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If Φ : [0,∞) → R is convex and continuous with Φ(0) = 0 and if q ∈ (1,∞), q′ := q
q−1

, we

first prove that the inequality Φ(
∫
∞

0
f(r)dr) ≤ C

∫
∞

0
f(r)Φ′(r1/q

′

)dr for every f ≥ 0 in the unit
ball of Lq(0,∞), holds when C = 1. In general, both sides may be ±∞. Related inequalities for
f ∈ L1(RN ) ∩ Lq(RN ), f 6= 0 are derived. This inequality is independent of Jensen’s inequality
and, when q = ∞, it is an elaboration on an inequality of Steffensen which was discussed elsewhere
by the author.

The next goal of the paper is to identify the range of the admissible constants C and, in particular,
to characterize the optimal constant when Φ ≥ 0 or Φ ≤ 0. It turns out that C = 1 is “almost
always” optimal, at least in a restricted sense, but not always when q < ∞ : Given q, the admissible
constants lie on an interval containing 1 whose left (right) endpoint is the supremum (infimum)
of a function defined on some (left/right dependent) subset of R3.

If q = 2, these extrema can be calculated in a number of examples. Among other things, this
reveals that C = 1 need not be optimal when Φ ≥ 0 and Φ′

+(0) = 0 or when Φ ≤ 0 and
Φ′

+(0) = −∞.
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1. Introduction and preliminaries

Throughout this paper, the notation || · ||p refers to the Lp norm, 1 ≤ p ≤ ∞,
either on (0,∞) or on R

N . The domain will always be clear from the context, which
eliminates the need for an explicit mention. When (0,∞) is replaced by a finite
interval (0, a), the notation || · ||p,(0,a) will be used.

Let Φ : [0,∞) → R be a continuous convex function such that Φ(0) = 0. As usual,
Φ(∞) := limr→∞Φ(r) ∈ [−∞,∞]. In [8], the author showed that

Φ

(∫ ∞

0

f(r)dr

)
≤

∫ ∞

0

f(r)Φ′(r)dr, (1)

for every f ∈ L∞(0,∞), f ≥ 0, with ||f ||∞ ≤ 1, (either side may be ±∞) and, as a
by-product, that

ωN ||f ||∞Φ
(
ω−1
N ||f ||1||f ||−1

∞
)
≤

∫

RN

|f(x)|Φ′(|x|N)dx, (2)
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for every f ∈ L1(RN) ∩ L∞(RN), f 6= 0, where ωN is the volume of the unit ball of
R

N . The assumption f ∈ L1(RN) ∩ L∞(RN) ensures that the left-hand side of (2)
is finite, but the right-hand side may be ∞. Both sides may be finite and negative.

In turn, (2) can be used to obtain non trivial upper and/or lower estimates for inte-
grals of the form

∫
RN |f(x)|ψ(|x|)dx in terms of ||f ||1 and ||f ||∞ when ψ : (0,∞) →

R is nondecreasing, but not necessarily nonnegative.

The inequality (1), which has little to no connection with Jensen’s inequality in
spite of some formal resemblance, is essentially a modern formulation and gener-
alization of an inequality of Steffensen [9]. Although first published in 1918 and
revisited numerous times since the late 50s, Steffensen’s inequality had only been
expressed in an arguably more cryptic and less convenient form. For example, (2)
is virtually impossible to derive from Steffensen’s original formulation. See [8] for
further comments and references.

An advantage of the proof of (1) given in [8] is that a mostly -though not entirely-
straightforward variant of it gives the next generalization (a vaguely reminiscent,
yet completely different one, is due to Bergh [1]):

Φ

(∫ ∞

0

f(r)dr

)
≤

∫ ∞

0

f(r)Φ′(r1/q
′
)dr, (3)

for every f ∈ Lq(0,∞), f ≥ 0, with ||f ||q ≤ 1 and any q ∈ (1,∞) where, as usual,
q′ := q

q−1
is the Hölder conjugate of q. If q = 1, there is no nontrivial variant of

(3). On the other hand, there is no conceptual difficulty to generalize (1) further
by replacing Lq(0,∞) by an Orlicz space in (3) – with a concomitant modification
of the term Φ′(r1/q

′
) – but this will not be discussed here beyond Remark 2.2.

As we shall see, (3) implies

ω
1/q′

N ||f ||qΦ
(
ω
−1/q′

N ||f ||1||f ||−1
q

)
≤

∫

RN

|f(x)|Φ′(|x|N/q′)dx, (4)

for every f ∈ L1(RN) ∩ Lq(RN), f 6= 0. Once again, either side may be ±∞ in (3)
and the right-hand side may be ∞ in (4). The applications are similar to those
of (1) and (2) and, notably, they provide L1 − Lq estimates for weighted integrals∫
RN |f(x)|ψ(|x|)dx. Presumably, there are many other potential applications of (3),
while (4) has more or less evident ramifications to Sobolev spaces, as briefly dis-
cussed in [8].

Neither (3) nor (4) was mentioned in [8], because an issue remained to be settled
when q < ∞ : While both (1) and (2) are optimal when Φ 6= 0 (equality holds
and both sides are finite when f is the characteristic function χBR

of any ball BR

centered at the origin1 with radius R), it is not obvious whether the same thing is
true of (3) and (4) when q <∞.

For example, if q < ∞, then f = χBR
satisfies ||f ||q ≤ 1 only when R ≤ 1 and, if

so, the inequality (3) is strict unless Φ is linear on [0, R1/q′ ]. This shows that the

1BR = [0, R) when the domain is [0,∞).
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optimality question does not have the same immediate answer as when q = ∞.
This question will be the main topic of this paper. Since optimality happens to be
the same for (3) and (4) (see Remark 2.3), we henceforth confine attention to the
optimality of (3).

It is difficult to give a meaningful account of what is being done without discussing
the problem in detail. This will result in a longer Introduction but, on the positive
side, several technicalities will not have to be revisited later.

From now on, we shall use the shorter notation

ℓ(f) :=

∫ ∞

0

f(r)dr, ℓq′(f) :=

∫ ∞

0

f(r)Φ′(r1/q
′
)dr, (5)

when f ≥ 0 and f ∈ Lq(0,∞). Both ℓ and ℓq′ are essentially linear forms, but they
may assume infinite values. That ℓ(f) is unambiguously defined is obvious. The
definiteness of ℓq′(f) will be established in Section 2. With this notation, (3) is
simply

Φ (ℓ(f)) ≤ ℓq′(f), (6)

whenever f ≥ 0 and ||f ||q ≤ 1.

Recall that the convexity of Φ implies the existence of a right derivative Φ′
+ defined

at every point of [0,∞) and nondecreasing, while the derivative Φ′ exists at all
but countably many points. In particular, Φ′ = Φ′

+ a.e., which justifies using
Φ′

+ instead of Φ′ whenever convenient in measure-theoretic considerations. Other
useful properties are that Φ′

+ is finite at every point of (0,∞) (but Φ′
+(0) = −∞ is

possible) and right-continuous on [0,∞) (see for example [5], especially [5, Remark
4.2.2, p. 26]). When Φ′

+(0) = −∞, this means limr→0+ Φ′
+(r) = −∞.

In the next section, after a brief proof of the inequalities (3) and (4), we show in
Theorem 2.4 that (3), that is, (6), is indeed optimal when Φ′

+(0) > 0 or when
−∞ < Φ′

+(0) < 0 and the sign of Φ does not change (hence Φ ≤ 0). A partial
optimality result is still true if the sign of Φ changes. However, the problem is
much more delicate when Φ′

+(0) = 0 or Φ′
+(0) = −∞. In addition, Theorem 2.4

does not fully resolve the optimality issue when the sign of Φ changes on (0,∞).

To clarify the above statements, observe that (6) implies that there is at least one
constant C > 0 (specifically, C = 1) such that

Φ(ℓ(f)) ≤ Cℓq′(f), (7)

whenever f ≥ 0 and ||f ||q ≤ 1. It is easy to see that C ≤ 0 in (7) is impossible unless
Φ ≤ 0, in which case the inequality has no value, for then Φ′ ≤ 0 by the convexity
of Φ, so that ℓq′(f) ≤ 0. In fact, C = 0 does not even make sense if |ℓq′(f)| = ∞
for some f with ||f ||q ≤ 1. This justifies confining attention to positive constants
C and, to avoid occasional trivialities, we shall always assume that Φ is not the 0
function.

