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The notion of two-scale convergence for sequences of Radon measures with finite total variation
is generalized to the case of multiple periodic length scales of oscillations. The main result con-
cerns the characterization of (n + 1)-scale limit pairs (u, U) of sequences {(uzL o, Duc|q)}es0 C

M(Q;RY) x M(Q;RN) whenever {u.}.~o is a bounded sequence in BV (€2;R?). This charac-
terization is useful in the study of the asymptotic behavior of periodically oscillating functionals
with linear growth, defined in the space BV of functions of bounded variation and described by
n € N microscales, undertaken in [10].
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1. Introduction and Main Results

The notion of two-scale convergence was first introduced by Nguetseng [13] and
further developed by Allaire [1]. It was used to provide a mathematical rigorous
justification of the formal asymptotic expansions that used to be commonly adopted
in the study of homogenization problems (see, for example, [5], [12] and [14]).

In [2], Allaire and Briane extended that notion to the case of multiple separated
scales of periodic oscillations. Precisely,

Definition 1.1.! Let n, N € N, let Q C RY be an open and bounded set, and let
Y = [0,1]V. Let 01, ..., 0 : (0,00) — (0,00) satisfy for all i € {1,---,n} and for

'Here, and in the sequel, ¢ is a small parameter taking values on an arbitrary sequence {e;};jen of
positive numbers converging to zero. We write €, {uc}e>o and ¢ — 07 in place of €, {ue, };en and
g; — 0% as j — oo, respectively. Also, the subscript # stands for Y7 x - - - x Y,,-periodic functions
(or measures) with respect to the variables (y1,--- ,yn). We refer the reader to Section 2 for the
notations used throughout this paper.
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all j € {2,--- ,n},

. . 0i(e)
1 i(e) =0, lim = =0. 1
Jim oi(e) Ry 1)

A sequence {u.}.~o C L*(Q) is said to (n + 1)-scale converge to a function ug €
L*(Q x Yy x -+ xY,), where each Y; is a copy of Y, if for every p € L*(Q; Cy (Y] X
-+ xY,)) we have

I e A

= / Uo(% Y1, 7yn)§0(x:y17 o 7yn) dxdyl te dym
QXY x--xXY,

y

lim ug(a:)go(:n,

e—0t Jo

in which case we write UE%UO’

Remark 1.2. In the context of multiscale composites, the functions g1, ..., 0, stand
for the length scales or scales of oscillation. The second condition in (1) is known
as a separation of scales hypothesis.

Also, Allaire and Briane [2] established a compactness result concerning this notion
and provided the relationship between the (n + 1)-scale limit and the usual weak
limit in L*(Q) (see [2, Thms. 2.4 and 2.5]). Precisely,

Theorem 1.3. Let {u.}.~o be a bounded sequence in L*(Y). Then, there exist
a (not relabeled) subsequence of {u.}eso and a function ug € L*(Q x Y] x -++ X

Y,) such that u. ("t)_sc ug. Furthermore, u. — iy weakly in L*(Q) as ¢ —
0%, where to(x) == [y .y (T, Y1, yn) dyr - - - dyn, and lim._o+ [Juc||120) >
o]l 2(xva x--xvi) = [|Uol| £2(0)-

In general the (n + 1)-scale limit differs from the weak limit in L*(Q), with the
(n 4 1)-scale limit capturing more information on the oscillatory behavior of a
bounded sequence in L?*(2) than its weak limit in L?(£2). The proof of Theorem 1.3
follows the arguments introduced in the case n = 1 treated in [1] (see also [13]).

Moreover, in order to study the asymptotic behavior of the solutions of certain
partial differential equations with periodically oscillating coefficients in the space
H'(Q), the (n + 1)-scale limit of gradients was fully characterized in [2, Thm. 1.2].
Precisely,

Theorem 1.4. Let {u.}.~0 be a bounded sequence in H'(SY). Then there exist
u € H'(Q) and n functions u; € L*(Q2x Yy x - - xY;_1; Hy(Y;)), fori € {1,--- ,n},
such that

n+1)-sc
- +a) u, (2)

and, up to a not relabeled subsequence,

Vu BTy + Y "V, s (3)

=1
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Furthermore, given any w € H'(Q) and u; € L*(Q x Yy X - x Yi_y; Hy(Y)),
i€ {l,---,n}, there exists a bounded sequence {u.}.~o for which (2) and (3) hold.

Remark 1.5. In the theorem above, the function u is the weak limit in H'(Q) of
the sequence {u.}.~o. The terms V,,u; in (3) may be interpreted as the gradient
limits at each scale.

Remark 1.6. Definition 1.1 and Theorem 1.4 admit simple generalizations to the
cases LP(Q) and W'P(Q), respectively, for any p € (1, 00).

Theorem 1.4 extends Prop. 1.14 (i) in [1] to the case in which n > 2, but its proof
requires significant changes and is rather more difficult. By means of this result,
Allaire and Briane [2] completely characterize the asymptotic behavior as e — 0
of solutions of the family of boundary value problems

—div(A:Vu.) = f, a.e. in Q,
us = 0, on 0f),

where f € L*(Q), A.(z) := A(z, OLEE
appropriate coercivity and boundedness hypotheses, and such that A(z,-) Y; x
Y,-periodic (see [2, Thm. 1.3]).

" on )) and A is a N x N matrix satlsfymg

A similar analysis was undertaken in [1] in the case n = 1. Also in [1] (see [1,
Thms. 3.1 and 3.3]), Allaire provides a simple and elegant proof for the homogenized
functional of a sequence {I.}.¢ of functionals of the form

u € Wy P (4 RY) — I( /f , Vu(z

Following this last approach, in [3] Amar extended the notion of two-scale conver-
gence to the case of bounded sequences of Radon measures with finite total varia-
tion, and characterized the two-scale limit associated with a bounded sequence in
BV (Q) (see [3, Thm. 3.6]). Using this characterization, the asymptotic behavior
as € — 0T of sequences of positively 1-homogeneous and periodically oscillating
functionals with linear growth, defined in the space BV of functions of bounded
variation, of the form

ZL‘ dDu
we BVQ) = 10w = [ 12 7t @) dlpula)

is given in [3, Thm. 4.1].

The purpose of the this paper is to extend the notion of two-scale convergence for
sequences of Radon measures with finite total variation introduced in [3] to the case
of multiple periodic length scales of oscillations, and to characterize the (n+1)-scale
limit associated with a bounded sequence in BV (£2;R%). Using some ideas of [2]
and [3], we fully develop the underlying measure-theoretical background.
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Definition 1.7. Let m,n, N € N, let Q C R" be an open set and define ¥V :=
(0,1)N. Let o1, ..., 0, be positive functions in (0, 00) satisfying (1). We say that a
sequence { e eso C M(2;R™) of Radon measures, with finite total variation in €,
(n+ 1)-scale converges to a Radon measure 119 € (Co(Q; Ciy (Y1 X - -+ X Yy; ]Rm)))/ ~
My (Qx Y] x - xY,;R™) with finite total variation in the product space €2 x Y] x
.-+ x Y, where each Y; is a copy of Y, if for all p € Cp(£2; C(Y1 X -+ X Y,;; R™))
we have

xr A
lim gp(x, R )-dusx
=0t Jo o1(e) on() @)
= / %0(55'73/17"' 7yn)'dlu0('r7y17”' 7yﬂ)7
QXY X XYy,

. : . 1)-
in which case we write p =0
€ c 0

This notion of convergence is justified due to a compactness result asserting that
every bounded sequence { . }.~0 in M(£2; R™) admits a (n+1)-scale convergent sub-
sequence (see Theorem 3.2). One can also show that the weak-x limit in M (€2;R™)
is the projection onto €2 of the (n+1)-scale limit, and so, in general the (n+1)-scale
limit captures more information on the oscillations of {f. }.~o than the weak-x limit
in M(£2;R™) (see Proposition 3.3). The proofs of these two properties are simple
generalizations of those in the case in which n =1 (see [3]).

Definition 1.8. For d,7 € N, define the space M, (Q XY X xXY;_1;BVy (Yi; Rd))
of all BV (Y}; Rd)—valued Radon measures p € M (Q XY X xY;_1; BVy (Y,-; Rd))
with finite total variation, for which there exists a R¥"-valued Radon measure
AE My (Q XY X XY ]RdXN), with finite total variation in the product space
QxY; x---xY;, such that for all Be B(QxY; x---x Y1), E € B(Y,),

(Dy(1(B))) (E) = (B x E). (4)
We say that A is the measure associated with D,, p.

Note that since B(2 x Yy x---xY;_1)@B(Y;) = B(Q2x Yy x--- xY;), it follows that
ifpe M(QxY, x - xY,_1; BVy (Yi; Rd)), then there exists at most one measure
AEM (XY XX Yi;RdXN) satisfying (4).

In Subsection 2.4 we will make more detailed considerations on the space M, (Q X
Yy x - x Yiog; BV (Yi;RY)), i € N.

We now state our main result, which provides the characterization of (n + 1)-scale
limit pairs (u, U) of sequences {(u.L"q, Du.|q) }€>0 C M(;RY) x M(Q; RN

whenever {u.}.~o is a bounded sequence in B V(Q; Rd). We will assume a stronger
separation of scales hypothesis than the one in (1), precisely (cf. [2]),

Definition 1.9. The scales g1, ..., 0, are said to be well-separated if there exists
m € N such that for all i € {2,--- ,n},

B (552))7% 91-18) - ®)
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The case in which g;(¢) := €' is a simple example of well-separated scales. Indeed,
it suffices to take m = n + 1.

Theorem 1.10. Let {u.}.~0 C BV (Q;RY) be a sequence such that u. = u weakly-
x in BV (;R?) as e — 0T, for some u € BV (;RY). Assume that the length scales
01, -, On Satisfy (1) and (5). Then

(@) w.LMgq ("HE)_SC Ty, where T, € My (Q X Y] XX Yn;Rd) is the measure
defined by

. N niN
Tui=ul o ® ‘Cyl,m,yn’

ie., if o € Co(Cx(Yr X -+ x Vs RY)) then

<Tu790> :/ (p(xvyla"' ,yn)u(:r)dxdyldyn
QAxY1 X XYy,

(b) there exist a subsequence { Dugr }or~o of { Due }eso and n measures p; € M, (QX
Y] X o X Yi_l;BV#(Y};Rd)), ie{l,---,n}, such that

Du&-l (n—&—;/)—sc A

Us 1y sHn)

where Ay, e, € Mys (Q XY XX Yn;RdXN) is the measure

n—1
Mg = Do @ L3N 43 "N @ LIV A, (6)
=1

Yit1s

ie., if € Co(Cx(Yy x -+ x Vs RN)) then
O )

- / 90(337?/1,"' ,yn) : dDu(x)dyldyn
QAxY1 % XY,
n—1
+ Z/ QO(!E, Y1, 7yn) : d)\i<x>y17 e 7yi)dyi+1 cee dyn
i=1 Y XY1X XYy

+/ ()O(x7y17"' 7yn) : d)‘n<xvy17"' ,yn)7
QAxY1x--XYy,

and each \; € My (Q XY XX YZ-;]RdXN) 1s the measure associated with
Dy p;, i€ {l,--- ,n}.

The proof of Theorem 1.10 is not a simple generalization of the analogous result in
the case n = 1 treated in [3]. When n > 2, and similarly to [2], some new arguments
are needed. We also show that Theorem 1.10 fully characterizes the (n + 1)-scale
limit of bounded sequences in BV (£2;R?), in that:

Proposition 1.11. Let u € BV (Q;R?) and let p; € M, (Q X Yy x -+ X Yi_y;
BV, (Y;;Rd)), i € {1,---,n}. Then there exists a bounded sequence {u.}.~o C
BV (4 RY) for which (a) and (b) of Theorem 1.10 hold (with €' replaced by ¢).
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Remark 1.12. Proposition 1.11 together with Theorem 1.10 represent the BV
version of Theorem 1.4.

Using Theorem 1.10, in [10] we study the asymptotic behavior with respect to
the (n + 1)-scale convergence of first order derivatives and periodically oscillating
functionals with linear growth, defined in the space BV of functions of bounded
variation and described by n € N microscales. In the particular case in which
n = 1, and as a corollary of our results in [10] we recover Thm. 4.1 in [3] under
more general hypotheses.

This paper is organized as follows. In Section 2 we introduce the notation and
we recall some basic properties of (R™-valued) Radon measures and of functions
of bounded variation. We collect properties of integration with respect to certain
Banach-valued measures, which seems to be hard to find in literature and that will
play an important role in the subsequent section, Section 3. The latter is devoted
to the proofs of Theorem 1.10 and of Proposition 1.11.

2. Notation and Preliminaries
2.1. Notation

In the sequel Z is a o-compact separable metric space, (2 is an open subset of RV,
N e N, and Y := (0,1)" is the reference cell. For each i € N, Y; stands for a copy
of Y. Given z € RY we write [z] and (x) to denote the integer and the fractional
part of x componentwise, respectively, so that z = [z] + (z) and [z] € ZV, (z) € Y.

