’s for which xi 6= 0.

Sometimes, c(x) is denoted as ‖x‖0, a misleading notation since c(x) is not a norm
on R

p. Note however that, if ‖x‖k denote (
∑p

i=1 |xi|
k)1/k as usual, (‖x‖k)

k → c(x)
when k → 0+ (but ‖x‖k does not converge to 0 when p → 0+, as it is stated
sometimes). The function c gives rise to the so-called Hamming distance d (used in
coding theory), defined on R

p as:

d(x, y) := c(x− y).

It is known that most of the optimization problems involving the counting funtion
are NP-hard. So, what is usually done is to appeal to some "relaxed" form of c.
The way of relaxing c that we consider in the present note is to convexify c. We
get that the convex hull of the c function, restricted to some ball ‖x‖∞ ≤ r, is
simply 1

r
‖.‖1, the scaled l1 norm on R

p.

When dealing with matrices A ∈ Mm,n(R), we know that:

• for x = (x1, . . . , xp) ∈ R
p, rank[diag(x1, . . . , xp)] = c(x);

• for A ∈ Mm,n(R), rankA = c[σ(A)], where σ(A) = (σ1(A), . . . , σp(A)) is the
vector made up with the singular values σi(A) of A.

A. S. Lewis ([3], [4]) showed that the Legendre-Fenchel conjugate of a function of
matrices (satisfying some specific properties) could be obtained by just conjugating
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some associated function of the singular values of A. Using his results twice, we are
able to calculate the Legendre-Fenchel biconjugate of the rank function (that is the
convex hull of the rank function) by calling on the biconjugate of the c function.
In doing so, we retrieve Fazel’s relaxation theorem ([1, p. 54–60]): the convex hull
of the rank function restricted to the ball {A|σ1(A) ≤ r} is 1

r
‖A‖∗ =

1
r

∑p
i=1 σi(A),

that is to say, within the factor 1
r
, the so-called nuclear norm (or trace norm) of A.

There is a "dictionary" between counting fuction minimization and rank minimiza-
tion. For that and various examples and motivations of rank minimization problems,
see [5].

2. Convexifying the counting function on R
p

c is an integer-valued, subadditive, lower-semicontinous function on R
p. Since

c(αx) = c(x) for all α 6= 0, there is no hope to get anything interesting by convex-
ifying (i.e., taking the convex hull of) the function c. So, we consider it on some
appropriate ball, namely, for r > 0:

cr(x) :=

{

c(x) if ‖x‖∞ ≤ r;

+∞ otherwise.
(1)

Taking the convex hull and the closed convex hull of c amount to the same here;
so we just note co(cr) the convexified form of c (i.e., the largest convex function
minorizing cr). Here is the result of this section.

Theorem 2.1. We have:

∀x ∈ R
p, co(cr)(x) =

{

1
r
‖x‖1 if ‖x‖∞ ≤ r;

+∞ otherwise.

Proof. The basic properties of the convexifying operation (see [2, Chap. X] for
example) show that the domain of co(cr), i.e. the set on which this function is
finite-valued, is just the convex hull of the domain of cr. So, in our particular
instance, the domain of co(cr) is that of cr, which is the convex set {x|‖x‖∞ ≤ r}.

We therefor have to prove that co(cr)(x) =
1
r
‖x‖1 whenever ‖x‖∞ ≤ r.

First point. co(cr)(x) ≥
1
r
‖x‖1 for x satisfying ‖x‖∞ ≤ r.

If ‖x‖∞ ≤ r,

cr(x) = c(x) ≥

p
∑

i=1

|xi|

maxi |xi|
=

1

maxi |xi|

p
∑

i=1

|xi| ≥
1

r
‖x‖1.

Second point. 1
r
‖x‖1 ≥ co(cr)(x) for x satisfying ‖x‖∞ ≤ r.

Let x satisfy ‖x‖∞ ≤ r. For such an x = (x1, . . . , xp), we define vectors y =
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x = (x1, x2)

(a) c(x) = 2

x = (x1, x2)

(b) c(x) = 1

Figure 2.1: �x for x = (x1, x2) ∈ R
2

(y1, . . . , yp) according to the following rule:











if xi = 0, then yi = 0;

if xi > 0, then yi = 0 or r;

if xi < 0, then yi = 0 or − r;

(2)

In doing so, we get at a "net on a box" �x of Rp:

�x := {(y1, . . . , yp)| yi designed according to the rule (2)}
(see Figure 2.1, with p = 2).

�x has 2c(x) vectors, which are the vertices of a box containing x (this has been
done for that!). In other words, x lies in the convex hull of �x: there exist real
numbers α1, . . . , αk and y1, . . . , yk in �x such that:











αi ≥ 0 for all i
∑k

i=1 αi = 1

x =
∑k

i=1 αiy
i.

Consider now an arbitrary convex function h minorizing cr. Then, due to the
convexity of h,

h(x) = h

(

k
∑

i=1

αiy
i

)

≤
k
∑

i=1

αih(y
i) (3)



522 H. Y. Le / Confexifying the Counting Function on R
p for Convexifying the ...

But, when y ∈ �x,

cr(y) = number of j’s for which yj 6= 0

=
∑

{j|yj 6=0}

|yj|

r
(because |yj| = r whenever yj 6= 0)

=
1

r

∑

{j|yj 6=0}

|yj| =
1

r
‖y‖1.