Set

γ := inf{r > 0 : Φ(r) > 0} ∈ [0,∞]. (8)
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If Φ ≥ 0 (hence Φ′
+ ≥ 0) on (0,∞), then 0 ≤ γ < ∞ (Φ = 0 was just ruled out)

and every constant C > 0 for which (7) holds satisfies

C ≥ Cq,+ := sup

{
Φ(ℓ(f))

ℓq′(f)
: f ≥ 0, ||f ||q ≤ 1, ℓ(f) > γ, ℓq′(f) <∞

}
. (9)

Indeed, if f ≥ 0, ||f ||q ≤ 1 and ℓ(f) ≤ γ, then 0 = Φ(ℓ(f)) and ℓq′(f) ≥ 0
since Φ′ ≥ 0, whence (7) holds with any C > 0. The same thing is obviously
true if ℓq′(f) = ∞. Therefore, restrictions about C arise only when ℓ(f) > γ and
ℓq′(f) < ∞, which justifies (9). In the same vein, if ℓ(f) > γ, then 0 < Φ(ℓ(f)) ≤
ℓq′(f) by (6), so that the definition of Cq,+ in (9) involves only ratios of strictly
positive numbers.

By (6) and (9), 0 < Cq,+ ≤ 1 and [Cq,+,∞) is the set of admissible constants in
(7). In addition, Cq,+ = 1 if Φ′

+(0) > 0 (Theorem 2.4), which shows that C = 1 is
optimal in (7) in this case.

By similar arguments, if Φ ≤ 0 (hence Φ′
+ ≤ 0 by convexity), then every constant

C > 0 in (7) satisfies

C ≤ Cq,− := inf

{
Φ(ℓ(f))

ℓq′(f)
: f ≥ 0, ||f ||q ≤ 1,Φ(ℓ(f)) > −∞, ℓq′(f) < 0

}
. (10)

By (6), Φ(ℓ(f)) and ℓq′(f) are strictly negative real numbers in the right-hand side
of (10) and 1 ≤ Cq,− < ∞. The set of admissible constants in (7) is (0, Cq,−]. In
addition, Cq,− = 1 if also −∞ < Φ′

+(0) < 0 (Theorem 2.4). Thus, C = 1 is once
again optimal in (7).

In the two cases Φ ≥ 0 or Φ ≤ 0 discussed above, only one among Cq,+ and Cq,−
is a real number: Cq,+ = −∞ if Φ ≤ 0 because ℓ(f) > γ = ∞ is impossible and
Cq,− = ∞ if Φ ≥ 0 (hence Φ′ ≥ 0) because ℓq′(f) < 0 is impossible. However, if the
sign of Φ changes on (0,∞), then 0 < γ <∞ in (8), whence 0 < Cq,+ ≤ 1 ≤ Cq,− <
∞ (neither extremum is over the empty set). Furthermore, by arguing as above, it
is easily checked that (7) holds if and only if Cq,+ ≤ C ≤ Cq,− ((7) holds with any
C > 0 if ℓ(f) ≤ γ and ℓq′(f) ≥ 0, or if ℓq′(f) = ∞).

In other words, when the sign of Φ changes, the interval [Cq,+, Cq,−] is the set of
admissible constants in (7), but none of them is optimal relative to the whole class
of functions f ≥ 0 such that ||f ||q ≤ 1, unless Cq,+ = Cq,− (= 1), in which case
C = 1 is “by default� optimal in (7). Nonetheless, Cq,+ is always optimal under the
additional requirement ℓ(f) > γ while Cq,− is always optimal under the additional
requirement ℓq′(f) < 0.

Since Cq,− = 1 when −∞ < Φ′
+(0) < 0 (Theorem 2.4), it follows that if −∞ <

Φ′
+(0) < 0 and the sign of Φ changes, then C = 1 optimal in (7) when f ≥

0, ||f ||q ≤ 1 and ℓq′(f) < 0, but this says nothing about its optimality when ℓ(f) >
γ. This explains the earlier claim that the optimality question is not fully resolved
by Theorem 2.4 in this case.

Remark 1.1. From the above, the interval (0,∞) ∩ [Cq,+, Cq,−] is always the set
of admissible constants in (7).
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Everything would become much simpler if it were always true that Cq,+ = 1 when
Φ ≥ 0, that Cq,− = 1 when Φ ≤ 0 and that Cq,+ = Cq,− (= 1) when the sign of
Φ changes. While this the case when q = ∞ (because Φ(ℓ(χ(0,a))) = ℓ1(χ(0,a)) for
every a > 0) and in spite of what Theorem 2.4 might suggest, such a simple answer
is generally false when q < ∞. The proof of this fact is the more demanding part
of this paper.

Aside from the new but quickly proved inequalities (3) and (4), the main result is
that, in both (9) and (10), it suffices to consider nonincreasing functions of the form
f(r) := ((A − BΦ′

+(r
1/q′))χ(0,b)(r))

q′/q, where 0 < b < ∞ and A ∈ R and B ≥ 0

are constants such that A−BΦ′
+(b

1/q′−) ≥ 0 (hence A−BΦ′
+(r

1/q′) ≥ 0 on (0, b)),
||f ||q = 1 and either ℓ(f) > γ in (9) or ℓq′(f) < 0 in (10). This shows that the
calculation of Cq,± can be reduced to optimizing a function of the real parameters
b, A and B in two disjoint sets. Actually, only two parameters are involved due to
the constraint ||f ||q = 1.

It is plain that there are numerous obstacles to obtaining the aforementioned prop-
erty by showing that the extremum is achieved in (9) or (10). That the domain
is not even closed, let alone compact, for any reasonable topology for which the
functional is continuous is one of them. Moreover, the existence of an extremum
f (which is not always true, anyway) implies at best that f(r) must be 0 or
((A−BΦ′

+(r
1/q′))χ(0,b)(r))

q′/q for a.e. r > 0, a much weaker result.

Our method consists in using an approximation by finite intervals (0, a) to take
advantage, among other things, of the embedding Lq(0, a) →֒ L1(0, a) and, next,
in treating ℓ(f) as a parameter c. Only then can the existence of an extremum
be proved for fixed c. Luxemburg’s monotone rearrangement inequality (17) is in-
strumental in establishing the key property that there are always nonincreasing
extrema. Once this is done, almost everything follows from a careful application
of the Lagrange multiplier theorem after setting f = g2 to eliminate the constraint
f ≥ 0. This program is carried out in Section 3 and the conclusions are summarized
in Theorems 3.4 and 3.5.

In spite of their conceptual simplicity, it is hardly surprising that Theorems 3.4 and
3.5 rarely lead to a closed-form formula for Cq,±, but they give a simple procedure
for their numerical evaluation. While it seems unlikely that any significant further
simplification can be introduced in general, a rather dramatic one takes place when
q = 2, with the help of a change of variables (Section 4). This makes it possible
to find the exact values of C2,± in several examples (Section 5). These examples
show that when it exists, the optimal constant in (7) is not always 1 (Examples 5.1
and 5.3), that the interval [C2,+, C2,−] may be finite and nontrivial (Example 5.2)
or just reduce to the single point {1} (Example 5.4).

2. The generalized Steffensen inequalities

It is always understood that Φ : [0,∞) → R is convex and continuous with Φ(0) =
0 and that q ∈ (1,∞). We begin by giving a quick proof of (3) and (4). Full
details when q = ∞ are given in [8], so we merely highlight the main steps and the
differences. When p = 1, Lemma 2.1 below is just the absolute continuity of Φ on
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compact intervals ([5, p. 26]).

Lemma 2.1. The function Φ′(r1/p) is in Lp(0, a) for every a > 0 and every 1 ≤
p <∞.

Proof. Since Φ′ = Φ′
+ a.e., it suffices to prove that Φ′

+(r
1/p) is in Lp(0, a). This is

trivial if Φ′
+(0) ∈ R, for then Φ′

+(r
1/p) is in L∞(0, a) by the monotonicity of Φ′

+ and
its finiteness at every point of (0,∞).

It remains to consider the case when Φ′
+(0) = −∞. If so, Φ′

+ < 0 on some interval
(0, b1/p) with 0 < b ≤ a by the right-continuity of Φ′

+. Since the integrability
question is the same over (0, a) and (0, b), we may and shall assume that b = a, i.e.,
Φ′

+ < 0 on (0, a1/p). As a result, Φ(r1/p) < 0 for r ∈ (0, a) since Φ(0) = 0.