Let n,m € N. If z,y € R™, then x-y stands for the Euclidean inner product of x and
y, and |z| ;== \/z - = for the Euclidean norm of z. The space of (m x n)-dimensional
matrices will be identified with R™", and we write R™*". If £ = (&;)1<icm,1<j<n,
¢ = (Gij)1<icm,1<j<n € R™™, then

m n

£: 0= ZZ&;‘Q;’

i=1 j=1

represents the inner product of £ and ¢, while |£] := /¢ : £ denotes the norm of
¢ If a € R™ and b € R", then a ® b stands for the (m x n)-dimensional rank-one
matrix defined by a ® b := (a;b;)1<icm1<j<n-

Let g : R™ — R™ be a function. We denote the Lipschitz constant of g on
a set D C R"™ by Lip(g; D); if D coincides with the domain of g we omit its
dependence. We say that g is Y} x .-+ x Y,-periodic if for all ¢ € {1,--- ,n},
k€ZN, yr,...,yn € RN, one has g(y1, - ¥ + 6, 5 Un) = W1, Ui 5 Un)-

We represent by C'(Z;R™) the space of all continuous functions g : Z2 — R™,
while C.(Z;R™) is the subspace of C'(Z;R™) of functions with compact support.
The closure of C.(Z;R™) with respect to the supremum norm || - || is denoted
by Co(Z;R™). It is well known that Cy(Z;R™) is a separable Banach space, and
that g € Co(Z;R™) if, and only if, g € C(Z;R™) and for all n > 0 there exists a
compact set K, C Z such that for all 2 € Z\K,, |g(z)| < n. Moreover, if Z C RY
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is an open and bounded set, then Cy(Z; R™) coincides with the space of continuous
functions on Z vanishing on 2.

We write C¥(Z;R™) (respectively, C¥(Z;R™) and C¥(Z;R™)), k € N, to denote
the space of all functions in C(Z;R™) (respectively, C.(Z;R™) and Cy(Z;R™))
whose i"-partial derivatives are continuous functions in Z for all i € {1,---  k}.
We say that g € C*°(Z;R™) (respectively, C°(Z;R™) and C§°(Z;R™)) if for all
keN, g e C*(Z;R™) (respectively, C*(Z;R™) and C§(Z;R™)).

We will also consider the Banach spaces
Cu(Yr x - x Y R™) := {g € C(R™;R™): gisY; x -+ X Y,-periodic}

endowed with the supremum norm ||- ||, and Cp(Z; Cx (Y] X - - - xY,; R™)), which is
the closure with respect to the supremum norm ||-||o of Co.(Z; Cu(Yy X+ - - xY,,; R™)).
The latter is the space of all functions ¢ : Z x R™ — R™ such that for all z €
Za g(Z,'> < C#<}/1 X X YTHRm) and for all Y1, Un € RNa g<'7y17"‘7yn) <
Ce(Z;R™). The spaces Cf (Y x- - - x Y, R™), CF (Y- - - x Y, R™), CF(Z; ClL (Y X
s X Yo R™)) O (25 CF (Y x - X Vs R™)), C’é‘“(Z;Cﬁ(K X - X Y, R™)) and
C(Z;CL (Y1 X - -+ x Y,; R™)) are now defined in an obvious way.

If m = 1 the co-domain will often be omitted (e.g., we write Cy(Z) instead of
Co(Z;R)).

The letter C represents a generic positive constant, whose value may change from
expression to expression.

Let p € C°(RY) be the function defined by

1
celelP-1 x| <1,
p(z) rz{ o

0, lz| > 1,

where ¢ > 0 is such that [py p(z)dz = 1. For each 0 <& < 1 let

pe(T) 1= gin (g) (7)

Then p. € C°(RY) and

/N pe(x)dz =1,  suppp. C B(0,¢),  p-=0,  p(—z)=p(x), (8
R

for all x € RV,

For 0 < e < 1/2, let n. denote the extension to RY by (—3, 3)V-periodicity of the
function pey_1 1yv. Then 7. € CZ(Y) is such that

WV

/Q776<y> dy =1, ne = 0, ns(_x) = 776<x>7 (9)

for any unit cube Q@ C RY and z € RY.
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2.2. Measure theory

For m € N, the m-dimensional Lebesgue measure is denoted by L.

The Borel g-algebra on Z is denoted by B(Z), and M(Z;R™) is the Banach space
of all Radon measures A : B(Z) — R™ endowed with the total variation norm
I 1I(Z), with

IM(Z) := sup { Z IAN(B;)|: {Bj}jen C B(Z2) is a partition of Z}.
j=1

By Riesz Representation Theorem, the dual of Cy(Z;R™) can be identified with
M(Z;R™) through the duality pairing

<)\790>M(Z;Rm),CO(Z;Rm) = /
Z

ORNCED Y FICLIE!

where ¢ = (@1, ,om) and A = (Aq,--- , \y), so that the total variation of X is
alternatively given by

IAI(Z) = Sup{/Z@(Z) ~dA(2): ¢ € Co(Z5R™), [lollo < 1}-

We say that a sequence {\;};en C M(Z;R™) weakly-x converges to some measure
A€ M(Z;R™), and we write \; = X as j — oo, if for all ¢ € Co(Z;R™),
[z @(2) - dXj(2) = [50(2) - dA(2) as j — oo. We recall that from every bounded
sequence in M(Z;R™) we can extract a weakly-x convergent subsequence.

IfpeCy(Z)and A= (A, -+, \p) € M(Z;R™), then we set

[e@oe = [eoanen. [ ppane).

If o= (p1, ,om) € Co(Z;R™) and A € M(Z;R), then we define

[e@0e = [aEae.. [ moam).

We write M (Y; X -+ X Y,;; R™) and Myx(Z x Y] x -+ x Y,,;R™) to denote the
duals of Cu(Y) X -+ - x V3 R™) and Cp(Z; Cp(Yy x - -+ x Y,,; R™)), respectively.

Let Z;, 25 be two o-compact separable metric spaces. We write B(Z;) ® B(Z3)
to represent the smallest o-algebra that contains all sets of the form By x B,
where By € B(Z2,), By € B(2,). Since 2, Z, are separable metric spaces, we
have that B(Z,) ® B(2,) = B(Z; x Z5). Let us also recall that by Carathéodory’s
Theorem (see, for example, [11]), given two positive measures A : B(Z;) — [0, 0o,
Ao 1 B(Z5) — [0, 00], we can construct an outer measure, the product outer measure
(A1 X Ag)* @ 2%1%%2 — [0, 00], whose restriction to the o-algebra B(Z;) x B(Z,)
of the (A1 X Ag)*-measurable sets is a complete measure. The latter is known as
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the product measure of \; and Ay, and is denoted by A; x Ay. Moreover, it holds
B(Z1) @ B(Z;) C B(Z1) x B(Z,), and for all By € B(Z;), By € B(Z5), one has

(A1 X Ag)(By X By) = A(B1)\a(Ba). (10)

We denote by A; ® A2 the restriction of A\; x Ay to the o-algebra B(Z;) ® B(2,) =
B(Zl X ZQ)

More generally, for A\ € M(Z1;R), Ay € M(Z5;R), we define
MO =AM QAN + A @A, — A @A\, — A\ @A),

where \; = A\ — A\ and Ay = A\J — )\, are the Hahn decompositions of A\; and
Mg, respectively. Note that Ay ® Ay € M(Z; x Z9;R) and (10) holds with A; x Ag
replaced by A\ ® Ay. Similarly, in the case in which \; € M(Z;R) and \y =
(AL - A € M(Z9;R™), Ay ® Ay is the measure in M(Z; X Z5; R™) satisfying
(10) (with A\; X Ay replaced by A @ Ag) defined by \j @ Ay := (A1 @ AL, -+ [ A\ @ AT).

We recall the slicing decomposition of a Radon measure (see, for example, [9]).
Let A € M(Z; x Z5;R) be a finite, nonnegative Radon measure on Z; x Z,.
Represent by o the canonical projection of A onto Z,, i.e., the measure defined by
o(E) == N2, x E), for all E € B(2,). Then for g-a.e. z5 € Z there exists a
nonnegative Radon measure v,, on Z; such that v.,(Z;) = 1, and such that for
every bounded and continuous function g on Z; x Z,, the mapping

Z9 = g(Zla Z2) dVZ2 (Zl)
Z

is o-measurable and

/lez2 g(21, 22) dA(21, 22) = /Z2 </21 g(zl,zg)duZQ(zl)) do(z2). (11)

2.3. The space of functions of bounded variation

A function v : © — R?% d € N, is said to be a function of bounded variation
if w e L! (Q;Rd) and its distributional derivative Du belongs to M(Q;RdXN ),
that is, if there exists a measure Du € M (Q;R™¥) such that for all ¢ € C.(9),
je{l,---,d}and i € {1,--- , N} one has

@) 52 @) e = = [ 6(a)aDiu ).

where v = (uq,--- ,uq) and Du; = (Dyuy,-- -, Dyu;). The space of all such func-
tions u is denoted by BV(Q; Rd), which is a Banach space when endowed with the
norm |[ul| gy (o) = [l 1) + || Dul|(€2).

We will also consider the space BV (Y;R?) :={u € BVjoo(RY;R?) : u is Y-periodic},
endowed with the norm of BV (Y;R?). Notice that if u € BVy(Y;R?), then Du €
M# (Y, ]RdXN) .
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We will consider the weak-+ convergence in BV (Q;R?). We recall that {u;};en C
BV(Q;Rd) is said to weakly-x converge in BV(Q;Rd) to some u € BV(Q;Rd) if

u; — u (strongly) in L' (Q; R?) and Du; X Du weakly- in M(QR>N) as j — oo.
We recall also that from every bounded sequence in BV(Q;Rd) we can extract a
weakly-x convergent subsequence.

2.4. Integration with respect to BV4(Y;R%)-valued Radon measures

In this subsection we will deal with integrals with respect to BVx(Y; RY)-valued
Radon measures. We start by recalling the notion of Banach space-valued measures.
For a more detailed exposition see, for example, [7].

Definition 2.1. Let X be a Banach space. We say that p : B(Z) — X is a
(X-valued) Radon measure if the following conditions are satisfied:

i) u@) =0,
ii)  Given any countable family {B;} ey of mutually disjoint Borel subsets of Z,
the series » > | pu(B;) converges (in X) and

M(QBJ») zimBJ)

If, in addition, the condition

iii)  The total variation of w,

|e|[(Z) == sup { Z |e(B;)||x: {Bj}jen C B(Z) is a partition of Z},

is finite,

is satisfied, then we say that p is a (X-valued) Radon measure with finite total
variation, and we write p € M(Z; X).

Notice that if p € M(Z; X), then ||p]| : B(Z) — [0, 00) defined by
|e|[(B) := sup { Z |(B;)||x: {Bj}jen C B(Z) is a partition of B}, B e B(Z),

is a finite positive Radon measure on Z.

We will be particularly interested in the case in which Z2 =Q xY; x --- x Y, for
some ¢ € N, where
AOXxY; x---xY;,_1:=Q ifi=1,

and X = BV (Y};Rd).
Let p € M(Z;BVy(Y;R?) and B € B(Z). Then u(B) € BVy(Y;R%), and
so Dy(p(B)) € My (Y;R™N). Moreover, it can be checked that the mapping
Dyp: B € B(Z) — Dyu(B) := D, (u(B)) belongs to M (Z; My (Y;RPN)) in the
sense of Definition 2.1.
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According to the statement of Theorem 1.10 (see also Definition 1.8), the measures
pE€ M(QxY) x - xY;_1; BVy(Y;; RY)) for which there exists A € My (2 x Y; x
cee X Y;;]RdXN) such that for all B € B(Q2 xY; x ---xY; 1), E € B(Y;), we have

Dyz(ll’(B))<E) = /\<B X E)v (12)

play an important role in the characterization of the multiscale limit of the sequence
of distributional derivatives of a bounded sequence in BV(Q; Rd).

Example 2.2. Fix i € N, let 7 € M,2(Q x Y] x --- x Y;_1;R), and let v €
BV4(Y;; R?). Then the mapping

p:BeBOQXY;x -+ xY, 1) uB)=17(BxY;x - XY 1)v
belongs to ./\/l(Q XY XX Y;_I;BV#(Y;;RCI)), with
[l (€2 x Yy - X Yig) = IT[[ (2 x Yy x - - X Yo |[v]l gy vy

Observe also that for all B € B(2 x Y7 x --- x Y;_4), (Dy,p)(B) = D,,(pu(B)) =
7(B)Dv. Moreover, defining A := 7 ® Dv, we have that A € Myu(Q X ¥} x -+ x
Vi; R™N) and (12) holds. Thus, p € M, (2 x Y} x -+ x Y;_1; BV (Y;;RY)) (see
Definition 1.8).

Our goal now is to give sense to the expression
/ ez, yr, - y) dp(,yn, -+ yio1)dys, (13)
OxY] x---xY;

whenever ¢ € Co(€; Cp (Y x---xY;)) and p € M(QxY;x---xY;_1; BVy(Y;;RY)).

Step 1. We start by assuming that ¢ = 1, and we write Y in place of Y;. As it is
usual when defining an integral, we will start by giving meaning to (13) for simple
functions and then, using approximation arguments, we will extend such notion to
more general functions. Let s: ) — R be a Borel simple function, with

§:= Zcixgi, (14)
i=1

where m € N, ¢,...,¢,, € R are distinct and By, ..., B, € B(f) are mutually
disjoint. If B € B(2), then we define the integral of s over B with respect to pu,
and we write [, s(z) dp(z), as the function in BV (Y;R?) given by

/Bs(:v) dp(z) = Zciu(Bi N B). (15)

i=1

Let ¢ : 2 — R be a bounded, Borel measurable function, and let {s;};eny be a
sequence of Borel simple functions converging uniformly in {2 to ¢, with s; =

S cl(j)XB(j) as in (14). We have that

/Y dy:/y chj)u(ij)>‘dy< Z}CE”H)M(B?))’
i=1

=1

5@ duta)

L1(Y;Rd)
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o ([t = 3511 () o

where we used (15). Consequently, using the definition of the total variation of u,

[ || st duta)
and also
[ | duto

Since sup; ||5;[l < oo and p has finite total variation, we deduce from (16) that

the sequence
{ [se)aui0)}
Q jEN

is uniformly bounded in BVy(Y;R?). Thus, up to a (not relabeled) subsequence,
we may find u € BV (Y; Rd) such that

and

D, ([soan )| 0 < s lalul@ o)

dy < j{j\cf>uuin B Q/Ws] Ndll@).  @7)

/sj(:zr) dp(z) = u weakly-—x in BV (Y;RY) as j — oc.
Q

Assume now that {t;},en is another sequence of Borel simple functions converging
uniformly in 2 to ¢, and such that

/tj(x) dp(z) = v weakly-x in BV (Y;R?) as j — oo,
Q

for some v € BV (Y; Rd). Then {s; —t,};en is a sequence of Borel simple functions
converging uniformly in € to 0, and so (16) ensures that u = v for LN-a.e. y € RY.
This gives sense to the following definition.

