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The classical Weierstrass theorem states that every continuous function f defined on a compact
set Ω ⊂ R

n can be uniformly approximated by polynomials. In this paper we show first that it
is again valid if Ω is a compact Hausdorff metric space, i.e., it holds in the following sense: there
exists a surjective isometry T from a compact set KΩ of a Banach sequence space S to Ω, such
that for every ε > 0 there is an n variable polynomial p satisfying

|f(T (s))− p(s1, s2, · · · , sn)| < ε, ∀s = (sj) ∈ KΩ.

We prove also that for any weak (w∗, resp.) continuous positively homogenous function f defined
on a (dual, resp.) Banach space X (X∗, resp.) then for all ε > 0 and for every weakly compact
set K ⊂ X (w∗ compact set K ⊂ X∗), there exist φi ∈ X∗ (X, resp.) for i = 1, 2, · · · ,m, and
ψj ∈ X∗ (X, resp.) for j = 1, 2, · · · , n such that

|f(x)− [(φ1 ∨ φ2 ∨ · · · ∨ φm)(x)− (ψ1 ∨ ψ2 ∨ · · · ∨ ψn)(x)]| < ε

uniformly for x ∈ K. Let cc(X) (wcc(X), resp.) be the norm semigroup consisting of all nonempty
(weakly, resp.) compact convex sets of the space X. As its application, we give two representation
theorems of the duals of cc(X) and wcc(X).
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1. Introduction

It is always fascinating to have an account of the steps in the development of a sig-
nificant theorem. The result that every continuous function f defined on a compact
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set K ⊂ R
n can be uniformly approximated by polynomials, known as the classical

Weierstrass theorem, which is due to Weierstrass [25], and it has become standard in
approximation theory and which has been usefully extended in the study of density
of subalgebras and subspaces in a continuous function space C(Ω) for some compact
Hausdorff space Ω. Most interesting generalizations of the Weierstrass theorem are
due to Stone [22] (see, also [23]) (known as the Stone-Weierstrass theorem), S. Kaku-
tani [16] and M. Krein and S. Krein [19] (known as the Kakutani-Krein theorem).
First, we recall them as follows.

Theorem 1.1 (Stone-Weierstrass theorem). Let Ω be a compact Hausdorff
space and C(Ω) the space of all real valued continuous functions on Ω endowed
with the sup-norm. Let A ⊂ C(Ω) satisfy the three conditions:

(i) A is an algebra;

(ii) the constant function 1 is in A, and

(iii) A separates points of Ω.

Then A is dense in C(Ω).

Theorem 1.2 (Kakutani-Krein theorem). Let Ω be a compact Hausdorff space
and C(Ω) the space of real valued continuous functions on Ω endowed with the sup-
norm. Let A ⊂ C(Ω) satisfy the conditions:

(i) A is a vector lattice of C(Ω);

(ii) constant function 1 ∈ A, and

(iii) A separates points of Ω.

Then A is dense in C(Ω).

There are three gaols of this paper: (1) giving an extension of the classical approx-
imation Weierstrass theorem to continuous functions defined on a compact metric
space; (2) establishing an approximation theorem for weakly (w∗, resp.) continuous
positively homogenous functions defined on a (dual, resp.) Banach space; and as
its application, (3) showing two representation theorems of the duals cc(X)∗ and
wcc(X)∗ of cc(X) and wcc(X) for a Banach space X. They are done by making use
of the Stone-Weierstrass theorem (Theorem 1.1), and other properties about Ba-
nach space theory, isometric embedding, compact and weakly compact sets, Fréchet
differentiability of convex functions and their duality theory.

This paper is organized as follows. In the following section, we show that there
exists a Banach sequential space S ⊂ R

N, which is linearly isometric to C[0, 1], such
that for any compact metric space Ω there exists a surjective isometric mapping
T : KΩ → Ω for some compact set KΩ ⊂ S satisfies that for every f ∈ C(Ω) and
every ε > 0 there exist n ∈ N and a polynomial p = p(s1, s2, · · · , sn) such that

|f(T (s))− p(s1, s2, · · · , sn)| < ε, ∀s = (sj) ∈ KΩ.