It will be more convenient to use Ψ := −Φ, which is concave, continuous on [0,∞)
and satisfies Ψ(0) = 0, Ψ′

+(0) = ∞ as well as Ψ′ > 0,Ψ > 0 on (0, a1/p). Given
n ∈ N large enough, the change of variable r = ρp yields

∫ a

1
n

(Ψ′)p(r1/p)dr =

∫ a

1
n

(Ψ′
+)

p(r1/p)dr =

∫ a1/p

n−1/p

p(Ψ′
+)

p(ρ)ρp−1dρ.

Note that 0 < Ψ′
+(ρ) ≤ Ψ(ρ)

ρ
for ρ > 0, the latter by the concavity of Ψ. Hence,

(Ψ′
+)

p(ρ) ≤ Ψ′
+(ρ)(

Ψ(ρ)
ρ

)p−1 for n−1/p ≤ ρ ≤ a1/p, so that the above inequality
becomes

∫ a

1
n

(Ψ′)p(r1/p)dr ≤
∫ a1/p

n−1/p

pΨ′(ρ)Ψp−1(ρ)dρ

= Ψp(a1/p)−Ψp(n−1/p) ≤ Ψp(a1/p),

where the absolute continuity of Ψp on [n−1/p, a1/p] was used. That Ψ′(r1/p) is in
Lp(0, a) follows by letting n→ ∞ and monotone convergence.

Of course, the condition Φ(0) = 0 is actually not needed in Lemma 2.1.

Proof of the inequality (3). First and foremost, since f ≥ 0, both sides of (3)
are well defined, possibly ±∞. This is clear for the left-hand side. The definiteness
of the right-hand side (that is, of ℓq′(f) when the notation (5) is used) is due to
the sign of Φ′ being constant a.e. on some interval (η,∞) with η ≥ 0, so that
∫∞
ηq

′ f(r)Φ′(r1/q
′
)dr is defined, possibly ±∞, whereas

∫ ηq
′

0
f(r)Φ′(r1/q

′
)dr ∈ R by

Lemma 2.1 since f ∈ Lq(0, ηq
′
).

The main step in the proof of (3) is as follows: Given a > 0, let f ∈ Lq(0, a)
be such that f > 0 on (0, a) and ||f ||q,(0,a) ≤ 1. Set F (r) :=

∫ r

0
f(s)ds, so that

Φ
(∫ a

0
f(r)dr

)
= Φ(F (a)) =

∫ F (a)

0
Φ′

+(r)dr =
∫ a

0
Φ′

+(F (s))f(s)ds after the change

of variable r := F (s). By Hölder’s inequality, F (s) ≤ ||f ||q,(0,a)s1/q′ ≤ s1/q
′
, whence

Φ
(∫ a

0
f(r)dr

)
≤

∫ a

0
f(s)Φ′

+(s
1/q′)ds =

∫ a

0
f(s)Φ′(s1/q

′
)ds by the monotonicity of

Φ′
+.
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The case when f ≥ 0 on (0, a) can be deduced from f > 0 by an approximation
argument (replace f by fε := (1 − ε)f + εa−1/q, so that fε ≥ 0 and ||fε||q,(0,a) ≤ 1
and note that Φ′(r1/q

′
) is in L1(0, a) by Lemma 2.1). This proves (3) when f = 0

on some interval (a,∞). The full proof of (3) follows by a limiting process based on
the monotone convergence theorem (see [8, Theorem 2.2]).

The above even shows that Φ
(∫∞

0
f(r)dr

)
≤

∫∞
0
f(s)Φ′(||f ||qs1/q′)ds (it is only a

bit trickier to use monotone convergence), which is more intricate than (3) and
not sharper when ||f ||q = 1. That only ||f ||q = 1 is needed to derive (4) was a
compelling reason not to discuss this form of the inequality.

Remark 2.2. Since the classical Hölder inequality is valid in Orlicz spaces equipped
with the Orlicz norm and there is an explicit formula for the norm of the charac-
teristic function of (0, s) ([6, pp. 72 and 74]), the above arguments lead to further
generalizations of (3), but we shall not elaborate.

When q = ∞, it is shown in [8, Theorem 2.4] that if Φ is absolutely continuous on
compact intervals and Φ(0) = 0, (3) implies the convexity of Φ. In fact, it is even
true that (3) for step functions suffices (recall that step functions are not dense in
L∞(0,∞)). If q < ∞, this is no longer true in general. For instance, if Φ ≥ 0 and
Cq,+ < 1 (the optimal constant in (7) in this case; see Example 5.1 in Section 5),
it is not hard to see that the addition of a suitable “bump� function produces a
nonconvex function for which (3) continues to hold. Thus, the class of functions
for which (3) holds provides a q-dependent generalization of convexity. It seems
unlikely that this class can be characterized by a property expressed solely in terms
of the values of Φ (like convexity).

Proof of the inequality (4). Upon setting f := g
||g||q in (3), we get

||g||qΦ
(
||g||−1

q

∫ ∞

0

g(r)dr

)
≤

∫ ∞

0

g(r)Φ′(r1/q
′
)dr, (11)

for every g ∈ Lq(0,∞), g ≥ 0, g 6= 0.

If now f ∈ Lq(RN), f 6= 0, let fS(r) := 1
NωN

∫
SN−1 |f(rσ)|dσ denote the spheri-

cal mean of |f |, where S
N−1 is the unit sphere of RN , with measure NωN and let

g(r) := r(N−1)/qfS(r), so that g ≥ 0, g 6= 0 and ||g||q ≤ (NωN)
−1/q||f ||q. Fur-

thermore,
∫∞
0
g(r)dr = (NωN)

−1
∫
RN |f(x)||x|(1−N)/q′dx and

∫∞
0
g(r)Φ′(r1/q

′
)dr =

(NωN)
−1

∫
RN |f(x)||x|(1−N)/q′Φ′(|x|1/q′)dx. Thus, by (11),

NωN ||g||qΦ
(
(NωN ||g||q)−1

∫

RN

|f(x)||x|(1−N)/q′dx

)

≤
∫

RN

|f(x)||x|(1−N)/q′Φ′(|x|1/q′)dx. (12)

As noted earlier, ||g||q ≤ (NωN)
−1/q||f ||q, so that NωN ||g||q ≤ (NωN)

1/q′||f ||q and
λΦ(R/λ) is a nonincreasing function of λ > 0 for every 0 ≤ R ≤ ∞ since Φ is
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convex and Φ(0) = 0. Together with (12), this yields

(NωN)
1/q′||f ||qΦ

(
(NωN)

−1/q′||f ||−1
q

∫

RN

|f(x)||x|(1−N)/q′dx

)

≤
∫

RN

|f(x)||x|(1−N)/q′Φ′(|x|1/q′)dx

and (4) follows by replacing f(x) by N−1/q|x|(1−N)/qf(x|x|(1−N)/N) in this in-
equality. Indeed, this leaves ||f ||q unchanged while

∫
RN |f(x)||x|(1−N)/q′dx and∫

RN |f(x)||x|(1−N)/q′Φ′(|x|1/q′)dx are changed into N1/q′
∫
RN |f(x)|dx (= N1/q′||f ||1

if f ∈ L1(RN)) and N1/q′
∫
RN |f(x)|Φ′(|x|N/q′)dx, respectively (if x = y|y|N−1, then

dx = N |y|N(N−1)dy).

Remark 2.3. More generally, if C > 0 and Φ(
∫∞
0
f(r)dr) ≤ C

∫∞
0
f(r)Φ′(r1/q

′
)dr

for every f ≥ 0 in Lq(0,∞) with ||f ||q ≤ 1, the same procedure as above yields

ω
1/q′

N ||f ||qΦ(ω−1/q′

N ||f ||1||f ||−1
q ) ≤ C

∫
RN |f(x)|Φ′(|x|N/q′)dx for every f ∈ Lq(RN) ∩

L1(RN), f 6= 0. That the converse is true is easily seen by confining attention to
nonnegative radially symmetric functions of the form f(x) = g(|x|N) with g ∈
C∞

0 ([0,∞)). It is then straightforward to infer that both inequalities have the same
admissible and/or optimal constants (after restriction to a suitable class if the sign
of Φ changes on (0,∞); see the Introduction).

As a follow-up on Remark 2.3, we now address the optimality of the inequalities
(3) and (4).

Theorem 2.4. Let Cq,± be given by (9) and (10). Then, Cq,+ = 1 if Φ′
+(0) > 0

and Cq,− = 1 if −∞ < Φ′
+(0) < 0.