Definition 2.3. Let ¢ : € — R be a bounded, Borel measurable function. If
B € B(2) and p € M(Q BVy (Y Rd)) then we define the integral of ¢ over B
with respect to p, and we write [, ¢(x) dp(z), as the function in BV (Y;R?) given
by
/ ¢(z) dp(z) := (wx-BVy(Y;RY)) — lim | s;(z)dp(z),
B

7 JB

where {s;};en is a sequence of Borel simple functions converging uniformly in € to

o.

The following lemma will be useful in the sequel. Its proof uses (16), (17), Defini-
tion 2.3, Lebesgue Dominated Convergence Theorem and the lower semicontinuity
of the total variation.
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Lemma 2.4. Let ¢ : @ — R be a bounded, Borel measurable function, and let
p € M(; BVy (Y;RY)). The following hold:

//¢ ) dp()| dy < /w ) dllel ()

(b)  If v is the set application given by v(B) = [, ¢(x)dp(z), B € B(Q), then
v € M(: BV (ViRY)), and [W(B) < 6]l 1l (B) for all B € B(S).

Note that if ¢ : 2 — R and ¢ : Y — R are bounded, Borel measurable functions,
then given p € M(Q; BV (Y;R?)) and B € B(Q), the integral

o) (y) dpa(x)dy = / ( / o) dpa(s ) y) ¥ly) dy (18)

BXY

is well defined in R,

By considering first bounded, Borel simple functions, one can show that

[ ([ o)aut@)m o

whenever ¢; : Q@ =R, ¢, : Y — R i € {1,--- ,m}, are bounded, Borel functions.

i HMH ), (19)

\

In fact, for simplicity, assume that m = 2. Let sq, $o, 11, t2 be simple functions, and
write

1

mi m2 l2
81 = E AiX A;s 89 = E bixs;, ty = g Xy to = E diXp;
i=1 i=1 i=1

i=1

with mqy,mo,ly,ls € N, {al oy {b Y2 Le ), {d; }l finite collections of dis-
tinct real numbers, {A;}7™, {B;}72 C B(Q), and {C;}L,, {D;}2, c B(Y) finite

collections of mutually disjoint sets

It can be shown that

S1t1 + Salo = Z KiXE; X F;»
i=1

where for all i € {1,--- ,m}, r; € R and |k;| < [|s1t1 + Satalleo, {Fi}, is a family
of mutually disjoint Borel subsets of €, and for all i € {1,--- ,m}, F; € B(Y).
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Thus,

| ([s@ww)uwa [ ([ ) aw dy\
— /Y < 7: a; (1 ) ( i cixe, (y)) + ( f: bi (1(B;)) (y)) ( i dixp, (y)> dy

m

| [ 2 sl B0) ) )| < Hslt1+82tzHooZ/ )y
||slt1+32t2||ooz / [(1(E)) ()] dy < Ilsats + satallo 811 (),

from which we deduce (19) for simple functions. To prove the general case, if
¢ Q=R Y - R i€ {l,---,m}, are bounded, Borel functions, then for

each 7 € N we can find sgi) Q2 — R and tg-i) :Y — R, Borel simple functions, such

that sg-i) — ¢; uniformly in € as j — oo, and tg»i) — 1; uniformly in Y as j — oc.
By definition,

/Qqﬁz(x) dp(z) = (wx-BVy (Y;R?)) — lim sg-i)(x) dp(z),

Jj—00 9]

so that the uniform convergence tﬁi)

i [ ([P ant)o = [ ([ 60 duta)o v

— 1) in Y as j — oo entails

for all : € {1,--- ,m}. To conclude, it suffices to pass to the limit as j — oo the
inequality
([ ) man) < [X 80| i)
Y i=1 oo

established above for simple functions.
We are finally in position to give sense to (13) (for i = 1).

Definition 2.5. Let ¢ € Cy(€;Cx(Y)) and p € M(Q; BV, (Y;R?)) be given. We
define

[, ot dntariy = i { i [ ([ #@aw@)nPwaf @

where for each j € N, m; € N, and for all i € {1,...,m;}, ¢§j) € Co(9), @/;ZQ) S
Cy(Y), and {¢;};en, with ¢; := > ¢§”¢§j), converges to ¢ in Co(Q; Cy(Y)).
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Remark 2.6. (i) Given ¢ € Co(€; Cx(Y)), the existence of a sequence {¢;};en as
in Definition 2.5 is a consequence of the Stone-Weierstrass Theorem.

(ii) Note that (20) reduces to (18) when ¢(x,y) = ¢(z)¢(y) with ¢ € Cy(Q),
€ Cy(Y).

(iii) Estimate (19) ensures that the limit in the Definition 2.5 exists and does not
depend on the approximating sequence. Moreover,

< [lpllooll el (€2), (21)

/Q YWE’ y) dp(z)dy

for all ¢ € Cp(£2; C»(Y)), and
p € Co(§ Cu(Y)) = [ pla,y) dp(z)dy
QxYy

defines a linear continuous functional.

(iv) We could have considered the more general setting in which ¢ € C(Q; Cx(Y))N
L>(22 x Y). In this case, (iii) above still holds with “p € Cy(£2; Cx(Y'))" replaced
by “p € C(;Cu(Y))NL®(Q x Y)"

Next we prove an integration by parts formula for measures in M, (Q; BVy (Y; Rd) ) .

Lemma 2.7. Let p € M, (Q; BVx(Y:RY)), ¢ € Co(Q) and ¢ € CL(Y) be given.
Then

[ ([ewan@)mevoma=-[ owvmaren, e
vy \Jo Qxy
where A € My (Q x Y;RN) is the measure associated with Dyp.

Proof. Fix B € B(12), and let A\g € M4 (Y;R) be the (projection) measure defined
by Ag(:) := A(B x -). We have that

/Y ( /Q x5(x) du(w))(y) ® Vi(y) dy

- /Y (W(B))(y) ® Vly) dy = — /Y b (y) D, (u(B))(v) (23)
- /Y V) =~ [ o) A = - / (o) $l) e,

where we have used the fact that u(B) € BVy(Y;R?) and the slicing decomposition
of a Radon measure (see (11)) applied to A|pxy.

Since any function in Cy(€2) can be approximated with respect to the uniform
convergence in € by Borel simple functions, (22) follows from (23) and Defini-
tion 2.3. [

Step 2. We define (13) recursively for an arbitrary ¢ € N. Fix ¢ > 2, and let
0 € Co(;Cyu(Yy X -+ x Yiq)) and g€ M(Q x Y X -+ x Yi_y; BVy(Y;,RY)).
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Proceeding as before (see (15) and Definition 2.3), we define the integral of ¥ over
B e B(QxY;x---xY;_;) with respect to p, and we write [, 9(z,y1, -, yi—1) dp(z,
Y1, ,Yi—1), as the function in BV (Yi; Rd) given by

/ ¢($71/17"' infl) dl"’('xﬂylv”' 7yi71)
B

= (U]*—BV# (Y;aRd)) - hm Sj(xa Y, - 7yi—l) d/,l;(l', Y, ayi—l)a

J—7x JB

where {s;};en is a sequence of Borel simple functions s; : Q x RN — R Y] x
-+- X Y;_1-periodic in the variables (yi,- - ,¥;—1), converging uniformly in 2 x Y] X
<o+ X Y to .

Let ¢ € Co(Q2;Cx(Yy x --- x Y;)), and take a sequence {p;} ey converging to ¢
in Cp(€; Cu(Y1 x -+ x Y;)), where each ¢; is of the form y;(z,y1,- -, yim1,¥:) =
S ﬂg)(a:,yl, e ,yi_l)wg)(yi) with m; € N, and for all k € {1,--- ,m;}, 1953) €

Co(2; Cp(Yr x -+ x Yi_q)), lij) € C4(Y;). Once again proceeding as before (see
(18) and Definition 2.5) we can give sense to the expression

Z/ (/ 0P @,y yir) A,y - 7%‘1))(2/1‘) 0D () dy: (24)
k=1"Yi QOxYix-xY;_1

in R?, and prove that the limit of (24) as j — oo exists and is independent of the
approximating sequence. We then define

/ (70('%73/17"' ayl) d/'l‘(xaylf" 7yi—l)dyi (25)
OxY)x---xY;
m;
= lim Z/ (/ 1953)(96,@/1,---,yi_l)du(m,yl,---,yi_l))(yi)w;?)(yi)dyi-
T Y OxY1x-xY;_1

Similarly, if ¢ € Co(2; Cy (Y1 X -+ x Y;;R?)), then we set

/ o(@,y1, -, y) - dp(z, gy, - yie1)dy;s (26)

QAxYyx--xY;

= lim E /(/ ﬁ;gj)($7y1,'~',y¢_1)dﬂ/(l’,y1,'--,yi—1)>(yi)'1/1;(;)(%)(1%,
J—00 1Y Yi QOxXYix-xY;_1

where Pj (l‘, Y, 5 Yi-1, yz) = ZZL:Jl 1954;]) (l’, Y, 7yi71)w](gj) (yz) with m; € N7 and
for all k € {1,---,my}, 99 € Co(Q;Cu(Yi x --- x Yi ), v € Cu(vi,RY),
converges to ¢ in Co (€ Cy (Vs x -+ x Y;;R?)) as j — oo.

If, in particular, p € M, (Q XYy X xY;_1;BVy (Y,-, Rd)) then similar arguments
to those of Lemma 2.7 ensure that for all ¢ € Co(Q; Cu (Y1 x - - - xYi_1)), ¥ € CL(Y;)
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and 0 € C} (Y;; RY) one has

/ (/ Iz, g,y yior) dpl(, y, - - 7%‘1))(%‘) ® Vi (ys) dy;
Y; QAxY1x-xY; 1 (27>

= _/ 19<I,y1,"' 7yl—1)1/}<yl) d)‘(xayla"' in)v
QXY x--xY;

where A € M4 (Q XY X XY RdXN) is the measure associated with D, u, and
for all k € {1,--- ,d},

/ (/ 19(1’, Y1, 7yi—l) d,l,Lk<£L', Y1, 73/1—1))(3/1) le@(yz) dyz
Y; OxXYyx--xY;_1 (28)

= = / 79(':177 Y1, 7yi*1> 9(3/@) ' d)\(k)(x7y17 e 7yi)7
QxYi x---xY;

where Ay denotes the k™ row of A and p,, denotes the k"™ component of p.

Remark 2.8. As observed in Remark 2.6 (iv), in (26) we may consider the more
general setting in which ¢ € C'(€Q; Cy (Y1 x -+ - x YVi; RY) )N L= (2 x Yy x - - - x Vi3 RY).

In this case, the functions 19,(5) are to be taken in C'(£2; C(Yy x -+ - x Y;)) N L>(§2 x
Y1 x -+ xY;), and, as before, the corresponding limit in (26) is independent of the

approximating sequence (with respect to the supremum norm || - || in Q X Yj x

Moreover,
F(y) 1:/ (@, yn, o y) - dp(@,yn, 0 Y1) dy
QxYy X XY;

for p € C(C (Y1 x -+ x Y RY)) NL®(Q x Yy x -+ x Y;;RY), defines a linear

continuous functional, and we have

[F ()| < llellocllpll (2 x Vi x -+ x YViy).

Furthermore, proceeding as in Lemma 2.4 and (25), in the particular case in which
@ is scalar and does not depend on y;, then

J

</ ol ] dlal o i),
QAxY1x-xY;_1

/ 90(%?/1,'" 7yi—1)d”’(x7y1a"' >yi—1) dyz
AxY1x--xY;_1

and if we define for all B € B(Q2 x Y] x -+ x Y1),
V(B) = / So(x7y17"' 7yi—1)dl‘l’(l'7y17"' 7%‘—1),
B

then we have that v € M (QxY; x- - -xY;_1; BVy(Y;; RY)), and ||V (B) < |||l || ]| (B).
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3. Multiscale Convergence in BV

The main goal of this section is to characterize (n + 1)-scale limit pairs (u, U) asso-
ciated with sequences {(u-L"|q, Du.|g)}eso € M(RY) x M(Q; R>N) whenever
{u.}.~0 is a bounded sequence in BV (Q; R?).

We start by establishing some properties concerning the notion of multiscale con-
vergence for sequences of measures, introduced in Definition 1.7.

Let n € N be fixed. In the sequel, g1, ..., 0, : (0,00) — (0, 00) satisfy (1).

Remark 3.1. The (n+ 1)-scale limit uo may depend on the sequence {e}. Indeed,
let n =1, () = ¢ for all ¢ > 0, let 2 C RY be open and bounded, and let
Ve Cp(Y ) Define pie := 9(2) LN q. If ¢ € Co(Q; Cx(Y)), then by the Riemann-
Lebesgue Lemma (see [8])

lim Qgp<x, g) dpe(z) = lim Q(p(ﬂt, z>19<§> dz

e—0t e—07 €
_ / o, y)9(y) dady = (L¥0 @ ILY, )
aOxy

and

lim Qgp(@ g) dpte2(z) = lim Qgp<x, f)ﬁ(£> dx

e—0t e—0t

= / 90<33'7 1/1)79(3/2) drdy,dys.
QXYl XY2

_ /Q o) ( /Y R dyg) dzdy = (0L ® LY, g),

where 9 := [, 9(y) dy. Hence p. 22 LN g @ 9LY, while p2 229 LN g ®L’N This

(nJri)_sc Lo and/w "H Ao, with
n+1)

example shows that it may be the case that .

g’ < g, but ug # Ao. What we can guarantee is that p.
the dependence of the test functions on the length scales.