In Section 3, we show that if f is a weakly (w∗, resp.) continuous positively ho-
mogenous function defined on a Banach space X (the dual X∗ of a Banach space
X, resp.), then for every weakly (w∗, resp.) compact set K ⊂ X (X∗, resp.) and
for all ε > 0, there exist φi ∈ X∗ (X, resp.) for i = 1, 2, · · · ,m, and ψj ∈ X∗ (X,
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resp.) for j = 1, 2, · · · , n such that

|f(x)− [(φ1 ∨ φ2 ∨ · · · ∨ φm)(x)− (ψ1 ∨ ψ2 ∨ · · · ∨ ψn)(x)]| < ε

uniformly for x ∈ K. In the last section, making use of the conclusion above, we
show that for every Banach space X, if we denote by cc(X) and wcc(X) the normed
semigroups consisting of all nonempty compact convex sets and all nonempty weakly
compact convex sets, respectively, then we obtain the the following representation
theorems of their duals:

cc(X)∗ ∼= CPH(Bw∗)∗ and wcc(X)∗ ∼= C∆SFD(B
∗)∗,

where B∗

w∗ denotes the closed unit ball of X∗ endowed with the w∗ topology of
X∗, CPH(Bw∗) the Banach space of all positively homogenous w∗ continuous func-
tions restricted to the closed unit ball B∗ of X∗ equipped with the sup-norm, and
C∆SFD(B

∗) denotes the Banach space of the closure of all continuous functions f on
B∗ admitting a decomposition f = σC−σD for some weakly compact sets C,D ⊂ X
such that σ2

C and σ2
D are Fréchet differentiable equipped with the sup-norm.

In this paper, the letter X will always be a real Banach space and X∗ its dual. BX

(BX∗ , resp.) stands for the closed unit ball of X (X∗, resp.); if there is no confusion
arising, we simply denote by B (B∗, resp.) for BX (BX∗ , resp.). SX (SX∗ , resp.)
represents the unit sphere of X (X∗, resp.). We denote by Ω a compact Hausdorff
space, and by C(Ω) the Banach space of all real-valued continuous functions defined
on Ω endowed with the sup-norm. For a subset A ⊂ X, σA stands for the support
function of A, i.e., σA(x

∗) = supx∈A〈x∗, x〉, and A0 for the annihilator of A, i.e.,
A0 = {x∗ ∈ X∗ : 〈x∗, x〉 = 0 for all x ∈ A}.

2. An extension of the classical Weierstrass theorem

In this section, we shall give an extension of the classical Weierstrass approximation
theorem to continuous functions defined on a compact metric space. First, we recall
some notions which will be used in this sequel.

Let G ⊂ C(Ω) be a set, and AG be the algebra generated by G, i.e., AG is the
smallest set containing G ∪ {1}, and closed under both linear and multiplication
operations. A function f is said to be a G-polynomial provided f ∈ AG. For
example, f is called an n variable polynomial if and only if f ∈ A1,s1,s2,··· ,sn .

The following notions about Schauder bases of Banach spaces are taken from Lin-
denstrauss and Tzafriri [15].

A sequence {xn} in a Banach space X is said to be a Schauder basis of X if for
every x ∈ X there exists a unique sequence of scalars {an} so that x =

∑

∞

n=1 anxn.
Let {xn} be a basis of X. Then for every n ∈ N the linear functional x∗n defined
by 〈x∗n,

∑

∞

j=1 ajxj〉 = an is in X∗. These functionals {x∗n}, which are characterized
by the relation 〈x∗n, xm〉 = δmn , are called the bi-orthogonal functionals associated
to the basis {xn}. Let {Pn} be the natural projections associated to the basis, i.e.,
Pn(

∑

∞

j=1 ajxj) =
∑n

j=1 ajxj. Since limn ‖Pnx − x‖ = 0, for every x ∈ X, we get
that, in the sense of convergence in the w∗ topology, x∗ =

∑

∞

n=1〈x∗, x〉x∗n for every
x∗ ∈ X∗.
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Now, we are ready to state and prove the main theorem of this section.

Theorem 2.1. There exists a Banach sequential space S ⊂ R
N, which is linearly

isometric to C[0, 1], such that for any compact metric space Ω, there exists a sur-
jective isometric mapping T : KΩ → Ω for some compact set KΩ ⊂ S satisfies
that for every f ∈ C(Ω) and every ε > 0 there exist n ∈ N and a polynomial
p = p(s1, s2, · · · , sn) such that

|f(T (s))− p(s1, s2, · · · , sn)| < ε, ∀s = (sj) ∈ KΩ.

Proof. Let {xn} be a normalized Schouder basis of C[0, 1], and {x∗n} be the asso-
ciated bi-orthogonal functionals to {xn}. We define a sequential space S by

S =

{

s = (sn) : sn ∈ R with ‖s‖ ≡
∥

∥

∥

∥

∥

∞
∑

n=1

snxn

∥

∥

∥

∥

∥

<∞
}

.