In particular, if either Φ′
+(0) > 0, or −∞ < Φ′

+(0) < 0 and Φ ≤ 0, the inequalities
(3) (for f ≥ 0 and ||f ||q ≤ 1) and (4) (for f ∈ L1(RN) ∩ Lq(RN), f 6= 0) are
optimal. In addition, if −∞ < Φ′

+(0) < 0 and the sign of Φ changes on (0,∞),
then (3) is optimal when f ≥ 0, ||f ||q ≤ 1 and

∫∞
0
f(r)Φ′(r1/q

′
)dr < 0 and (4) is

optimal when f ∈ L1(RN) ∩ Lq(RN) and
∫
RN |f(x)|Φ′(|x|N/q′)dx < 0.

Proof. Recall that ℓ and ℓq′ were defined in (5). If fn := n1/qχ(0, 1
n
), then, fn ≥ 0,

||fn||q = 1 and ℓ(fn) = n−1/q′ . Since Φ′
+ is right continuous with Φ′

+(0) ∈ R, it
follows from Φ(r) =

∫ r

0
Φ′

+(s)ds that Φ(r) = Φ′
+(0)r + o(r) for r > 0 small enough.

In particular, Φ(ℓ(fn)) = Φ′
+(0)n

−1/q′ + o(n−1/q′).

Next, ℓq′(fn) = n1/q
∫ 1

n

0
Φ′(r1/q

′
)dr = n1/q

∫ 1
n

0
Φ′

+(r
1/q′)dr. Once again by the right-

continuity of Φ′
+, this yields ℓq′(fn) = Φ′

+(0)n
−1/q′ + o(n−1/q′). Therefore, since

Φ′
+(0) 6= 0, we infer that

Φ(ℓ(fn))

ℓq′(fn)
=

Φ′
+(0)n

−1/q′ + o(n−1/q′)

Φ′
+(0)n

−1/q′ + o(n−1/q′)
= 1 + o(1),

that is, limn→∞
Φ(ℓ(fn))
ℓq′ (fn)

= 1.
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If Φ′
+(0) > 0, then γ = 0 in (8), so that Cq,+ ≥ Φ(ℓ(fn))

ℓq′ (fn)
by (9) since ℓ(fn) > 0.

Therefore, Cq,+ = 1 since Cq,+ ≤ 1 is always true (see Section 1). If now −∞ <

Φ′
+(0) < 0, then Cq,− ≤ Φ(ℓ(fn))

ℓq′ (fn)
by (10) (to see that ℓq′(fn) < 0, use the right-

continuity of Φ′
+ at 0). Therefore, Cq,− = 1 since Cq,− ≥ 1 is always true.

The “in particular� part follows from the discussion in Section 1 and from Remark
2.3.

3. Finite dimensional characterization of Cq,±

In this section, we describe a procedure to simplify the calculation of the constants
Cq,± in (9) and (10), respectively. Of course, this has value only when they are
not visibly ±∞ or known to be 1 by Theorem 2.4. The strategy to overcome the
difficulties associated with this issue was already outlined in the Introduction and
will now be implemented. As before, q ∈ (1,∞) and Φ : [0,∞) → R is convex and
continuous, Φ(0) = 0 and Φ is not the 0 function. We first discuss the evaluation
of Cq,+.

3.1. Reduction to a finite interval

Since C2,+ = −∞ if γ = ∞ in (8), we shall assume that Φ(r) > 0 for some
r > 0 (i.e., Φ ≥ 0 or the sign of Φ changes) so that 0 ≤ γ < ∞ and the set
{f ≥ 0, ||f ||q ≤ 1, ℓ(f) > γ, ℓq′(f) < ∞} is not empty because it contains the
function f = n−1/qχ(0,n) for n large enough (the finiteness of ℓq′(f) follows from
Lemma 2.1).

The first remark is that the integrals ℓ(f) and ℓq′(f) in the definition (9) of Cq,+

are always finite and positive, which follows from (6) and the conditions ℓ(f) > γ
and ℓq′(f) < ∞. As a result, this definition is unchanged if it is also required that
f vanishes over some infinite interval (a,∞).

In turn, with a > 0 being fixed, set fa := fχ(0,a) for every measurable function f
on (0,∞) and

Cq,+(a) := sup

{
Φ(ℓ(fa))

ℓq′(fa)
: fa ≥ 0, ||fa||q ≤ 1, ℓ(fa) > γ

}
.

By Lemma 2.1, the function fa(r)Φ
′(r1/q

′
) is integrable, so that the definition of

Cq,+(a) is unchanged if the immaterial restriction ℓq′(fa) < ∞ is incorporated. If
so, it is readily seen from (9) that

Cq,+ = sup
a>0

Cq,+(a) = lim
a→∞

Cq,+(a), (13)

the latter since Cq,+(a) is clearly a nondecreasing function of a.

We now focus on the evaluation of Cq,+(a). For simplicity of notation, we drop the
subscript “a� in fa, but f will henceforth denote a function of the space Lq(0, a),
with norm || · ||q,(0,a). Then,

ℓ(f) =

∫ a

0

f(r)dr, ℓq′(f) =

∫ a

0

f(r)Φ′(r1/q
′
)dr =

∫ a

0

f(r)Φ′
+(r

1/q′)dr (14)
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and

Cq,+(a) = sup

{
Φ(ℓ(f))

ℓq′(f)
: f ≥ 0, ||f ||q,(0,a) ≤ 1, ℓ(f) > γ

}

= sup
c>γ

sup

{
Φ(c)

ℓq′(f)
: f ≥ 0, ||f ||q,(0,a) = 1, ℓ(f) = c

}
. (15)

By Hölder’s inequality, the set {f ≥ 0, ||f ||q,(0,a) ≤ 1, ℓ(f) = c} is nonempty if and
only if a > γq

′
and c ∈ (γ, a1/q

′
] (in particular, Cq,+(a) = −∞ if a ≤ γq

′
). Thus,

in the right-hand side of (15), the supremum over c > γ is actually the supremum
over c ∈ (γ, a1/q

′
] and, for such values of c,

sup

{
Φ(c)

ℓq′(f)
: f ≥ 0, ||f ||q,(0,a) ≤ 1, ℓ(f) = c

}

=
Φ(c)

inf{ℓq′(f) : f ≥ 0, ||f ||q,(0,a) ≤ 1, ℓ(f) = c} > 0.

(In general, if G is a nonnegative functional, the relation sup 1
G
= 1

infG
is true only

if the extrema are taken over a nonempty set; same thing with inf 1
G
= 1

supG
.) As a

result,

Cq,+(a) = sup
c∈(γ,a1/q′ ]

Φ(c)

inf{ℓq′(f) : f ≥ 0, ||f ||q,(0,a) ≤ 1, ℓ(f) = c} . (16)

The next step is to show that not only the infimum in (16) is a minimum, but also
that it is achieved at a nonincreasing right-continuous function on (0, a). To do
this, we shall use the special case (17) below of an inequality of Luxemburg2 (see
[2, p. 942] or [7, p. 102]).

If g is a measurable function on (0, a), call δg the nonincreasing rearrangement of
g and ιg the nondecreasing rearrangement of g, i.e., ιg(r) := δg((a − r)−). Unlike
in many other treatments in which the monotone rearrangements of a function g
are those of |g| and hence nonnegative, the definition used in [2] and [7] has the
property that δg = g a.e. if g is nonincreasing (hence ιg = g a.e. if g is nondecreasing)
regardless of the sign of g. If g ≥ 0, all the definitions coincide. In particular,
||g||p,(0,a) = ||δ|g|||p,(0,a) for 1 ≤ p <∞; see for example [10, Theorem 1.8.5].

Luxemburg’s inequality states that, if f and g are measurable and δ|f |δ|g| ∈ L1(0, a)
(e.g., f ∈ Lq(0, a) and g ∈ Lq′(0, a)), then

∫ a

0

δf (r)ιg(r)dr ≤
∫ a

0

f(r)g(r)dr ≤
∫ a

0

δf (r)δg(r)dr. (17)

Lemma 3.1. If a > γq
′
and c ∈ (γ, a1/q

′
], there is a nonincreasing right-continuous

function fc ∈ Lq(0, a), fc 6= 0, such that fc ≥ 0, ||fc||q,(0,a) ≤ 1, ℓ(fc) = c and
ℓq′(fc) = inf{ℓq′(f) : f ≥ 0, ||f ||q,(0,a) ≤ 1, ℓ(f) = c}.
2In discrete form, this inequality is already in [4, Theorem 368].
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Proof. The hypotheses about a and c ensure that {f ≥ 0, ||f ||q,(0,a) ≤ 1, ℓ(f) =
c} 6= ∅, so that there is a sequence (fn) from that set that minimizes ℓq′ . By the
reflexivity of Lq(0, a), this sequence contains a weakly convergent subsequence, still
denoted (fn) for simplicity, say fn ⇀ fc in L

q(0, a).