Lo- ThlS is due to

The notion of (n+ 1)-scale convergence is justified in view of the following compact-
ness result. The proof is a straightforward generalization of that of [3, Thm. 3.5]
(see also [1]).

Theorem 3.2. Let {puc}os0 C M(Q;R™) be a bounded sequence. Then there exist
a subsequence {fie }orso of {te}eso and a measure jrg € Myg (2 x Y7 x -+ x Y, R™)

such that /LE/%MO.

As in the cases studied in [1], [2], and [3], the (n + 1)-scale limit contains more
information on the oscillations of a bounded sequence in M(€2;R™) than its weak-x
limit, in that the latter is the canonical projection of the (n + 1)-scale limit onto €.

Proposition 3.3. Let {ji.}es0 C M R™) and p1g € Myg(Qx Yy x - xY,;R™)

be such that Ns%ﬂo- Then pi. = fig weakly-+ in M(Q;R™) as e — 0%, where
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fio € M(Q2;R™) is the measure defined for all B € B(§2) by
fo(B) == po(B X Y] X -+ X Y,).

Moreover, [[io]l(2) < [0l (2 X Y x -+ x ¥,) < Timinf._ov e[| ().

The proof of Proposition 3.3 is a simple generalization of [3, Lemmas 3.3 and 3.4].

Remark 3.4. In view of Proposition 3.3, since every weakly-x convergent sequence
in M(2;R™) is bounded, the same holds for any (n 4 1)-scale convergent sequence

in M(Q;R™).

Assume that {u.}.~o C BV (Q;R?) is a bounded sequence. By Theorem 3.2, there
exist subsequences of {usﬁN LQ}€>0 and {Du, }.~o that (n+1)-scale converge. Theo-
rem 1.10 provides a characterization of these (n + 1)-scale limits as well as the
relationship between them. To prove it we need an auxiliary lemma, which is an

extension of [3, Thm. 2.5] (see also [2, Lemma 3.7]).

Lemma 3.5. Let A € Myu(Q x Yy x -+ X Y,; RY) be given. The following condi-
tions are equivalent:

(i)  forallie{l,---,n} there exists a measure p; € M, (QxYx---xY;_1; BV4(Y;))
such that
A1 ifn=1,

Yi+1,Yn

)\ — n—1 .
§ N @LOTIN LN ifn> 2,
i=1

where each \; € Myx (Q XY XX Y;;RN) 1s the measure associated with
‘Dyip’i;

(i) for all ¢ € CF(Q;OF (Y1 X -+ X Y RY)) such that div,, ¢ = 0 and, if
n>=2, foralke{l,--- ,n—1},2€Q,y, €Y;, 1€ {l,--- ,n},

/ dlvyk So(x7 yl) Tt 7yn) dyk+1 AR dyn = 07
Yk+1><"'><yn

we have

/ 90(1',?/1,“‘»yn)'dA(xayla”' 7yn):0
QAxY)x--xXYy

Proof. We will give the proof only for n = 2, the argument being easily adapted
for any n € N.

Step 1. Assume first that (7) holds, and let ¢ € C®° (Q; cy (Y1 X YQ;RN)) be such
that div,, ¢ = 0 and

/ divyl QD(Z’, Y1, y?) dy2 =0.
Yo

Using the decomposition of A as in (i), we have

/ @'d/\(x7y1792):/ SO'd)\l(%yl)d?ﬂ‘F/ e-dXa(x, y1,92). (29)
QXYlXYQ QXYlXYQ QXY1><Y2
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We will show that both integrals on the right-hand side of (2 9) are equal to zero.
Let {9;}jen be a sequence of the form g;(z, y1,52) = Y1, k < o )6 (1),
where m; € N and for all k € {1,---,m;}, (ﬁ,(f) € CX(Q), wk € C¥(\1), 9,(3) €
C (Ya; RY), converging to ¢ in C5°(Q; O (Y1 x Ya;RY)). Then,

divy, ¢; dys = Dvyd - [ 0 d )—>/div dy; =0
/5/2 Y 90.7 y2 kz; (¢k k v k y2 v, y1§0 y2 (30)

in Cy(€2; Cx(Y7)) as j — oo,

divy, p; = Z@iﬁ ,gj) diVG,E;j) —divy, o =0 in Cp(; Cx(Y1xY3)) as j — oo. (31)

The convergence ¢; — ¢ in Cj (Q; Cy (Y1 X Yo; RN)) as j — oo and Lemma 2.7 (see
also Remark 2.8) yield

/ 90(% yh?h) : d)‘l(‘ra yl)dy2 = lim Sﬁj(xa y17y2) 'd)\1(9€7 yl)dy2
QXYlXYQ J—e Q><Y1><Y2

= lim {Z / o (2)ud (y) dha (e, ) - / 6 (12) dyQ}
— _ QOxYq Y

= }H?o{_ij:/yl (/¢> (z) dpey (z ))(yl)Vwéj)(yl)dyl-L2 9;§j)(y2)dyz} (32)
_ jli_)rgo{ i/ (/cbk ) dpy (z )(yl)%j)(yl)dyl},

where ¢ = Vi - [ 017 dys. By (30), S0, o0 — 0 in Co(Q; O (11)) as
j — 00, and so, using (32) and Definition 2.5, we obtam

/ o, 91, y2) - (2, g1 )dys = / 0dpy(@)dys =0.  (33)
QXY1><Y2 QXYl

Similarly, in view of (25), (28) and (31), we get

/ (p(xvylay2> d)\z(ﬂf y17y2) = lim @j(ﬂf,yhyz) : d)\z(%th)
QXY1><Y2

]—>OO QXYl XY2

= jlim {Z/ ¢§j)($)¢;§j)(?/1)9;§j)(y2) : d)\z(il?,ybyz)}
e QxY1xY,

= lim {—i /Y 2 ( / . o (x) fj’(yl)du2<x,y1>)<y2>div9,ij><y2>dy2} (34)

= / 0dpy(z,y1)dys = 0.
QXY1>(Y2
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From (29), (33) and (34), we conclude that

/ 90(567?/1,y2) : d)\(%yh?h) =0,
OxY1xYs

which proves (i7).

Step 2. Conversely, assume by contradiction that (i7) holds but A ¢ &, where &
is the space of all measures 7 € M, (Q XY x Yo: RN ) for which there exist two
measures f; € M, (Q; BV, (Y1)) and py € M, (Q x Y1; BV4(Y3)) such that

T:)\1®£é\;+)\2a

where A\; € M (Q2 x Y1;RY) and Xy € Mz (Q x Y5 X Y;RY) are the measures
associated with D, u; and D,, p,, respectively.

Note that £ is a vectorial subspace of M4 (Q x Y] x Yo RV ) We claim that it is
weakly-x closed.

Substep 2a. Assume that the claim holds. Recalling that in a Banach space, a
convex set is weakly closed if, and only if, it is closed, then by a corollary to the

Hahn-Banach Theorem (see, for example, [6, Cor. 1.8]), there exists a function
@ € CO(Q;C'#(Yl X YQ;RN)) such that for all 7 € &,

(T, @)My#(nxylxYQ;RN),oo(Q;C#(YlxYQ;RN)) = / (@, y1,y2) - AT (z, Y1, 12) = 0,
QXY1><Y2
(A ) My 4 (21 X V2RN), Co (U0 (Vi xVaiRN)) = / o(@,y1,42) - d\(@, Y1, 42) # 0.
Q><Y1><Y2
(35)

Let f € C°(Q2), g € CF (Y1) and h € CF(Y2) be arbitrary. Define p, : B(2) —
BV,(V1), gty < B x Y1) — BVy(Ya) by

() = ( [ st@as)s, 5 es)
(/f 9(y dxdyl)h E € B(QxY).

Clearly, p, € M(Q; BV4(Y1)) and py, € M(Q2 x Yy; BV4(Y3)). Moreover, for all
BeB(Q), E € B(QxY,),

Dy (2(B)) = ( [ st dm) VgL,
Dy, (ps(E)) = ( / f(@)g(n dxdy1> VhLy,.

Hence p; € M, (Q2; BV, (Y1)) and py € M, (Q X Yy; BVy(Y2)), with

M= L@ VgLNy, and Ay = ( oL @ cNLH) ® VhLNy,,
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respectively. Thus A\ ® Eﬁg, Ay € &, and so by the first condition in (35), and
denoting by (-, -) the duality pairing in the sense of distributions, we conclude
that

0= / @(fﬂ,yljyz) : d)\1<x7y1)d92
QXY1><Y2

_ / oz, y1, 1) - (F(2)Vg(n)) dadydys
OxY1xYs

— /QXY1 (/1/2 o(z,y1, 1) dyg) (f(x)Vg(y)) dady, = — </Y2 div,, sﬂdy2,f9> )

and

0= / @(55,3/17%) 'd)\2(377y173h>
QXY1XY2

- / ) - (F(@)() Vh(e) dedyidys

= = <divy2 ¥, fgh> :
The arbitrariness of f € C2°(2), g € CF (Y1) and h € CF(Y3) yields

/ divy, ¢dy, =0 and divy, ¢ =0, (36)
Yo

in the sense of distributions.

Substep 2b. We show that (36) and (i7) contradict the second condition in (35). We
will derive such contradiction by proving that there exists a sequence {¢;}jen C
e (Q;C;f (Y1 X YQ;RN)) such that div,, p; = 0, sz divy, p;jdys = 0 and ¢; — ¢

in CO(Q; C’#(YI X YQ;RN)) as j — 00.

Let 0 < e < 1/2, and let p. € C.(RY) and 7. € C4(Y) be the functions introduced
in Subsection 2.1 (see (7), (8) and (9)). For x € Q, y1,y> € RY, define

(T, y1,92) = / (@, Y1, Y5)Ne (v — y1)ne (Y2 — ys) dyidys.
Y1><Y2

Then . € C’O(Q; C’;f(Yl X YQ;RN)) and . — @ in CO(Q;C#(Yl X YQ;RN)) as
e — 0*. Moreover, by (36) div,, . = 0in Q@ x RY x RV and [, divy, p.dy, =0 in
Q x RY,

Extend ¢, to RY x RY x R¥ by zero outside 2 x RY x R¥ | and for each j € N let

2
K; = {x € Q: x| < g, dist(z,RN\Q) > —,},

J
905‘6) (@, y1,92) == pe(@, 91, 42) Xk, (¥),

~ /

spje)(x7 Y1, y2> = /N @ge) (xlv Y1, y2)p% (I’ - Z'/) dz )
R
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for all (x,y1,y2) € RY x RN x RY where p:1 is the function given by (7) with
J
e replaced by 1/j. Notice that K; C K1, and UjenK; = . Moreover, since
supp p1 C B(0,1/7) we have
J

1
supp 955,6) C {(x,yl,yg) e RV x RN x RY: dist(z, K;) < 5}
1

C {x € Q: dist(x,00) > —,} x RN x RY.
J
Hence,
B e CR(CF (i x Y RY)),  divy, ¢ =0, /(m%¢?dm:o.
Y>

J
Furthermore, arguing as in [11, Thm. 2.78], we have that 355-5) — . in Cy (Q; Cy (Y1 X
Yy RN )) as j — oo. Finally, using a diagonalization argument we can find a
subsequence j. < j such that ¢, := gbgi) e Cr (Q; @5y (Yl X Ys; RN)), divy, ¢ = 0,
fY2 divy, P dys =0 and ¢. — ¢ in C’O(Q; C’#(Yl X YQ;]RN)) as ¢ — 07. Using (i),

0= / @s(l’,yl,yﬁ 'd)‘($>y1;y2)
OxY1xYs

- (@, y1,y2) - A2, y1,12) ase — 0T,
QXY1><Y2

which contradicts the second condition in (35).
It remains to prove the claim, i.e., £ is weakly-x closed.

Substep 2c. We start by proving that the set &; of all measures 7 € M,y (Q X
V1; RY) for which there exists a measure p; € M, (€; BVy(Y1)) such that 7 is the
measure associated with Dy, p, (i.e., for all B € B(Q2), £ € B(Y1), 7(B x E) =
D,, (1 (B))(E)) is weakly-* closed.

Since the weak-x topology is metrizable on every closed ball of M, (Q x Y ;RN ), by
the Krein—Smulian Theorem to prove that &; is weakly-x closed it suffices to show
that & is sequentially weakly-x closed. Let {7;}jen C & and 7 € My (Q x Y7; RN)

be such that 7; = 7 weakly— in M, (92 x Y1;RY) as j — oo, that is, for all
Y € CO(Q; C#(Yl;RN)) we have

lim o(x,yp) - drj(z, 1) = / (@, y1) - dr(z, 1)

= Jaxv QxYq

We want to prove that 7 € &;. Let {ugl)}jeN C M, (Q; BV, (Y1)) be such that 7; is

the measure associated with D,, ué.l) for each 7 € N.

Fix j € N, and let [LSD : B(§2) — BV4(Y1) be defined by

i (B) = (B) [ W (B)dn, B e BQ).
Y1
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It can be seen that each [1,5-1) satisfies conditions (i) and (i7) of Definition 2.1.
Moreover, for all B € B(Q2), D,, ([L(-l)(B)) =D, (uél)(B)) and

J

1))

sup { Z HH] i)l Bv,vi): {Bitien C B(S2) is a partition of Q}

N

2 sup { Z ||,uj il Bv,vi): {Bitien C B(2) is a partition of Q}

= 2|} H\(ﬂ) < oc.