So, with all the yi lying in �x, we get from (3):

h(x) ≤
k
∑

i=1

αih(y
i) ≤

k
∑

i=1

αicr(y
i) =

1

r

k
∑

i=1

αi‖y
i‖1. (4)

On the other hand, we have

xj =
k
∑

i=1

αi(y
i)j for all j = 1, . . . , p.

Thus, due to the specific correspondence between the signs of xj and (yi)j (cf. (2)),

|xj| =
k
∑

i=1

αi|(y
i)j| for all j = 1, . . . , p

so that:

‖x‖1 =
k
∑

i=1

αi‖y
i‖1.

Consequently, we derive from (4):

h(x) ≤
1

r
‖x‖1.

Finally,

co(cr)(x) = sup{h(x)|h convex function minorizing cr}

≤
1

r
‖x‖1.

Altogether (First point and Second point), we have proved that co(cr)(x) =
1
r
‖x‖1

whenever ‖x‖∞ ≤ r.

Comment 2.2. The result of Theorem 2.1 is part of the "folklore" in the areas
where minimizing counting function appears (there are numerous papers in signal
recovery, compressed sensing, statistics, etc.). We did not find any reference where
it was stated in a clear-cut manner. That was the reason for a direct proof here.

Comment 2.3. Another convexification result, similar to Theorem 2.1, easy to
prove, is as follows: Consider the function ‖.‖k with 0 < k < 1 (no more a norm),
restricted to the ball {x| ‖x‖1 ≤ 1}; then its convex hull is still the l1 norm ‖.‖1
(restricted to the same ball).
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3. Convexifying the rank function

For A ∈ Mm,n(R), let p := min(m,n) and σ1(A) ≥ σ2(A) ≥ · · · ≥ σp(A) the
singular values of A arranged in a decreasing order. So, if k is the rank of A, the
first k singular values are positive, while the p − k remaining ones are null. We
make use of two matricial norms:

A 7→ ‖A‖sp := σ1(A), the largest singular value of A;

A 7→ ‖A‖∗ :=

p
∑

i=1

σi(A), the sum of all singular values of A.

‖.‖sp is called the spectral norm, and ‖.‖∗ the nuclear norm (although other
various names are also used for ‖.‖∗).

Consider the following function on Mm,n(R), it is just the "matricial cousin" of the
cr function in Section 2:

rankr(A) :=

{

rank of A if ‖A‖sp ≤ r;

+∞ otherwise.

Here also, convexifying the rank function on the whole space Mm,n(R) does not
make sense: we just get at the null function.

But, for the rank function restricted to the ball {A|‖A‖sp ≤ r}, one gets an explicit
form of its convex hull. Here is the "matricial cousin" of Theorem 2.1.

Theorem 3.1 (M. Fazel). We have:

∀A ∈ Mm,n(R), co(rankr)(A) =

{

1
r
‖A‖∗ if ‖A‖sp ≤ r;

+∞ otherwise.

M. Fazel ([1, p. 54–60]) proved Theorem 3.1 by calculating the Legendre-Fenchel

conjugate (rankr)
∗ of the rankr function, and conjugating again, the biconjugate of

the rankr function; this biconjugate function (rankr)
∗∗ is also the closed convex hull

of rankr (or just the convex hull of rankr, since both coincide here). We propose here
another path to prove Theorem 3.1: apply A. S. Lewis’ fine results (of conjugation),
such as displayed in [3] and [4]. Let us recall them briefly.

A function f : Rp → R is called absolutely symmetric if, for all x ∈ R
p,

f(x1, . . . , xp) = f(x1, . . . , xp),

where x = (x1, . . . , xp) is the vector, built up from x = (x1, . . . , xp), whose compo-
nents are the |xi|’s arranged in a decreasing order. Associated with f is the function
F : Mm,n(R) → R ∪ {+∞} defined as follows:

∀A ∈ Mm,n(R), F (A) := f [σ1(A), . . . , σp(A)].

A. S. Lewis’ conjugacy rule is now:
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Theorem 3.2 ([3], [4])). With f satisfying the symmetry property above, we have:

∀X ∈ Mm,n(R), F ∗(X) = f ∗[σ1(X), . . . , σp(X)].

Proof of Theorem 3.1. Since f ∗ is in turn absolutely symmetric, we can apply
Lewis’ theorem twice, so that:

∀A ∈ Mm,n(R), F ∗∗(A) = f ∗∗[σ1(A), . . . , σp(A)]. (5)

In our particular setting, we choose:

f = cr, so that F = rankr .

The biconjugate of f (resp. of F ) is its (closed) convex hull co(cr) (resp. co(rankr)).
Whence Fazel’s theorem follows from (5).

4. Conclusion

With our main result, giving the convex hull of the (restricted) counting function,
we have derived Fazel’s convexification result on the (restricted) rank function. The
way of doing we have adopted is in the lines of the following: when working with
matrices (for question of convexity, differentiability, conjugation, rank, etc.), work
instead on the "X-ray traces" provided by the singular values of such matrices; the
results on R

p are then transferred to Mm,n(R).
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