Since Lq(0, a) →֒ L1(0, a), it follows that c =
∫ a

0
fn(r)dr =

∫ a

0
fc(r)dr = ℓ(fc). Also,

||fc||q ≤ 1 (but fc 6= 0 since c > γ ≥ 0) and fc ≥ 0 since the convex cone of
nonnegative functions is weakly closed in Lq(0, a).

To see that fc may also be chosen nonincreasing, note that δfc ≥ 0 since fc ≥ 0,
whence ||δfc||q,(0,a) = ||fc||q,(0,a). Also, once again since fc, δfc ≥ 0, it follows that
c = ℓ(fc) = ||fc||1,(0,a) = ||δfc||1,(0,a) = ℓ(δfc).

The first inequality in (17) with f = fc and g(r) = Φ′
+(r

1/q′) yields

∫ a

0

δfc(r)Φ
′
+(r

1/q′)dr ≤
∫ a

0

fc(r)Φ
′
+(r

1/q′)dr,

since f ∈ Lq(0, a), g ∈ Lq′(0, a) (Lemma 2.1) and ιg = g a.e. by the monotonicity of
Φ′

+. Since Φ
′ = Φ′

+ a.e., the left-hand side is ℓq′(δfc) and the right-hand side is ℓq′(fc),
so that ℓq′(δfc) ≤ ℓq′(fc). Since δfc satisfies the required constraints, ℓq′(δfc) = ℓq′(fc)
by the optimality of fc. Thus, it suffices to replace fc by δfc to obtain the desired
monotonicity of fc with no prejudice to the other properties. In principle, the
right-continuity requires only a modification on a countable set, but that δfc is
right-continuous is well known anyway ([10, p. 26]).

3.2. Construction of a maximizing sequence and characterization of Cq,+

With a > 0 being fixed, much more information can be obtained about the minimiz-
ers fc of Lemma 3.1. First, it should be noticed that f ∈ Lq(0, a) and f ≥ 0 if and
only if f = g2 with g ∈ L2q(0, a). If so, ||f ||q,(0,a) ≤ 1 if and only if ||g||2q,(0,a) ≤ 1.
From (16), it follows that if a > γq

′
, then

Cq,+(a) = sup
c∈(γ,a1/q′ ]

Φ(c)

inf{ℓq′(g2) : ||g||2q,(0,a) ≤ 1, ℓ(g2) = c} (18)

and the infimum in the right-hand side of (18) is achieved when g = gc :=
√
fc

with fc given by Lemma 3.1. In particular, gc is nonincreasing on (0, a) and right-
continuous. For future reference, we record that

||gc||2q,(0,a) ≤ 1, ℓ(g2c ) = c and ℓq′(g
2
c ) = inf{ℓq′(g2) : ||g||2q,(0,a) ≤ 1, ℓ(g2) = c}.

(19)

Let Γ : L2q(0, a) → R
2 denote the mapping

Γ(g) :=

(
ℓ(g2)

||g||2q2q,(0,a)

)
. (20)

Then, Γ is C1 since g ∈ L2q(0, a) → ℓ(g2) ∈ R is quadratic and continuous, hence
C∞ and since also || · ||pp,(0,a) is well known to be C1 on Lp(0, a) if p ∈ (1,∞).
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Lemma 3.2. If g0 ∈ L2q(0, a) is nonnegative, nonincreasing and right-continuous
on (0, a), then either g0 is a nonnegative multiple of the characteristic function χ(0,b)

of some interval (0, b) with 0 ≤ b ≤ a, or the derivative DΓ(g0) is onto R
2.

Proof. With no loss of generality, assume g0 6= 0 since the result is obvious if
g0 = 0. In what follows, g2q−1 should be understood as (g2)q−1g, which is well
defined regardless of the sign of g at any point. If g ∈ L2q(0, a), the derivative
DΓ(g) is the mapping

h ∈ L2q(0, a) 7→
(

2ℓ(gh)
2q

∫ a

0
g2q−1(r)h(r)dr

)
∈ R

2.

Thus, if DΓ(g0) is not onto R
2, the two linear forms h 7→ ℓ(g0h) =

∫ a

0
g0h and

h 7→
∫ a

0
g2q−1
0 (r)h(r)dr on L2q(0, a) are collinear. These linear forms correspond

to the two functions g0 and g2q−1
0 , respectively, of the space L(2q)′(0, a) dual to

L2q(0, a) (note 2q > 2 > (2q)′, so g0 ∈ L(2q)′(0, a)) and they are collinear if and only
if λg0 + µg2q−1

0 = 0 a.e. for some real constants λ and µ, not both 0.

Given r ∈ (0, a), this means that either g0(r) = 0 or that µ 6= 0 and g2q−2
0 (r) =

−λ/µ. Thus, −λ/µ > 0 since g0 6= 0 and, since g0 ≥ 0, it follows that for r ∈
(0, a), g0(r) can only be 0 or

√
−λ/µ. But since g0 6= 0 is also nonincreasing and

right-continuous, it must equal
√
−λ/µ on some interval (0, b) with 0 < b ≤ a and

0 on its complement, so that g0 =
√
−λ/µχ(0,b).

Lemma 3.3. The (nonincreasing, right-continuous) minimizer fc of Lemma 3.1
may be chosen of the form fc(r) = (A − BΦ′(r1/q

′
))q

′/qχ(0,b)(r), where 0 < b ≤ a

and A and B ≥ 0 are real constants, not both 0, such that A− BΦ′
+(r

1/q′) ≥ 0 for
0 < r < b.

Proof. In this proof, fc denotes one of the minimizers found in Lemma 3.1, chosen
once and for all. First, we discuss the (very) special case when Φ is linear on [0, b1/q

′
]

where 0 < b ≤ a and fc = 0 on [b, a) if b < a (no condition about fc if b = a). Thus,
Φ(r) = λr for 0 ≤ r ≤ b1/q

′
and some λ ∈ R and ℓq′(fc) =

∫ a

0
fc(r)Φ

′(r1/q
′
)dr =

∫ b

0
fc(r)Φ

′(r1/q
′
)dr = λ

∫ b

0
fc(r)dr = λℓ(fc) = λc.

Also, since c = ℓ(fc) =
∫ a

0
fc(r)dr =

∫ b

0
fc(r)dr and ||fc||q,(0,b) = ||fc||q,(0,a) ≤ 1,

it follows from Hölder’s inequality that c ≤ b1/q
′
. Now, define f̃c := cb−1χ(0,b), so

that f̃c ≥ 0 (recall c > γ ≥ 0), ||f̃c||q,(0,a) = cb−1/q′ ≤ 1, ℓ(f̃c) = c and ℓq′(f̃c) =

cb−1
∫ b

0
λdr = λc = ℓq′(fc). This shows that both fc and f̃c minimize ℓq′(f) under

the same constraints about f. Furthermore, f̃c has the desired form with B = 0 and
A = (cb−1)q−1 > 0 and the lemma is proved by replacing fc by f̃c.

Accordingly, we assume from now on that Φ is not linear on [0, a1/q
′
] and that, if it

is linear on some interval [0, b1/q
′
] with 0 < b < a, then fc is not 0 on [b, a).

There is nothing to prove if fc = Aχ(0,b) with A > 0 and 0 < b ≤ a. Since fc 6= 0
neither A = 0 nor b = 0 can occur. Thus, from now on, we assume with no loss of
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generality that fc 6= Aχ(0,b) for any A ≥ 0 and any 0 ≤ b ≤ a. As a result, gc =
√
fc

is not a nonnegative multiple of any characteristic function χ(0,b), 0 ≤ b ≤ a, so that
DΓ(gc) is onto R

2 by Lemma 3.2.

If d := ||gc||2q2q,(0,a), then 0 < d ≤ 1 (since gc 6= 0) and, by (20),

gc ∈ S :=

{
g ∈ L2q(0, a) : Γ(g) =

(
c
d

)}

⊂ {g ∈ L2q(0, a) : ||g||2q,(0,a) ≤ 1, ℓ(g2) = c}.
Therefore, it follows from (19) that, a fortiori, gc ∈ S minimizes ℓq′(g

2) for g ∈ S. By
the standard Lagrange multiplier theorem ([3, p. 333]), the surjectivity of DΓ(gc)
ensures that the derivative of ℓq′(g

2) at gc is a linear combination of the derivatives
of the two scalar components of DΓ(gc), that is,

gc(r)Φ
′
+(r

1/q′) = λgc(r) + µg2q−1
c (r),

for a.e. r ∈ (0, a), where λ and µ are real constants. For any such r, the equality
can hold only if gc(r) = 0 or if Φ′

+(r
1/q′) = λ+ µg2q−2

c (r).