Thus g'" € M, (Q; BV4(Y1)), being 7; the measure associated with D,, ugl) Fur-
thermore

|| HM LY (Y1)
= sup { Z ||u] ||L1* vi): {Bitien C B(Q) is a partition of Q}
< Csup { Z | Dy, (o (Bi)) (Y1) : {Bi}tien C B(R2) is a partition of Q}

¢ sup Z Sup Z | Dy, (5 (Bi)) (Ew))| (37)
{Bi}ienCB(©) i=1 {Ek}kenCB( Yl)
partition of 2 partition of Y7

oo (S)
=C sup sup E |7;(B; x Ey)|
{B; }'LENCB(Q) 1 {Eg}renCB(Y1) —1
partition of Q partition of Y7 -

o

<C s 3 s S nll(Bx B < Clln @ x V),

{Bi}iENCB(Q) =1 {Ek}keNCB(Yl> 1
partition of Q = partition of Y7 -

where 1* is the Sobolev conjugate of N, and where we have used a Poincaré in-
equality in BV (see [4, Rmk. 3.50]) taking into account that for each B € B({2),

[1,5-1) is a function in BV,(Y;) with zero mean value.

Since sup;ey |73 ]1(Q x Y1) < oo, and as M(Q; LY (V1)) ~ (Co( Lﬁ(Yi)))/ (see,
for example, [7, p. 182]), from (37) we deduce the existence of a (not relabeled)

subsequence of {ﬁgl)}jeN and of a measure fr € M(€; L} (Y1)) such that

pé.l) s fu weakly-x in M(Q; LY (Y1) as j — oo.

In particular, for all ¢ € Cy(€2; C»(Y1)) we have

lim oz, ) dil) () dy; = /Q ez, y1) dip(z)dy;, (38)
><Y1

J—oe Q><Y1

where the integrals are to be understood in the sense of Subsection 2.4.
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We want to prove that 1 € M,(; BVx(Y])) and that 7 is the measure asso-
ciated with D, fi, thus proving that 7 € &. We start by showing that fi €
M, (Q; BVy(Y1)). Let ¢ € Co(Q) and ¢ € CL(Y1;RY) be given. Taking into

account that 7; is the measure associated with Dylﬁgl), Lemma 2.7 and the weak-x

* . .
convergence 7; — 7 in M4 (Q x Y7; RN) as j — 00, we have

lim o(a) div oo (y) da{ () dys = lim Y( /Q ¢<x>dﬁ?)(a:))(yl)dival)dyl

J=% Jaxv J—oo
= — lim o(x) (1) - drj(@, 1) = — (@) ¥(y1) - d7(z, 1) (39)
IO Jaxyr QxY;

From (38) and (39), we get

([ o@an)on divvtm dn == [ owyvim)-dran). @)

for all ¢ € Cy(Q2) and ¢ € CL (Y1; RY).
We claim that for all B € B(Q2) and ¢ € C(Y1;RY), we have

/Y ) (0) div (o) s =~ [ 0(an) - drnlon) (41)

where 75(+) := 7(B x -), thus showing that fi(B) € BVx (Y1) with Dy, (ft(B)) = 75.

Indeed, proceeding as in Lemma 2.4, it can be proved that for all bounded, Borel
measurable functions ¢ : {2 — R, we have

/

Fix § > 0. Since ||@t]| € M(;R) and ||7]| € My, (2 x Y1;R) are positive, finite
Radon measures, we may find an open set As O B and a closed set C5 C B such
that

/Q o(x) djilz)

dy < / 6(2)| )|l (2). (42)

IE1(ANCs) <o, [I7[[((As\C5) x Y1) < 6. (43)

By Urysohn’s Lemma, we may also find a function ¢5 € Cy(€;[0,1]) such that
¢s = 01in Q\As and ¢s = 1 in Cs. Then, in view of (42),

\ | ([ osto) o) v oton) s ~ [ ) ) div ) "

<Vl [

Y1

/Q(%(x) — x5(2))du(z)| dyr < 2C[| V||| 2l] (A5\C5)-

From (43) and (44), we get

lim . </Q¢5(l’) dﬁ(fc))(yl)diw(yl)dyl = /m p(B)(y1) divep(yr) dyr.  (45)

6—0t
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Similarly,

lim ¢s(x) Y(yr) - d7(, 1) = y U(yr) - A7 (Y1) (46)

6—=0% Jaxy;

Considering (40) with ¢ replaced by ¢s, passing to the limit as 6 — 07 taking into
account (45) and (46), we deduce (41). In particular, for all B € B(Q), E € B(Y1),

Dy, (r(B))(E) = 75(E) = 7(B x E). (47)

To conclude that 1 € M, (€2; BV,(Y1)) it remains to prove that fi has finite total
variation. As in (37), by (47) we get

sup { Z | Dy, ((B:))||(Y1): {Bi}ien C B(£2) is a partition of Q} < |I7]](22 x Y7).

Consequently,
| 22]|(2) = sup { Z (Bl Bv, (vi): {Bitien C B(S2) is a partition of Q}

< Coup { S (BN + 1D EEDI0D):

=1

{Bi}ien C B() is a partition of Q}
< ¢ (supll 2 x Y0 + 7@ x Y1) ) < o,
JE

where we have also used (37). Thus, it € M,(€; BV4(Y1)) and 7 is the measure
associated with D,, fi, which shows that 7 € &, and this concludes the proof that
& is a weakly-* closed subspace of M, 4 (Q x Y7; RN).

Substep 2d. Similarly to Substep 2c, one can show that the space & of all mea-
sures 7 € My, (Q X Y] X YQ;RN) for which there exists a measure gy, € M, (Q x
Y1; BV4(Y2)) such that 7 is the measure associated with D,,p, (ie., for all B €
B(Qx Y1), E € B(Ys), (B x E) = D,,(uy(B))(E)) is weakly-* closed.

Substep 2e. We are now in position to prove that £ is a weakly-x closed vectorial
subspace of M4 (Q XY x Yo RN ) As before, it suffices to show that £ is sequen-

tially weakly- closed. Let {7;};en C € be a sequence such that 7; = 7 weakly- in
/\/ly#(Q x Y] x YQ;RN) as j — 0o. We want to prove that 7 € £.

(1)

For cach j € N write 7; = 7' ) ® EN + 7'( ), where T ) € /\/ly#(Q x Y1; R ) and

) e /\/ly# (Q XY x Yo R ) are the measures associated with D,, ug and D, u§2)

for some ,uJ b e M, (Q; BVx(Y1)) and u§2) € M, (Q x Yy; BV4(Ys)), respectively.
Let ¥ € Co(Q;Cy(Y1;RY)) be such that |||l < 1. Then ¢ can be seen as an
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element of Cy (Q; Cy (Yl x Yo RN )) , still with norm less than or equal to 1. Moreover,

<Tj,ﬁ)My#(QxylxYQ;RN),CO(Q;c#(YlxYQ;RN)) = / 19(%%) : de(%yla?h)
QXYlXYQ
= / ﬁ(w,yl)-del)(fE,yl)dszr/ I, y1) - dr? (@, y1,40)
QXYlXYQ QXY1><Y2

1 1
= / Iz, 1) - de( )(%yl) = <Tj( )a19>My#(szxy1;RN),CO(Q;C#(YI;RN)),
QXYl

since [o .y, V(7. 91) - de@)(x,yl,yg) = 0 by (27) (with ¢ = 2 and ¢ = 1). This
implies that
[7;]1(€2 X Y1 x Y3) = sup {(Tj, @)My#(szxylxYQ;RN),CO(Q;C#(YlxYQ;RN))1
p € Co(2;Cu (Y1 x Ya; RY)), lplleo < 1}

2 Sup { <Tj7 19>My# (ﬂXYl XYQ;RN) Co(Q‘C#(Yl XYQ‘RN)) :

D€ ColCy (Vi RY)), (0]l < 1}

= Sup {<7}1)7 19>My#(Q><Y1;RN),CO(QC#(YURN)) :
0 € Co( Cu (Y RY)), 9]l <1}
= [I7V][(@ x 11).

Hence {Tj(l)}jeN is a bounded sequence in M,4(Q x Y;;RY), and so there exist a
subsequence {TO)}keN of {TQ)}]-GN and a measure 7 € /\/ly#(Q x Y1; RY) such that

() = 7 weakly-* in Myu(Q x Yi;RY) as k — oc. SmceT € & forall k € N,

and & is a weakly-x closed subspace of M4 (Q x Yi; RN ) (see Substep 2c¢), we
conclude that 7 € £. Let p, € M, (Q; BVx(Y7)) be such that 7 is the measure
associated with D, .

Next, write 7(2) = Tj, — ) ® L'é\;, SO that T( N T ® EN =: 15 weakly-* in

My#(Q X Y] X YQ,RN) as k — 00. Since 7' ) e & for all k € N, by Substep 2c we
conclude that 7 € &. Thus we can find p, e M, (QxYy; BV (Yg)) such that 7 is
the measure associated with D,,u,. Finally,

7':7'1®£££+7'2 €&,
and this concludes the proof of the claim. O]

Proof of Theorem 1.10. (a) We claim that for all ¢ € Co(€2; Cy (Y1 X - -xY;;RY))
we have

x x
lim x, R g () dx
i [o(v o ) e

- / o(x, Y1, ,yn) - u(x) dedy; - - - dy,.
QxY1x--xYp
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If p € C(Q;Cu(Y) x - x Y,,; RY)), then by Riemann-Lebesgue’s Lemma

e — > YLy dyr - - dys 49
SO( Ql(s) Qn(€)> /Y1>< XY ‘;0( ! ) ! ( )
weakly-x in L2 (€; RY) as e — 0T, from which (48) follows since by hypothesis u. —
u (strongly) in L (Q,Rd) as e — 07, and since if ¢ € () (Q; Cy (Y1 X - X Yn;Rd))
then (49) holds weakly-x in L°°(€); R?).

(b) By reasoning component by component, we may assume without loss of gene-
rality that d = 1. Since {Du, }.~o is a bounded sequence in M(Q; RY), by Theo-
rem 3.2, and up to a subsequence (not relabeled),

DUE (n+1)-sc 1o, (50)

£

for some g € My (2 x Yy x -+ x Y,; RY).

We claim that if ¢ € C° (Q (@hng (Y1 X o X YH;RN)) is such that div,, ¢ = 0 and,
ifn>2 forallke{l,--- n—1},z2€Q uy €Y, 1€ {l,--- ,n},

/ divy, (.91, -, Yn) Qg1 - - dyn = 0, (51)
Yiqp1 X XYn

then we have

/ (p(l.’yl’.” 7yn)'d/i0<513'7@/17"' 7yn>

OXY1 X XYy (52)

- / o(z,y1,- - ,yn) - dDu(x)dy; - - - dys,.
QAxY1x--xYn

If the claim holds, then by Lemma 3.5 there exist n measures p;, € M, (Q x Y] X
-x Y 1; BVu(Y;)), i € {1,--- ,n}, such that

po — Dujo @ Ly Z)\ ® LGN+ A

Yit+1,

where each \; € M4 (Q XY X xY; RN) is the measure associated with D, ;.
This will establish statement (b).

Let us prove (52). Let p € C°(9; cy (Y1 x -+ x Y,; RY)) be such that div,, ¢ = 0.
Using the fact that u. € BV (€2) we obtain

_ —/Q(diva;sﬁ)(x, . )ua(x)dx (53)
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By (@) and Fubini’s Theorem, we deduce that

01(e) " oule)

lim [ (div, ¢) (x,

e—0t Q

- / (dive ©)(z,y1, - Yn)u(x) dody; - - - dy,
QXY X XYn

) wlo)da

- _/ 90($7y17"' 7yn) dDu(l')dyl.dyn
QAxY1 X XYy,

We claim that, if in addition ¢ is such that for n > 2 and for all k € {1,---

[ e i =
Yiq1 X x Yy

then for all k € {1,--- ,n— 1},

i i L (i ) e =

431

(54)

,n—1},

(55)

Assume that (55) holds. Then passing (53) to the limit as e — 0, from (50), (54)

and (55) we get (52), which concludes the proof of Theorem 1.10.

It remains to establish (55). The main ideas to prove (55) are those of [2, Thm. 3.3,
Cor. 3.4], which we will include here for the sake of completeness. Let n > 2, fix

ke{l,---,n—1} and define ¥y, := div,, ¢. By (51), we can write

k
ﬁk(xaylf" ;yn) = E 195 )(‘rayla"' 7yi>7
i=k+1

where the functions 19§k) are given by the inductive formulae

9*) = O dyiy - - - dyn
Yip1 XXV
- Vpdy;---dy, ifie{k+1,--- ,n—1}
\ }/iX"'XYn
By construction, for each i € {k+1,--- ,n} one has

o € 0, = {ﬁ € X CF Mk x V)5 [ Do ) dyi = o}.
Y;
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Moreover, for n > 2 and k € {1,- — 1},

e dlvyk (x e ang)) u(z) da

0i(€) (k)< x x >
—— [ 9| x, R U () do.
;l () oi(e /Q ' 01(e) 0i(e) (@)

Hence, using the boundedness of {u,}.~o in BV (€2) and (1), to prove (55) it suffices

to show that for each ¢ € {k + 1,--- ,n} there exists a constant C; = 0(195’“)),
independent of ¢, such that

9@'15) /qugm (x @j&)’ o Qifé")) uele) da

Fixi e {k+1,---,n}. To simplify the notation, in the remaining part of the proof

< CiHUaHBV(Q)- (56)

we will drop the dependence on ¢ and k of the function 195’“), so that ﬁgk) =19 € O,

As shown in [2, Lemma 3.6], there exists a linear operator S : ¥ € O; — S € OF
such that div,,(SY) = ¥ and ||SY||« < C||Y| 0, for some constant C. Then we can
write

ﬁﬁ(m’ ng) o 9:(06)) o0
- a(0(e o 2)) - ) s ™ (2w am):

where T is the linear operator given by

T = g;_1 () div, (S9) + Z Q;sz) div,, (S9).

Note that 1.1 € O;. Indeed, T, € O; inherits the same regularity of Sv, and

/ div,(S9) dy; = div, / S dy; = 0, / divy, (59) dy; = div,, / S dy; = 0,
Y; Y; Y;

Y,
for all j € {1,--,i—1}, and so [, T.0dy; = 0.
Let us now analyze the right-hand side of (57). On the one hand we have that

/Qdiv<(sz9> (x 91:?6) C &-fﬁ))) tel) do

= ’ — /9(519) (:B, Q1—(€)’ e Qi(5)> -dDu,(x)
< 1S9 [oo [ Duc[[(€2) < Cl[Y oo || Duc [ (£2).-
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On the other hand, the function —— ol (T 9 (-
the function 19(

L ’QT)) is of the same type as
’91() ’Qi(E))'

Applying (57) to 1.1 instead of 1, and reiterating this process m times, with m as
in (5), we get

ER =)
_ ni:( < (¢) ) div( (S(T.)79) <:r; ng),-- ,Q;(Ug))) (58)

s (B8 ) (e nsam)

Reasoning as above,

/Q (—1) ( 99_52))] diV((S(Tg)jﬁ) <x Qi), _ Q;(;))) u.(z) dz

. (59)
< ai(e) Y’ J u < J u
<c (Mg)) 1LY 9l | Du () < Tl D | ()
for all j € {0,---,m — 1}, while
/Q( 1) <Qi1(5)) Qi(e’:‘)((Tg) 19)( 7@1(6)’ 7@1’(8)> 6( )d (60)

Qi(€) ™1 . -
< ( ()) . (T2 ™0 || o[l 1) < CINT)™ 0 |ool|ue || 2102

0i-1(& i(€)
where we used (1) and (5).

Finally using the definition of the operator T, we deduce that for all j € {0,--- ,m},

SUP (T )]19”00 S (||Sl9||cj(gz;c;t(y1X...XYZ.;RN)) + ||19||cj(9;c;£(ylx...xyi)))a (61)
so that (56) follows from (58)—(61). O

The proof of the converse of Theorem 1.10, that is, of Proposition 1.11, is hinged on
a version for BV (Y; Rd)-valued measures of the classical Meyers—Serrin’s (density)
Theorem. We will need some auxiliary results.

For 0 < e < 1/2, let p. € C*(RY) and 1. € C(Y) be functions satisfying (8) and

(9), respectively. Fixi € {1,--- ,n}, let p € M, (Qx Y] x -+ x Y;_y; BVy(Y;,R?))
and denote by A the measure associated with D, u. We define

Uiy, Y) = /n (/QXY1><~~-><Y1- ng(x—x) "
62

Hna —y) dp( - ,yé_l))(yi-)na(yi —y) dy;,
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for v € Q. := {x € Q: dist(z,0Q) > €} and yi, ..., y; € RV,

Lemma 3.6. The function v, defined in (62) belongs to COO(QE;C;O(Yl X e X
YiR7)).

Proof. The proof is similar to the usual mollification case (see, for example, [4]).
It is done by induction on the order of the derivative, and the key ingredients are

the difference quotients and the Lebesgue Dominated Convergence Theorem, taking
into account the regularity of p. and 7.. O]

Lemma 3.7. Let Q' CC Q be an open, bounded set, and let ¥y, be the function
defined in (62). Then ¢ﬁ£(i+1)Nm/xYIx---xm N LNy, weakly— in My, (Q’ x Y X
cee X Y;;Rd) as € — 0%, that is, for all p € CO(Q’;C#(Yl X - X Y};Rd)) we have

lim gp(:ayla T 7%) ’ ¢5<x7y17 T 7%) dxdyl T dyl

e—07F Q' xY1x--xXY;

= / 90(957%7"‘ >yz)d:u‘($7y1> ayifl)dyia
Q' xY7 x--xXY;

where the last integral is to be understood in the sense of Subsection 2.4.

Lemma 3.8. Let ' CC Q be an open, bounded set, and let ), be the function
defined in (62). Then Vs LN oy vy, = A weakly— in My, (€ x Y; X

X Y RPN as e — 0T, and

lim V(@ 90, -+ wa) | dadyy - - dys = [[A[(Q x Y1 x -+ X V).

e—07F Q'xY1x---xXY;

Proof. Fix ¢ € Q. and y;,--- ,y; € RY. Set Y =Yy x- XY, Y =Y,

g = (yh : : ayi—l)v Yy =Y, and ﬁa(g) = H;;ll n&(yﬁ) Notice that due to (9)a for
all f € RE-DN o/ ¢ RN, we have

[aa=nai=1 [ nw-y)ay=1 (63)
Using (27) and (63), we get
Vitedn = [ ([ pto =) u ) e oty - o o
—— [([ o= =) aut ))& Vonty— o) o
= [ el = Dy = ) N 7)),

Hence V,,¢)¢ = ¢. # A in Q. x RN, where @ (z,y1, -+, 4i) := pe(2) [ [y 7 (3:), and
well known results on mollification of measures yield the desired convergences (see,
for example, [4, Thm. 2.2]). O
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Remark 3.9. Let ¢ € C.(2) and p € M*(Q XxY; X xY_1;BVy (Y;;Rd)) be
given, and define v(B) := [, ¢(x)dp(z,y1,- - ,yi1) for all B € B(Q x Yy x - x
Yi_1). By Remark 2.8, v € M(Q x Y; x -+ x ¥;_1; BV (Y;;R?)). Note that

supp v C supp ¢ x RO—DN,

Considering first functions @, ¢ of the form @(x, y1, -+ ,y:) = N, y1, -+, vim1)(yi)

a;nd SO('I7 Yy 7y’L> = 79($7 Yi, - 7yz—1)¢(yz) with 197 v e CO<Q7 C#(Yl Xoeee X}/i—l))7
Y € Cu(Y;) and ¢ € CL(Y;), using (27), arguing component by component, and

finally considering a density argument, we conclude that v € M, (Q XY XX
Yi_1; BV (Y;; Rd)), with 7 := ¢ d\ being the measure associated with D,,v, so that

/ 95(%3/17'“ 7yi)'dy(x7y17"' 7yi—1)dyi

QXY x--XY; (64)

= / ((ﬁ(xa Y1, 7y2)¢(x)) ’ d[,l,(l', Yi, - 7yi71)dyi?
QxYyx--xY;

/ (ﬂ(l’,yh--- ayi):dT(x7y17"' 7yz)

QXY x---xXY; (65)

= / (‘P(%yl,"' 7y1)¢(x)) :dA<x)y17"' 7yi)7
QXY x--xY;

for all ¢ € Co(Q;Cy (Vs x --- x Yi;RY)) and ¢ € Co (€ Ce (Y % -+ x Vi RNY),

Notice that the domain of the function ¢ given by (62) is Q. x R¥¥. In order
to have it defined on the whole Q x R¥ we extend v by zero. Precisely, for
B e BRY xY; x -+ xY;_y), let y(B) = v(BNQxY, x---xY;,;). Then
ve M, (RY xY; x - xYi_1; BVy(Y;;R?)), and supp & = supp v.

In this setting, the function ¥¢ defined in (62) (with g and €2 replaced by v and
RY, respectively) belongs to C>° (RN; cy (Y1 NEREI N ¢ ]Rd)). Furthermore,

supp s C Q x RN for all € > 0 small enough, (66)

since for all yy,...,y; € RN, (- yy, -+ ,4:) = 0 in {z € RV : dist(z,supp ¢) > €}.
Arguing as in Lemmas 3.7 and 3.8, we conclude that
wéﬁ””%xmx...m = VﬁNLYi
weakly-x in /\/l#y(Q X Y] XX Y;;Rd) as e — 0T,
vyi'@bgﬁ(iJrl)NLQxle---x}Q = T

(67)
weakly-x in My (Q x Y] x - x Y;;R*N) as e — 0T,

e—0* QxY1x--xY;

Proposition 3.10. Fizic {1,--- ,n}, andlet p € M, (QxY;x---xY;_1; BV (Y
Rd)). Denote by A the measure associated with Dy, pu. Then there exists a sequence
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{;j}jen C C® (O (Y X - X Vs RY)) N LY Q x Yy X -+ x Yio; WHH(Y; RY))
satisfying

¢j£(i+1)NLQXY1><~-><Yi = IJ'»CNLYi
weakly-* in M#y(Q X Y] XX YZ-;Rd) as j — 00,

Vo LN o vy, 5 A o
weakly—* in Myy(Q x Y X -« x Y RPN as j — oo,

lim IVy (g, sy dody - - dy = [AI(Q x Yy x - X V).

=0 Oy x-xY;
Proof. For simplicity we will assume that ¢ = 1. The case ¢ > 2 may be treated
similarly.

Let {Q}ren be a sequence of open sets such that 2, CC Q.1 and

0= G O,
k=1

and consider a smooth partition of unity subordinated to the open cover
{QkH\Qk_l}kEN of Q, where Qg := (), that is, a sequence {¢; }ren such that

or € C(ne\ U3 [0,1]), ) dr(z) =1 forallz € Q. (69)
k=1

For each k € N, define v := ¢ dp in the sense of Remark 3.9. In particular,
supp v C (QkH\Qk,l). Let {;}en and {p;},en be dense in C’O(Q;C# (Yl;Rd))
and C) (Q; Cy (Yl; RdXN) ) , respectively.

By induction and by (66) and (67) (with v replaced by vy), given j € N we can

find a sequence {5,(€j)}keN of positive numbers converging to zero, with 555) < 5,(5_1)

(and 8,20) :=1/2), such that for all k € Nand [ € {1,---,j} we have

xe o N
supp ¥, C (Qk+1\Qk—1) X RY, (70)
) L) ) 1
’/ Gu(z,y1) - Yo (2, 1) dedy —/ @iz, ) - dvg(z)dys| < =5, (T1)
QXYl QXYl j 2
) 1
/ oi(x, 1)« Vy gk (2, 1) dady, —/ i, yn) s dm(w, )| < =%,
QXYl Q><Yl j 2

e
Vit (e,o)| dadys — 7]l (2 x )| < (72)

‘ /S;Xyl
where 73, is the measure associated with D,, ;. For every open, bounded ' CC (2
only finitely many ;1 1\Qx_1 cover ', and so, in view of (70), for each j € N the
function v; defined by

ﬁ7

biwm) =S 0% (@) (73)
k=1
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belongs to C*(€; C¥ (Y1;RY)), with V¢ = >07, Vyld),ij’zj). Moreover, 1; €
Lt (Q;VVL1 (Yl;]Rd)) and

sug ||¢j||L1(QxY1;Rd) =: M < oo, Sug Hvyl%HLl(QxYl;Rdw) = M < o0. (74)
S jE

&)
Indeed, thanks to (70), and defining ¥;% := 0, we obtain

/ (s 1) | dadys
QXYl

< Z/ |1 (z, y1)| dzdy

k=1 7 (Q4+1\Qk—1)xX¥1

(J) (75)
(41 \Qi—1)x Y1
(J) (7) (j)
< Z/ { S )|+ U )|+ [0 ) } dudy,.
(e 1\ 1) x11
and
[ V] oy
QXYl
S Z/ . IV ¥5(, y1)| dzdy (76)
k=1 (e 1\Qp—1)x Y1
> o)
- Z/ J— vyl Vllz 1(‘7; yl) +vyl¢uk ('T yl) + vyﬂz)u:ii (I yl) dl‘dyl
=1 Y (Uer1\Qp—1)xV1
S §c)1 Ej)l
< Z/ N |:Vy1 V- 1(1’ yl +’Vy1¢uk (CC yl +’vylwl’k:1<x yl) }dl’dyl
k=1 (QUe+1\Qk—1)XY1

We have that

)
/ - Vor (fEaZh)‘ dzdy
(Q11\Q%—1)xY1
/ / / p.o (@ — ") dog(@") )(y1) .o (v — y1) Ay}
(Qp41\Q—1)x11 | I 1y RNk K
/ / {/ (/ P (x— ') de(f))(yi)
(Q+1\Q%—1) Y Q k
/ {/ </p€(j>(a:—x') de(a:’))(y'l) dyi} dx
(U1 \Uo—1) Q

/ / o (7 = ) d||De| () dz < {2l (2 \ 1) < el (0 \ k),
(1 \Uo—1)

dxdy,

o — ) dyl] dy/de
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where we used Fubini’s Theorem, (9), Lemma 2.4 (see also Remark 2.8), (70) and
(8) in this order. Thus,

; /(‘Qk-‘-l\Qk—l)XYl

)

o (,1)] dedyy < 2| | (). (77)

Similarly,

(4)
()| dadyy < 2 (),

; /(Qk\QkI)XY1
; /(Qk+1\ﬂk)><Y1

From (75), (77) and (78), we deduce the first condition in (74). To prove the second
condition in (74), we observe that from (70), (72), (69) and equality 7, = ¢y d\ (see
Remark 3.9), we have that

()
€r+1

Vkt1 (l' yl)

drdy; < 2[|pl/(2).

e}

@)
Z/ Vot (2 )| dady,
=1 7 (Q41\—1)x11
- 1
< 3 (Imlw\ %) + o)
k=1

o0

< Z AN 241\ Q%—1) + 1 < 2[[A[|(2) + 1
k=1
Arguing as above, and taking into account (76),

/ 1V, (1) ddyy < 6A(Q x 2) + 3,
QXYl

which concludes the proof of (74).