Suppose first that gc(r) 6= 0 for every r ∈ (0, a). Then, µ 6= 0 since Φ is not linear
on [0, a1/q

′
]. Next, if gc(r) = 0 for some r ∈ (0, a), then gc = 0 on some maximal

interval [b, a) with 0 < b < a since gc 6= 0 is nonincreasing and right-continuous.
Thus, if µ = 0, it follows that Φ′

+(r
1/q′) = λ for 0 < r < b. But then, Φ is linear on

[0, b1/q
′
] while fc = g2c = 0 on [b, a), which is ruled out by the standing assumptions.

As a result, µ 6= 0 in all cases and, hence, g2q−2
c (r) = −λ/µ + (1/µ)Φ′

+(r
1/q′) > 0

whenever gc(r) 6= 0. By the monotonicity and right-continuity of gc, it must be
that gc = 0 on some maximal interval [b, a) with 0 < b ≤ a and gc 6= 0 on (0, b).
Therefore, g2q−2

c (r) = A − BΦ′
+(r

1/q′) > 0 for 0 < r < b, where A := −λ/µ and
B := −1/µ. Note that B > 0 since g2q−2

c is nondecreasing and Φ′
+ is nonincreasing.

Since q/q′ = q−1, this proves that fc(r) = g2c (r) = (A−BΦ′
+(r

1/q′))q
′/qχ(0,b)(r).

Theorem 3.4. The constant Cq,+ in (9) is characterized by

Cq,+ = sup
b>γq′

sup
f∈Σq,+(b)

Φ(ℓ(f))

ℓq′(f)
, (21)

where Σq,+(b) denotes the set of functions f ∈ Lq(0, b) (extended by 0 in [b,∞)) of
the form f(r) = (A− BΦ′

+(r
1/q′))q

′/q, where A and B are real constants which are
further restricted by the conditions B ≥ 0, A−BΦ′

+(b
1/q′−) ≥ 0, ||f ||q,(0,b) = 1 and

ℓ(f) > γ (i.e.,
∫ b

0
f(r)dr > γ; this is redundant if γ = 0 in (8)).

Proof. Since (21) is obvious when γ = ∞ (both sides are −∞), we henceforth
assume that γ < ∞. Let (an) ⊂ (0,∞) be such that limn→∞ an = ∞, so that

limn→∞Cq,+(an) = Cq,+ by (13). With no loss of generality, assume a
1/q′

n > γ and

choose cn ∈ (γ, a
1/q′

n ] such that Φ(cn)
inf{ℓq′ (f):f≥0,||f ||q,(0,a)≤1,ℓ(f)=cn} ≥ Cq,+(an)− 1

n
, which

is possible by (18). If fcn is given by Lemma 3.3 with c = cn, this reads

(Cq,+(an) ≥)
Φ(ℓ(fcn))

ℓq′(fcn)
≥ Cq,+(an)−

1

n
,
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whence limn→∞
Φ(ℓ(fcn ))
ℓq′ (fcn )

= Cq,+.

Since fcn(r) = (An−BnΦ
′
+(r

1/q′))q
′/qχ(0,bn) for some bn > 0, An ∈ R andBn ≥ 0 such

that An − BnΦ
′
+(r

1/q′) > 0 for 0 < r < bn (hence An − BnΦ
′
+(b

1/q′

n −) ≥ 0), fcn has
all the properties required for membership to Σq,+(bn), except that 0 < ||fcn||q < 1

is possible. However, it is readily checked that hn := fcn
||fcn ||q

∈ Σq,+(bn) and that

Φ(ℓ(hn))

ℓq′(hn)
=

||fcn||qΦ
(

1
||fcn ||q

ℓ (fcn)
)

ℓq′(fcn)
≥ Φ(ℓ(fcn))

ℓq′(fcn)
,

the latter since λΦ(R/λ) is a nonincreasing function of λ > 0 for any R ≥ 0 by the
convexity of Φ (and ||fcn||q ≤ 1, ℓq′(fcn) > 0; indeed, ℓq′(fcn) ≥ Φ(ℓ(fcn)) > 0 by (6)
since ℓ(fcn) = cn > γ).

From the above, supb>0 supf∈Σq,+(b)
Φ(ℓ(f))
ℓq′ (f)

≥ supn
Φ(ℓ(hn))
ℓq′ (hn)

≥ Cq,+. Conversely,

supb>0 supf∈Σq,+(b)
Φ(ℓ(f))
ℓq′ (f)

≤ Cq,+ by (9) since Σq,+(b) ⊂ {f ≥ 0, ||f ||q ≤ 1, ℓ(f) >

γ, ℓq′(f) < ∞} for every b > 0 (if f ∈ Σq,+(b), then ℓq′(f) < ∞ by Lemma 2.1).
This proves (21) with supb>γq′ replaced by supb>0, but there is no difference since
∫ b

0
f(r)dr > γ and ||f ||q,(0,b) = 1 are not compatible if b ≤ γq

′
.

3.3. Characterization of Cq,−

With appropriate modifications, a similar procedure can be followed to find a sim-
pler characterization of Cq,− in (10). The only case of interest is when γ > 0 in (8)
(if Φ ≥ 0, then Cq,− = ∞), an assumption which is retained in the remainder of
this section.

By (6), both Φ(ℓ(f)) and ℓq′(f) are finite and strictly negative in the right-hand
side of (10), but this does not always require ℓ(f) <∞ because ℓ(f) = ∞ is possible
if Φ(∞) is finite (hence negative). However, this is not an obstacle to reduce once
again the problem to finite intervals: It is straightforward to check that

Cq,− = inf
a>0

Cq,−(a) = lim
a→∞

Cq,−(a),

with

Cq,−(a) := inf
f∈E

Φ(ℓ(f))

ℓq′(f)
= inf

c∈(0,γ)
inf
f∈Ec

Φ(c)

ℓq′(f)
,

where Ec := {f ≥ 0, ||f ||q,(0,a) ≤ 1, ℓq′(f) < 0, ℓ(f) = c} and E := ∪c>0Ec =
∪c∈(0,γ)Ec (if c ≥ γ, (6) shows that the conditions ℓq′(f) < 0 and ℓ(f) = c are not
compatible, so Ec = ∅).
From now on, a > 0 is fixed. Since it is inconvenient to discuss the minimization of
the ratio of two negative quantities, we shall temporarily use

Ψ := −Φ and kq′(f) :=

∫ a

0

f(r)Ψ′(r1/q
′
)dr = −ℓq′(f).
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With this notation,

Cq,−(a) = inf
c∈(0,γ)

inf
f∈Ec

Ψ(c)

kq′(f)

and Ec = {f ≥ 0, ||f ||q,(0,a) ≤ 1, kq′(f) > 0, ℓ(f) = c}.
The condition c ∈ (0, γ) does not ensure that Ec 6= ∅ (for example, Ec = ∅ if
a1/q

′
< γ and a1/q

′
< c < γ), but it is clear that Ec 6= ∅ if c > 0 is small enough

and that, if Ec0 6= ∅ for some c0 > 0, then Ec 6= ∅ for 0 < c ≤ c0 (if f ∈ Ec0 , then
c
c0
f ∈ Ec).

This shows that Ec 6= ∅ for c in a maximal open subinterval (0, cγ) of (0, γ) with
cγ > 0, although Ecγ may or may not be empty. This is immaterial for our purposes,
for if Ecγ 6= ∅, then every f ∈ Ecγ can be approximated in Lq(0, a) by a sequence
(fn) with fn ∈ Ecγ− 1

n
(for example, fn := (1− 1

ncγ
)f). It follows that

Cq,−(a) = inf
c∈(0,cγ)

inf
f∈Ec

Ψ(c)

kq′(f)
,

regardless of whether Ecγ is empty or not. Since Ec 6= ∅ for every c ∈ (0, cγ), this
is also

Cq,−(a) = inf
c∈(0,cγ)

Ψ(c)

supf∈Ec
kq′(f)

.

When Ec 6= ∅ (in particular, c ∈ (0, cγ)), it is obvious from the definition of Ec that
supf∈Ec

kq′(f) = sup{kq′(f) : f ≥ 0, ||f ||q,(0,a) ≤ 1, ℓ(f) = c}. As a result,

Cq,−(a) = inf
c∈(0,cγ)

Ψ(c)

sup{kq′(f) : f ≥ 0, ||f ||q,(0,a) ≤ 1, ℓ(f) = c} .

It is straightforward to check that the supremum is a maximum. In addition, it is
achieved at some (nonzero) fc which is nondecreasing and right-continuous. To see
this, argue as in the proof of Lemma 3.1, but now using the second inequality in
(17) with f = fc and g(r) = Ψ′

+(r
1/q′) and note that g = δg a.e. by the monotonicity

of Ψ′
+.

From the above, it suffices to replace minimization by maximization in the proof of
Lemma 3.3 to find out that, with no loss of generality, fc may be assumed to have
the form fc(r) = (A − BΦ′(r1/q

′
))q

′/qχ(0,b)(r), where 0 < b ≤ a and A and B ≥ 0

are real constants, not both 0, such that A− BΦ′
+(r

1/q′) ≥ 0 for 0 < r < b. Then,
an obvious modification of the proof of Theorem 3.4 yields (returning to Φ and ℓq′
instead of Ψ and kq′):

Theorem 3.5. The constant Cq,− in (10) is characterized by

Cq,− = inf
b>0

inf
f∈Σq,−(b)

Φ(ℓ(f))

ℓq′(f)
, (22)

where Σq,−(b) denotes the set of functions f ∈ Lq(0, b) (extended by 0 in (b,∞)) of
the form f(r) = (A− BΦ′

+(r
1/q′))q

′/q, where A and B are real constants which are
further restricted by the conditions B ≥ 0, A− BΦ′

+(b
1/q′−) ≥ 0, ||f ||q,(0,b) = 1 and

ℓq′(f) < 0 (i.e.,
∫ b

0
f(r)Φ′

+(r
1/q′)dr < 0; this is redundant if γ = ∞ in (8)).



316 P. J. Rabier / Generalized Steffensen Inequalities

While Theorems 3.4 and 3.5 considerably restrict the class of functions needed to
evaluate the constants Cq,±, this task often remains analytically nontrivial. It is
shown in the next section that the problem can be greatly simplified when q = 2,
but a number of other questions remain open at this time. For example, issues
about the q-dependence of Cq,±, such as monotonicity or continuity. It is clear from
(9) and (10) that Cq,+ (Cq,−) is lsc (usc), but continuity is more elusive and may
well depend on extra properties of Φ. Another question, closely related to Theorem
2.4, is whether Cq,+ < 1 (Cq,− > 1) whenever Φ′

+(0) = 0 (Φ′
+(0) = −∞).

4. The case q = 2

When q = 2, the calculation of C2,± can be reduced to an optimization problem
much simpler than described in Theorems 3.4 and 3.5. Details follow.

From now on, Φ is given and q = 2 (= q′). Consistent with Theorems 3.4 and 3.5,
let f(r) := A − BΦ′

+(r
1/2) for r ∈ (0, b) with b > 0, where A ∈ R and B ≥ 0 are

constant. We also assume
A−BΦ′

+(b
1/2−) ≥ 0 (23)

and ||f ||2 = 1. Set

I(b) :=

∫ b

0

Φ′(r1/2)dr and J(b) =

∫ b

0

Φ′(r1/2)2dr − b−1I(b)2 (24)

and note that, by the Cauchy-Schwarz inequality, J(b) > 0 unless Φ is linear on
[0, b1/2]. From now on, we assume that J(b) > 0. For the case when Φ is linear on
[0, b1/2] for some b > 0, see the comments after Remark 4.1.

A simple calculation reveals that the condition ||f ||2 = 1 amounts to

X2 + Y 2 = 1, (25)

where (recall B ≥ 0)

X := Ab1/2 −Bb−1/2I(b) and Y := BJ(b)1/2 ≥ 0 (26)

Since J(b) > 0, these relations can be inverted to yield

A = b−1/2X + b−1I(b)J(b)−1/2Y and B = J(b)−1/2Y. (27)

In terms of X and Y, the inequality (23) becomes X ≥ b1/2J(b)−1/2K(b)Y, where

K(b) := Φ′
+(b

1/2−)− b−1I(b) > 0. (28)

Above, the positivity of K(b) follows from the monotonicity and non-constancy of
Φ′

+ on (0, b1/2) (since Φ is not linear on [0, b]). Thus, X ≥ 0 since Y ≥ 0 and so,
from (25), Y = (1 − X2)1/2. It follows that X ≥ b1/2J(b)−1/2K(b)Y if and only if
(note that the right-hand side is strictly less than 1)

X ≥ L(b) := b1/2K(b)(J(b) + bK(b)2)−1/2 > 0. (29)
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Another elementary calculation shows that

ℓ(f) = b1/2X and ℓ2(f) = b−1/2I(b)X − J(b)1/2(1−X2)1/2. (30)

Conversely, if b > 0 is fixed and X ∈ [b1/2K(b)(J(b) + bK(b)2)−1/2, 1] is arbitrary,
then the function f(r) = A − BΦ′

+(r
1/2) with A and B given by (27) with Y =

(1 − X2)1/2 satisfies (23) (hence f ≥ 0 on (0, b)) and ||f ||2 = 1. Furthermore, by
(30) and (24), ℓ(f) > γ (as required in Theorem 3.4) if and only if X > b−1/2γ and
ℓ2(f) < 0 (as required in Theorem 3.5) if and only if X < M(b) ≤ 1, where

M(b) :=




1 if I(b) < 0,

J(b)1/2
(∫ b

0
Φ′(r1/2)2dr

)−1/2

if I(b) ≥ 0.
(31)

As a result, if γ <∞ in (8), then

C2,+ = sup
b>γ2,X∈[L(b),1],X>b−1/2γ

Φ
(
b1/2X

)

b−1/2I(b)X − J(b)1/2(1−X2)1/2
(32)

(and C2,+ = −∞ if γ = ∞) and, irrespective of γ (but see Remark 4.1 below when
γ = 0)

C2,− = inf
b>0,X∈[L(b),M(b))

Φ
(
b1/2X

)

b−1/2I(b)X − J(b)1/2(1−X2)1/2
. (33)

The ratios in the right-hand sides of (32) and (33) are always positive for the
specified values of the parameters. The advantage of (32) and (33) lies in the fact
that the (b,X)-dependence of the function to be optimized and of the constraints
is much simpler than the analogous (b, A,B)-dependence in Theorems 3.4 and 3.5.

Remark 4.1. It is not immediately clear that (33) yields C2,− = ∞ if γ = 0,
but this follows from M(b) ≤ L(b) for every b > 0 if Φ ≥ 0 (hence Φ′ ≥ 0 a.e.
by convexity). Indeed, a short calculation and I(b) ≥ 0 show that M(b) ≤ L(b) is
equivalent to J(b) ≤ I(b)K(b). In turn, by (24) and (28), the latter inequality is just∫ b

0
Φ′(r1/2)2dr ≤ Φ′

+(b
1/2−)

∫ b

0
Φ′(r1/2)dr, which holds since Φ′ ≥ 0 is nondecreasing.

If Φ is linear on some interval [0, b1/2] with b > 0, then J(b) = K(b) = 0 and L(b)
is not defined, but this has no negative impact on the end results.

First, it is readily seen that Φ cannot be linear on any interval [0, b1/2] with b > γ2

(i.e., linear on an interval strictly longer than [0, γ]) if 0 < γ < ∞. Thus, since
every b > 0 involved in (32) satisfies b > γ2, the case when Φ is linear on [0, b1/2]
never happens and (32) remains valid when 0 < γ <∞ even if Φ is linear on some
interval [0, b] (with, of necessity, b ≤ γ2).

If γ = ∞, it is obvious that C2,+ = −∞ and, if γ = 0, the fact that Φ is linear on
some nontrivial interval [0, b] implies Φ′

+(0) > 0, so that C2,+ = 1 by Theorem 2.4.

The case of (33) is similar: If γ = 0, then C2,− = ∞ whereas, if 0 < γ ≤ ∞ and Φ
is linear on some nontrivial interval [0, b], then −∞ < Φ′

+(0) < 0, so that C2,− = 1
by Theorem 2.4.
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In summary, irrespective of Φ, the value of C2,+ or that of C2,− is always given by
one of the following:

(i) It is trivially infinite.

(ii) It is 1 by Theorem 2.4.

(iii) It is given by the unambiguously defined relevant formula (32) or (33).