Now we prove the first convergence in (68). Let ¢ € Co(Q; Cy(Y1;R?)) be given,
and fix n > 0. There exists m € N such that

16 — Pmllcoopimay) <1

Using (74), (73), (69), (70), (21) (see also Remark 2.8), (64) and (71), we obtain
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for any j > m

\ [ eten) bt dndin = [ ol - dusta)d
QOxYy

QXYl

< / (60, 31) — Gl ) - 5 (2, ) dady,
><Y1
+‘/ @m(x>y1>'¢j<x>yl)d$dyl_/ Gm(w,y1) - dp(x)dy;
QXYl QXYl
; ] | teawn) = slam) - i)y
><Y1
> L)
<M+ / Gm (@, 1) oy (z,y1) dedy
k=1 QXY1
- / (o) b0(2) - dpa()ely |+l aall ()
XY1
<Cn+ 1
J

Letting first j — oo and then n — 0, we conclude that

im [ B g) -z, g) dedy, = / B, ) - dps(a)dyn.

7= Jaxy; QxY;

Since ¢ € () (Q; Cy (Yl; Rd)) was taken arbitrarily, this proves that

@ZJ]‘EQNLQXYI N uﬁNLyl weakly-x in M(Q X Yl;Rd) as j — oo.
The proof of the convergence
VyleEQNLQXyl X\ weakly-* in My (Q X Yl;]RdXN) as j — 00 (79)

is similar.

Using the lower semicontinuity of the total variation, convergence (79) yields

iming | [9,,05( 1) dad > JAI(@ x V). (30)
QXYl

Jj—00

To prove the converse inequality, let ¢ € C. (Q; Cy (Yl; RdXN)) be such that ||¢]|e < 1.

Using similar arguments to those in the proof of Lemma 3.8, Fubini’s Theorem,

the symmetry of ) and 1.6 with respect to the origin, (65) and the inclusion
k k
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supp ¢ C O x RY for some | € N, we deduce that
!

)
/ ¢<x7 yl) : vyﬂﬁj(% yl) dxdyl = § / 90(‘1'7 yl) : Vy1w13: (l’, yl) dﬂUdZ/l
QXYl k QXYl

l

= Z/ p(z,y1) : {/ . (v —x")n o) (y1 — yi)di(ﬂfl,yi)}dde
k=1 Y OxY1 RN xY; k

k
l
— Z/ {/ oz, y1)p.o (@ — 2 )no (v — 1) dxdyl} A2 o)
k=1 RNXY1 QXy1 k X
Z ((p.m0) * @) (@', ) = AT, o)) (81)
RN xY; €k %k
o

:,i

p (N] (J) * QO) (z,y1) : d7e(, 1)
Y

Z [ P, (]) * 90)(37 Y1) o (x )} cdA(z, 1)

Y1 p=1

_ / 5 yn) < dA(z, 02),
QXYl

\

where @;(x,y1) = 22:1 [((pgl(cjmeg)) * cp)(x,yl)@c(x)]. Notice that [|@;]le < 1
Indeed, for all x € 2, y; € Y, we have

l

Z P (@ =2 )0 (y1 — vh)e(a’,yy) da'dy; di ()
QXYl Ck K

k=

‘QOJ T yl

l

el ([ pple = angtn - 1) i o))

k=1
!
< lelloo D ule) <1
k=1

where we used (8), (9), (69) and the condition ||¢||. < 1. Taking the supremum
over z € Q and y; € Y7, we get [|@j]lo < 1. Moreover, @; € Co(Q; Cy(Yr; RTN))
and so, from (81), we deduce that

/Q ) Vi) dadys < [N x ) (82)

By density, taking into account (74) and using Lebesgue Dominated Convergence
Theorem, we conclude that (82) holds for all p € Cy (Q; Cy (Yl;RdXN)) with |lp|leo < 1.
Hence

/ IV, (1) ey < [AI(Q x Y3),
Q><Y1
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which together with (80) yield

lim Vo thj(, yn)| dazdyy = [[A[[(€ x Y1) O

j—>OO QXYl

Corollary 3.11. Fizi € {1,---,n}, and let p € M, (QxY;x---xY;_1; BVy (Y;; RY)).
Denote by A the measure associated with Dy, pu. Then there exists a sequence {1);}en
C O (% cy (Y1 x -+ x Yi;RY)) satisfying (68).

Proof. As in the previous proof, we may assume without loss of generality that i =
1. Let {tytren C C°( cy (Y1;R?)) be the sequence given by Proposition 3.10.
Let {€;}en be a sequence of open sets such that Q; CC Q4 and Q = [J;Z, €, and
let {¢;},en be a sequence of cut-off functions ¢; € C°(; [0, 1]) satistying ¢; = 1
in Q; and ¢; = 0 in Q\Q;44, for all j € N. Define

bk, ) = di(x) b, p1).

We have that QZM € C’é’o(Q; C’?(YI;Rd)). Let ¢ € C’O(Q;C#(Yl;Rd)) and ¢ €
CO(Q;C#(Yl;RdXN)) be given. Then for all j € N, ¢¢; € C’O(Q;C#(Yl;Rd))
and p¢; € Co(€ Cy(Y1;R>N)). Using the first two convergences in (68), Re-
mark 2.6 (iii) (see also Remark 2.8), the convergence lim; .. ||p|/(2\2;) = 0, the
pointwise convergence ¢; — 1 1in 2 as j — oo, and Lebesgue Dominated Conver-
gence Theorem, we get

lim lim Pz, y1) - Yjr(x, yr) dedy
]HOOkHOO QXYl

= lim lim (@(%yl)ﬁﬁj(@) “Yr(z,y1) dody,
J—00 k—oo QxY;

—tim [ (Gn)os@) dutodn = [ pla)- du)dn,
J—ee Q><Y1 Q><Yl

and

lim lim 90(1’791) : vquZj,k(x7yl) dxdyl

Jj—00 k—oo Qxy;

= lim lim o(z, 1) : (¢ (2)Vy Yz, 1)) dedy;

J—00 k—oo QxY:

—lim [ (@) ) = [ o) ),

7= Jaxy; QxY;

On the other hand,

/ |Vy1@5j,k(x,y1)ldmdy1=/ |03 (%) Vy, i (2, y1)| dzdyy
Q><Y1

Q><Y1

< / |V h(x, y1)| dedy,
QXYl
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and so
lim sup lim sup/ IV (2, )| dazdyy < AI(Q x V),
QXYl

j—00 k—o0

where we have used the third convergence in (68). Using a diagonal argu-
ment together with the separability of the spaces CO(Q;C’#(Yl;]Rd)

) and
C'O(Q; Cy (Yl;]RdXN)), we can find a subsequence k; < k such that @Z;j = &j,kj €
c (Q;C;f (Y1;RY)) and
VLN oxy; = LYy, weakly-x in My, (Q x Y1;R?) as j — oo,
VyITLjEQNLQXYI X\ weakly-x in My (Q X Yl;RdXN) as j — 0o,
fimsup [ [9,,0,(0,30)] dodya < [AJ(2 x Vi)
QXYl

J—o0

Finally, the convergence Vylczjﬁmmxyl X0\ weakly-x in My (Q x Yy RN ) as
J — oo implies

fimint | (9, (a, )| dadys > A2 x Vi)
QXYl

J]—00

which concludes the proof. Il

Corollary 3.12. Assume that OQ is Lipschitz. Let u € BV (Q;RY) and for each
i€ {1, ,n}, let p; € Mu(Q2x Yy x -+ x Y;_1; BVg(Yi;RY)). Then there evist

sequences {u;}ien C C®(Q;RY) and {wj(i)}jeN C C(Q;02(Yr x -+ x Y RY))
satisfying

J—0o0

u; = u weakly—x in BV (Q;RY) as j — oo, lim [ |Vu,(z)|dz = || Dul|(),
0

(VU] + Z vyzd{gl)) C(n-"_l)N\_QXYlXXyn L )\uvﬂl 77777 B
i=1

weakly-* in My#(Q XY XX Yn;RdXN) as j — oo,
(83)
lim
IR JOxY;x-xYy,

= H>\u,y,1 ,,,,, I»"n”(QX}/l XXYn)’

dzdy; - - - dyn

=1

where Ay ., ... 1S the measure defined in (6).

Proof. We will proceed in two steps.
Step 1. We first prove that there are sequences {u;}eny C C*(; RY) NWHLH(Q; RY)
and {w§i)}jeN C O™ (¢ Cy (Y1 x -+ x Y;;R?)) satisfying (83).

Let {Q}ren be a sequence of open sets such that Q) CC Qi and Q = Uy, Qu,
and consider a smooth partition of unity {¢x}ren subordinated to the open cover

{QkH\Qk,l}keN of 2, where Qq := 0, as in (69).
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For each k € N and i € {1,--- ,n}, define v} := ¢, du,; in the sense of Remark 3.9,

and let {gogi)}jeN be dense in Cj (Q, Cy (Y1 cee X Yi,RdXN)). Arguing as in the
proof of Proposition 3.10 and as in [4, Thm. 3.9], for each j € N we can find a

Sequence {5k )}keN of positive numbers converging to zero, with 5 ) < 51(3 2 (and
:=1/2), such that for all k e N, 1 € {1,--- ,j} and i € {1,--- ,n} one has

supp (o0 * (udy)) C (1 \ Q1 )
1

/ 1o * (ur) — up| + |p.o» * (W@ Vo) —u®@ Vey|| de < —,  (84)
Q k k 72
4 _ )
supp ¢;ﬁ - (Qk+1\Qk—1) x R,
(i) e
¥ (ZE, Yiy -y yz) : vyi/l/}‘—jk (ZU, Y1y -y yz) dxdyl e dyz
OxY1 x--xY; v
_ (i) V. ek NP
2 (:L‘7y1a"'7yl) L AT (x’yh‘“ayl) < = )
OQxYy x---xXY; ]2
L) 1
T )t = @ < Vi x| < g
QxYy x--XY; *

©)
where w;’; was introduced in (62) and 7 is the measure associated with D,, V.

Similarly to the proof of Proposition 3.10 and as in [4, Thm. 3.9], for each j € N
and i € {1,---,n} the functions u; and wj(-i) defined by

s ; (a>
Z (J) * U¢k ) 7703()<1‘17y17 7% . Z¢ ZL’ y Yty - 7yi)7 (85>

k=1

belong to C= (2 RY) NWH(Q;R?) and C*(Q; C (Y1 x - - x Y;; R?)), respectively,
and are such that

u; — u in L'(Q;RY) as j — oo, lim [ |Vu,(z)|dz = || Dul|(€),
j—oo Jq
SuII\I) Hvyiwj('i)HLl(Q><Y1><---><Yi;RdXN) < 00, (86)
je
VLN 6 vy 2 A

(87)
weakly-— in My (Q X V) x -+ x YVi; RPN) as j — oo.

In particular, u; = u weakly-x in BV (£;R?) as j — oo. In turn, this implies that
Vu; LN oy sy, = Dujq@LEN - weakly—+ in My (2 Yy x -+ x Yy, RN
as j — oo. Also, convergences (87) imply that Vyi¢§i)£(n+l)NLQxY1x--~xYn A2N®

yYn,
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E(y";’)Nyn weakly— in My (Q x Yy X -« x Y,; RPN) as j — co. Hence,

weakly-x in M4 (Q X Y] XX Yn;]RdXN) as j — o0.

Using the lower semicontinuity of the total variation,

J—oo

XY, XX Y J( ) ; Yi Vg ( 1 ) 1 (88)

> H)‘u,ul unH(Q X Yl X X Yn)-

77777

Finally, let ¢ € C.(Q; Cy (Y1 x -+ - x Yy, ; R”N)) with [[o]|c < 1 be given. Let m € N
be such that suppp C Q,, x R¥. Taking into account (9), similar arguments to
those of Proposition 3.10 (see (81)) show that

/ @(l’,yl’~‘. 7yn> : Vyle(z)<x7y1’ 7yz) dxdyldyn

QXY X XYy (89)

B / @j<x7y17”. ’y'”') :d)\i(xvyh"' 7yz)dy2+1dyn7
QXY X--XYn

where @; (2,1, ,yn) == Doy [((pgin [T n.0) % @) (@, 91, -+, yn) i() | is such
that

i € Co(Cp (Vi x - x Vs RPY)) 165100 < 1. (90)

On the other hand, using the identity

NE

Vu; = Z Peii) * (¢ Du) + [Psg” * (1 ® Vo) —u® Vr),
k=1

>
Il

1

the estimate (84) and the condition ||¢||, < 1, we deduce that

/ o(x,y1, -+ ,yn) : Vuj(z)dady; - - - dys,
QAxY1 X XY,

m 1

<) / (@, g1, yn) : (P * (¢ Du)) (x) dedyy - - - dy, + =
k

k=1 Y QxXY1X-XYn i
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In turn, using (8), (9) and Fubini’s Theorem,

/ J: y Y1, 0, yn> : (pg(j) * (¢k DU))(I‘) dxdyl N dyn
QXY X XYy k

/ (T, Y1, Yn) : </ . (x — ") pr(a") dDu(x/)) dzdy; - - - dy,
QxYyx-- ><Yn RN Tk

/ :L‘ s Y1, o ayn) : (/ gbk(x,)pg(j)(x - lj)
QxYyx-- ><Yn RN XYix--xYp k

Hn 0 (i — ;) dDu(z ’)dyi--'dy;> dzdy; -+~ dy, (92)

:Z/ |:(/ gO(Q?,yl,--- 7yn)p€(j)<x/_x)
1 RN xY;x--xYp QOxYix-xYy k

n

11700 i = o) dadys --- dyn) ¢k(af’)] tdDu(z")dy; - - dy;,

i=1

Il
WMS l MS l MS

—/ @; (@ Y1, ) s dDu(a’)dy; - - - dy,,.
QXY X XYy,

Thus, from (89), (91) and (92) we conclude that

AxY1 X XYy, i1

_ 1
< / Soj(xvyla"' 7yn) :d)‘u,ul ..... p,n(xaylv"' 7yn)+_. (93)
QAxY1x--XYn J
1
< ||)‘u,u1 ~~~~~ MH(QXYI Xowes XYn)""}a

where in the last inequality we have used (90). Lebesgue Dominated Convergence
Theorem, (86) and an approximation argument ensure that for all ¢ € Cj (Q; Cy (Y
R™N)) with |[¢]l < 1 one has

QxY; x---xY, i1

1
< H)‘U»M ----- un”(Q XYy X xY,)+ =

J

Hence,

J—00

hmsup/ ‘Vuj(fv) + 3V (@, )| dadyy - dy,
QXY X XYy i—1

QXY x - xY,),

< H Au:“l ----- Ky
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which, together with (88), concludes Step 1.
Step 2. We prove that the sequences {u;}jeny and {zpj(i)}jeN may be taken in

c> (ﬁ; Rd) and C* (Q; (@ing (Y1 X - X Y;;Rd)), respectively.