5. Examples

We shall use the formulas (32) and (33) to find C2,± in a few simple enough but
instructive examples. These constants can be exactly calculated in a number of
other cases. For brevity, we skip the straightforward calculations of I(b), J(b), K(b)
and L(b) (notation of the previous section). In all four examples, it turns out that
L(b) is independent of b. This is somewhat surprising, but just a coincidence. In
general, L(b) does depend upon b.

Example 5.1. Let Φ(r) := rβ+1 with β > 0. Then, C2,− = −∞ since Φ ≥ 0
and the optimal constant C in (7) is C2,+. Theorem 2.4 is not applicable since

Φ′
+(0) = 0, but since I(b) = 2(β+1)

β+2
b

β
2
+1, J(b) = (β+1)β2

(β+2)2
bβ+1, K(b) = β(β+1)

β+2
b

β
2 and

L(b) = (β+1
β+2

)1/2, (32) yields (note the b-independence)

C2,+ =
β + 2

(β + 1)1/2
sup

X∈
[
(β+1
β+2)

1/2
,1

]
Xβ+1

2(β + 1)1/2X − β(1−X2)1/2
.

The function in the right-hand side is decreasing on [(β+1
β+2

)1/2, 1] (its derivative

vanishes only at the left endpoint and tends to −∞ when X → 1−). Thus,

C2,+ =

(
β + 1

β + 2

)β/2

< 1.

From Remark 2.3, it follows that

||f ||1 ≤ Cβ,N ||f ||
β

β+1

2

(∫

RN

|f(x)||x|Nβ
2 dx

) 1
β+1

, (34)

for every f ∈ L1(RN)∩L2(RN), where Cβ,N := ω
β

2β+2

N (β+1)
1

β+1 (β+1
β+2

)
β

2β+2 is optimal.

This shows that while ||f ||1 cannot be controlled by ||f ||2, it can be controlled by a
(nonlinear) combination of ||f ||2 and

∫
RN |f(x)||x|Nβ/2dx, although the latter may

be infinite. With α > 0 and β := 2α/N, (34) may also be written as

∫

RN

|f(x)||x|αdx ≥ C ′
α,N ||f ||1+2α/N

1 ||f ||−
2α
N

2 , (35)

for every f ∈ L1(RN) ∩ L2(RN), f 6= 0, where C ′
α,N is an optimal constant readily

obtained from Cβ,N .
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Example 5.2. Let Φ(r) := r3−r. First, Φ′
+(0) = −1, so that C2,− = 1 by Theorem

2.4, but it remains to find C2,+. Since γ = 1, I(b) = 3b2

2
− b, J(b) = 3b3

4
, K(b) = 3b

2

and L(b) =
√
3
2
, (32) takes the form

C2,+ = sup
b>1,X∈

[√
3

2
,1
]
,X>b−1/2

2(X3b−X)

(3b− 2)X − b
√
3(1−X2)1/2

.

If X ∈ [
√
3
2
, 1] is fixed, the ratio in the right-hand side is an increasing function of

b. Indeed, −4X4 +6X2 − 2
√
3X(1−X2)1/2 = 2X(3X − 2X3 −

√
3(1−X2)1/2) > 0

on [
√
3
2
, 1], which can for instance be seen from (1 − X2)1/2 ≤ ( 2√

3
− 1)X on that

interval. By letting b tend to ∞ (so that X > b−1/2 holds), it follows that C2,+ =

sup
X∈[

√
3
2
,1]

2X3

3X−
√
3(1−X2)1/2

. It is easily checked that this function is decreasing on

[
√
3
2
, 1], so that its maximum is achieved when X =

√
3
2
. Thus,

C2,+ =
3

4
.

From Remark 2.3,

||f ||1
(
ω−1
N ||f ||21||f ||−2

2 − 1
)
≤ C

∫
|f(x)|(3|x|N − 1)dx, (36)

for every f ∈ L1(RN) ∩ L2(RN), f 6= 0 and every C ∈ [3
4
, 1]. There is no optimal C

in this inequality, but C = 3
4
is optimal when ||f ||1 >

√
ωN ||f ||2 whereas C = 1 is

optimal when
∫∞
0

|f(x)|(3|x|N − 1)dx < 0.

Example 5.3. Let Φ(r) := −rβ with 0 < β < 1, so that Φ′
+(0) = −∞. Since Φ ≤ 0,

it follows that C2,+ = −∞ and the optimal constant C in (7) is C2,−. Theorem 2.4

is not applicable but I(b) = − 2β
β+1

b(β+1)/2, J(b) = β(1−β)2

(β+1)2
bβ, K(b) = β(1−β)

β+1
b(β−1)/2

and L(b) = ( β
β+1

)1/2, M(b) = 1 for every b > 0. By (33),

C2,− = inf
X∈

[
( β
β+1)

1/2
,1

)
(β + 1)Xβ

2βX + β1/2(1− β)(1−X2)1/2
.

The function in the right-hand side is increasing on [( β
β+1

)1/2, 1) (its derivative

vanishes only at the left endpoint and tends to ∞ as X → 1−). As a result,

C2,− =

(
β

β + 1

)(β−1)/2

> 1.

The corresponding inequality for f ∈ L1(RN) ∩ L2(RN) is

∫

RN

|f(x)|
|x|N(1−β)/2dx

≤ Cβ,N ||f ||β1 ||f ||1−β
2 , (37)
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with optimal constant Cβ,N := ω
(1−β)/2
N

1
β
( β
β+1

)(1−β)/2. That an inequality of this type
holds can easily be seen by splitting the integral in the left-hand side over a ball
BR and its complement, estimating both terms and optimizing R. However, this
only provides (37) with Cβ,N replaced by ω

(1−β)/2
N

1
β
( β
1−β

)(1−β)/2, which is not even

as sharp as (4) (with q = 2) for this example.

Example 5.4. Let Φ(r) := r Log r − r, so that Φ′
+(0) = −∞ and γ = e. Theorem

2.4 does not provide any information about C2,+ or C2,−. In this example, I(b) =
b
2
(Log b− 1), J(b) = b

4
, K(b) = 1

2
and L(b) =

√
2
2
. Therefore, (32) yields

C2,+ = sup
b>e2,X∈

[√
2
2
,1
]
,X>b−1/2e

X Log b+ 2X(LogX − 1)

X Log b−X − (1−X2)1/2
.

If X ∈ [
√
2
2
, 1] is fixed, the ratio in the right-hand side is an increasing function

of Log b and hence of b. Furthermore, the condition X > b−1/2e holds as soon as
b > 2e2. The monotonicity claim follows from the fact that X2 − X(1 − X2)1/2 −
2X2 LogX = X(X− (1−X2)1/2−2X LogX) > 0 because X− (1−X2)1/2 ≥ 0 and

LogX ≤ 0 when X ∈ [
√
2
2
, 1] and at least one inequality is strict. Thus, by letting

b → ∞, it follows that C2.,+ ≥ 1, whence C2,+ = 1 since the reverse inequality is
always true.

Next, by (33), C2,− = inf
b>0,[

√
2
2
,M(b))

X Log b+2X(LogX−1)

X Log b−X−(1−X2)1/2
, where M(b) is given by

(31). In general, M(b) depends upon b, but M(b) = 1 if b < e since I(b) < 0 in this
case. Thus,

C2,− ≤ inf
b∈(0,e),X∈

[√
2
2
,1
)
X Log b+ 2X(LogX − 1)

X Log b−X − (1−X2)1/2
.

Once again, if X ∈ [
√
2
2
, 1), the ratio in the right-hand side is an increasing function

of Log b, so that its infimum for b ∈ (0, e) is obtained by letting b→ 0. This shows
that C2,− ≤ 1 and hence that C2,− = 1 since the reverse inequality is always true.
In summary,

C2,+ = C2,− = 1,

which means that C = 1 is the only possible constant in (7) when q = 2.

Therefore,

||f ||1
(
Log

||f ||1√
ωN ||f ||2

− 1

)
≤ N

2

∫

RN

|f(x)|Log |x|dx, (38)

for every f ∈ L1(RN) ∩ L2(RN), f 6= 0 and N
2

cannot be replaced by any other
constant. For example, (38) implies that

∫
RN |f(x)|Log |x|dx > 0 as soon as ||f ||1 >

e
√
ωN ||f ||2, which is not obvious in the first place.

Remark 5.5. Of course, (4) yields inequalities similar to (34), (36), (37) and (38)
(and countless others) when f ∈ L1(RN) ∩ Lq(RN) for any q ∈ (1,∞), but not
necessarily with the best constant.
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