The argument is similar to that of Corollary 3.11. Let {u;};en and {9;};en be the
sequences constructed in Step 1. Let {2 }ren be a sequence of open sets such that
U, CC Qi and Q = Joo, Q. and let {0k }ren be a sequence of cut-off functions
0. € C(Q;[0,1]) satisfying for all k € N, 6, = 1 in . Define

1/)](-2(1?791, L Y) = Qk(.f)l/J;i)(fL‘,yl, LY.

We have that @Z)ﬁ € C>(9; cy (Y1 x -+ x Y;R?)), with Vyﬂ/)]k; =0 Vyizﬁ](i). For
each j € N, let {u,ﬁj)}keN cC™ (ﬁ; Rd) be a sequence such that
ul — u; in W (Q;R?) as k — oo. (94)

We observe that here, and only here, we use the hypothesis that 0€) is Lipschitz.
We have that

lim lim/‘ug)(m)—u(x)‘ dz =0, lim hm/‘Vu(]) dz = || Dul|(22). (95)

Jj—oook—oo [q j—00 k—o0
Let ¢ € Cp (Q; Cy (Yl X XYy RdXN)) be given. Using on the one hand convergence
(94), and on the other hand the pointwise convergence 6, — 1 in Q as k — oo

together with Lebesgue Dominated Convergence Theorem and taking into account
estimate (86), we obtain

lim lim @(%?Jl"" Jyn)

J—=0 k=00 JOyy, . xY,

; (Vuk )+ Z Vyﬂp]k; T, Y1, ,yl)> dzdy; - - - dy,

J=0 Jaxyix--xY,
3 (Vuj(x) + Z v:’/”ﬁb]('w (Y1, 7%)) dzdy, - - - dyn
=1
= / 80(1’791,"' 7yn) :d)\u,ul ..... un($7yl>"' 7yn)7
QAxY)x--xXY,

where in the last equality we have used Step 1. By similar arguments, and since we
can write

VU 43,00 = V) Vs + 039,00+ (1 ),
=1 =1
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we have
i oy fim Sup/ ‘vuk + Z vyzw] Y1, - »%) dmdyl s dyn
j—00 k—oo OXYix-xYn
< Jim lim {/(Vuk - V()| de
J—00 R—00
+/ ‘Vuj(x) + Zvyi%(i)@?yh Ly | dadyy - - - dy,
QXY X XYn =1

+/Q(1 _ Gk(a:))\Vuj(x)\dx} (97)

i=1

J70 JOxY)x--x Yy

= g Q2 X Y7 X - X Y).

From (95), (96) and (97), using the separability of Co(€2%; Cg (Y1 X - -+ x Yy,; R™*N))
and a diagonal argument, and finally the lower semicontinuity of the total variation,
we can find sequences as in the statement of Corollary 3.12. O]

Remark 3.13. As it was observed within the previous proof, if d€ fails to be
Lipschitz, then Corollary 3.12 holds replacing the condition “{u;};eny C C*°(Q;R?)"
by “{u;}ien C C®(Q;RY) N WHHQR)".

We are now in place to prove Proposition 1.11.

Proof of Proposition 1.11. Let u € BV(Q;Rd) and for i € {1,--- . n}, let u, €
M (XY x -+ x Yy BV (Y RY)). Let {u;}jen € C®(QRY)NWE(Q;R?) and

{wj(i)}jeN C Ce (0% (Y1 x - -+ x Yi;RY)) be sequences satisfying (83).
For each ¢ > 0 and j € N, define

- i X T
ue () = uj(:v)—f—ZQi(s)@/)](-)(x,Q S ), x € Q.
i=1

Then u.; € W (Q;RY), and

i T i
VUEJ( VU] +ZQZ aﬂ/}]()(l', . S ))

(e)’ oi(e
n 1—1
Qz 6 (z)( X xT )
+ j z, y T
2;,; 0@\ 0@ 2i€)

n

ARG ivE))
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Let ¢ € Co(C4 (Y1 x -+ x Vs RY)) and ¢ € Co(Q;Cu (Y x -+ x V,; RN
be given. Since for fixed j € N and i € {1,--- ,n}, and for all (y;,--- ,y;) € R¥,
T — wj(i) (x,91,+ -+ ,y;) has compact support in RY, from (1) and (49) we deduce
that

s i
lim (x, , , ) “Ug i () dx
ot Jo '\ 01(e) 0n() i)
X e
= lim ~<x, R ) x)dx
2 A e el W

~—

B / P(@, g1, yn) - wy(x) dedyy - - dyn,
QXY X XYy,

) : Vu j(x) dz

. ORI B SR o R T I
= o Q(p("%’m(a)’ ,Qn(€)>.(Vu](x)+;Vy,.wj <$’01(€)’ 7Qz‘(€)>>dx

Q><Y1><-~~><§/n i=1

Thus, in view of (83),

x T

lim lim gﬁ(m, e )'Usj(ﬂv)dx

| —00 e—01 B " c ,

’ o Vo ale) on(e) 0
- / Sz, 1, Yn) - w(x) dedy, - - - dyy,

QAxY) X XYy,
and
T x

lim lim go(x, e ) Ve (z) do
j—00 e—0t € ; c ,
J Q 01(€) 0i(€) %)

= / g0($,y1,--- 7yn) :d)\u,ul ,,,,, /.Ln(xayla"' >yn)
QAxY1 X XYy,

We claim that we may find a sequence {j.}.~o such that j. — 0o as e — 01, and if
we define v, := u, ;_, then {v.}.~0 is a bounded sequence in wht (Q; Rd) satisfying
(a) and (b) of Theorem 1.10.

In fact, let {@m tmen and {p., fmen be dense in Cj (Q; Cy (Y1 X e X Yn;Rd)) and
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Co (% Cyu(Yy x -+ x YVi; R™N) ) respectively. For each e > 0, j,m € N, define

@57]‘77” = /@m ('T7 - s & ) : U&j(x) dl’;
Q

e1(e)” " onle)

Zm ::/ @m(maylf" 7yn)u(x)dxdy1dyna
QAxYy X XYy,

x x
\I/€~m::/ ml, R : Vu j(x) dz,
Ve Q(p ( Q1(€> Qn(5)> J( )

Lm = / ¢m(xuy17 o ayn) : d/\u,m ..... un(l‘ayla e 7yn)'
QxYy x--xYn

By (98) and (99), for all m € N, we have
lim lim W_;,, = Ly, lim lim W, ;,, = Ly,. (100)

j—>oo e—01 J—»oo e—0t
For each ¢ > 0, j € N, set

0m 3 [ (gl Menmtal )
- 2"\ 14 |Ue i — Lin| 14 [Vejim — L]

m=1

[e.9]

Fix 6 > 0, and let ms € N be such that Z

m=mgs—+1

- 1 \ism_zm qja'm_Lm
0<@€,j<2{ ( [Ze | 1P | >]+5

1
— < §/2. Then,

AN
m

m=1 2m\1 =+ |\I~I€,j,m - £m| 1+ |\Ija,j,m - Lm|
and so, using (100),
0 < limsuplimsup ©, ; <9, 0 < limsupliminf®, ; < 4.
Jj—00 e—0+ j—ooo =0T

Letting 0 — 0T, we obtain

lim limsup ©, ; = lim liminf©, ; = 0.
Jj—00 e—0t j—oo e—0t
By a diagonalization argument, we may find a sequence {j.}.~o such that j. — oo
as ¢ — 0T, and
lim O, = 0. (101)

e—0t

This way, given m € N, by definition of O, ;. and by (101), we have

1 U jom — Lim W, jom — L
< —( | Sl ~| + Ve | ) <O.;. —0 ase — 0T,
2m 1+ |\Ija,je,m - Lm| 1+ |\Ij€,ja7m - Lm|
which implies 5 )
lim U, ,, = Ly, lim V., ., = Ly,. 102
Jim W, Jim Ty, (102)

Finally, the existence of a sequence {v.}.~o as claimed above follows from (102),
taking into account the boundedness of {u. j }.~o in W (Q;R?). O
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We finish this section by proving an extension of Corollary 3.12 to the case in
which €2 is bounded, and that will play an important role in our application to
homogenization [10].

Proposition 3.14. Let Q C RY be an open and bounded set such that OS is Lip-
schitz. Let uw € BV (;RY) and for each i € {1,---,n}, let p; € M, (Q x Y} x

- X Y;_1; BV, (Y;;Rd)). Then there exist sequences {u;}jen C C>®(:RY) and
{w§i)}j€N C (02 (Y1 % -+ x Yi;RY)) satisfying (83), and such that

Nj 2 Ny, Weaklyx in Myy (2 x Yy x -+ x Vs RPN < R) as j — oo,

R - 103
tim 3,2 % Vi %+ % o) = g 1026 Vi - x V), (O
j—oo

where, for any B € B(Q x Y} x -+ xY,),

A(B) = ( / (Vus(2) + 30 Vo (g, ) ) dadys - dy,, £<”+1>N<B>),
i=1

Nt (B) = (A, (B), £V (B) ).

Proof. The proof is very similar to that of Corollary 3.12. We will just point out
the main differences.

In Step 1 of the proof of Corollary 3.12, for each j € N we require the sequence
{8,(3 )}keN to satisfy the additional conditions

1
supp (0. * ¢k) C (r\1),  sup |gw(x) — poy * du(2)| < 5+ (104)
k e k J 2

This is possible since if ¢ € C(Q), then p. * ¢ converges uniformly to ¢ as ¢ — 0
on every compact subset of 2, and supp ¢ C (Qk+1\Qk_1 )

Defining u; € C=(;RY) N WH(Q; RY) and 1/1](~i) € C™(Q;0x (Y1 x -+ x Yi;RY))

as in (85), then (83) holds. Moreover, we clearly have \; =~ X, ., .. . weakly-x in
My (Q X Y] x o X Y, RN x R) as j — oo, which in turn implies that

hmian;‘jH(Q XYy XX Y,) > |’5\u7/-"17"'7/-"n”(ﬂ XY XX Yy).
j—00

Furthermore, given 1 = (¢, 6) € Co(Q; Cu (Y1 X -+ x Yo ; RNV)) % Cu(Q; Cp(Yy x
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- % Y,)) with [|t)]|o < 1, then by (93)

/ w(xayb'" 7yn)'d)‘j(x>yla"' >yn)
QxY1 X--XYp
- / Sp(x’yl’ T >yn) : <vuj<x> + 2 :Vyz¢§l)<x7yla o 7yl)> dxdyl ce dyn
QXY X XYy =1
+/ e(xayla"' 7yn)d$dy1dyn
AxY1 X XYy,

_ 1
< / ij(xaylv"' 7yn):d)‘u7#1 ----- Hn(xay17"' ayn>+_-
QXY X XYn J

+/ Q(xayh'” 7yn)dxdy1dynv
AxY1 X XYy

where @j<x7 Y, 7yn> = 2?21 [((pal(j) H?:l 7751(3)) * ()0) (33', Yy, 7yn> ¢k(x):| . Simi-
larly, setting

m n

0w ) = D (0o [T o) +0) -+ y) dna)],

k=1 i=1

then, using (104) and Fubini’s Theorem, we deduce that

’h/1 O(x,y1,- - ,yn) dady, - - - dy,
QXY X XYy

L)
J

<

_/ éj('xayla"' ayn)dxdyldyn
QAxY1 % XY,

Hence, deﬁning 7]1](1', Y, yn) = 221:1 [((pggj) H?:l 77553')) *@D) (Ia Y,y yn) ¢k(x)]7

we conclude that

/ 1/1(5571917"' 7yn) 'd)\j(‘rvyh"' ,yn)
QxY1x--xYy

. < 14+ LY (Q
< / %‘(%yl,“' 7yn)'d)\u,p1 ..... pn(xayla"' 7yn>+—()
QAxY1 X XYy

< 1+ LMD

e L R

where in the last inequality we have used the fact that ¥, € Co (Q;C# (Yl X

- X Y RN x R)) and [[9;]lc < 1. Using a density argument, together with

Lebesgue Dominated Convergence Theorem, we deduce that (105) holds for every
(VNS C'O(Q;C'# (Y1 X oo X Y RNV x R)) with ||¢||.c < 1. Consequently,

lim sup [ A;][(2 X Y1 % - X V3) < [y, [[(2 X Y7 X - x V7).

Jj—00
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Thus (103) holds. We proceed as in Step 2 of Corollary 3.12 to prove that the
sequence {u; }jen may be taken in C*(Q; R?) and that the sequences {zbj(-i) }jen may
be taken in C?(Q;C’;f(iﬁx-~><Y,-;Rd)). O
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