It is clear that the sequential space S is isometric onto C[0, 1], and the standard
unit vectors {en} of S form a normalized basis of S. Let {e∗n} be the associated
bi-orthogonal functionals to {en}.
Assume that Ω is a nonempty compact metric space. Then Ω is separable, and
which is, in turn, isometric to a (compact) subset Ω1 of ℓ∞ (see, for instance, [2],
pp. 2–3). Let Y be the closure of spanΩ1 in ℓ∞. Then Y is separable. According
to the Banach-Mazur theorem ([1], Chap. XI, Sec. 8), Y is linearly isometric to
a linear subspace of C[0, 1], hence, a subspace of the space S. Therefore, we have
shown that Ω is isometric to a compact subset KΩ of S. Let T : KΩ → Ω be a
surjective isometry.

Note that the algebra A1,e∗1,··· ,e
∗

n,···
generated by {1, e∗1, · · · , e∗n, · · · } separates points

of KΩ. By the Stone-Weierstrass theorem (Theorem 1.1), A1,e∗1,··· ,e
∗

n,···
is dense in

C(KΩ). Thus, for every f ∈ C(Ω), and for every ε > 0, there exists an n polynomial
p = p(e∗1, e

∗

2, · · · , e∗n)(·) ∈ A1,e∗1,··· ,e
∗

m,··· such that

|f(T (s))− p(s)| < ε, uniformly for s ∈ KΩ.

It is trivial to see that p(s) = p(s1, s2, · · · , sn).

3. Approximation of weakly continuous positive homogenous functions

In this section, we shall study approximation property of weakly (w∗, resp.) con-
tinuous positively homogenous functions defined on a (dual, resp.) Banach space
X (X∗, resp.) restricted to some weakly (w∗, resp.) compact set approximated by
convex polyhedron support functions. To begin with, we recall again some notions.

A subset A ⊂ X is said to be an n-simplex provided there exist n+1 affinely inden-
pendent vectors x0, x1, · · · , xn ∈ A (that is, the n vectors x1−x0, x2−x0, · · · , xn−x0
are linearly independent) such that A = co{x0, x1, · · · , xn}. The set A is called a
convex polyhedron if it is convex and is the union of finitely many n-simplexes for
some n ∈ N. A function f on a Banach space X is said to be a convex polyhedron
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support function if there exists a convex polyhedron A ⊂ X∗ such that f = σA. For
f, g ∈ C(Ω) and ω ∈ Ω, let

(f ∨ g)(ω) = max(f(ω), g(ω)) and (f ∧ g)(ω) = min(f(ω), g(ω)).

A subspaceM ⊂ C(Ω) is a vector lattice, if it is closed under the operations of "∨"
and " ∧ ".

Proposition 3.1. A function f on a Banach space X is a convex polyhedron sup-
port function if and only if there exist n linear functionals φ1, φ2, · · · , φn ∈ X∗ such
that f = φ1 ∨ φ2 ∨ · · · ∨ φn.

Assume that X is a Banach space. Put

cp0(X) = {K ∈ cc(X) : K is a convex polydedron with 0 ∈ K};
Pcp0(X) = {σK : K ∈ cp0(X)}

Mcp0(X) = {σK1
− σK2

: K1, K2 ∈ pc0(X)}.

Lemma 3.2. Suppose that X is a Banach space. Then Mcp0(X) is a vector lattice
of C(B∗

w∗).

Proof. It is clear that Mcp0(X) is a linear space since Pcp0(X) is a cone and since
Mcp0(X) = Pcp0(X)−Pcp0(X).Note that (f∧g)(ω) = min(f(ω), g(ω)) = −max(−f(ω),
−g(ω)) = −(−f ∨ −g)(ω). To show that Mcp0(X) is a vector lattice, it suffices to
prove that Mcp0(X) is closed under the operation of " ∨ ". Indeed, ∀ f, g ∈Mcp0(X),
let C1, C2, D1, D2 ∈ cp0(X) such that f = σC1

− σD1
, g = σC2

− σD2
}. Then

f ∨ g = max{f, g} = max{σC1
− σD1

, σC2
− σD2

}
= [(σC1

− σD1
)− (σC2

− σD2
)] ∨ 0 + (σC2

− σD2
)

= (σC1+D2
− σC2+D1

) ∨ 0 + (σC2
− σD2

)

= σco[(C1+D2)
⋃

(C2+D1)] − σC2+D1
+ (σC2

− σD2
)

= σco[(C1+D2)
⋃

(C2+D1)+C2] − σC2+D1+D2

= σco[(C1+D2)
⋃

(C2+D1)] − σD1+D2

Therefore, f ∨ g = max{f, g} ∈Mcp0(X).

For a real Banach space X, let B∗

w∗ denote the closed unit ball of X∗ endowed with
the w∗ topology, and let CPH(B

∗

w∗) be the Banach space of all the w∗ continuous
positively homogenous functions on X∗ restricted to B∗.

Lemma 3.3. Let X be a real Banach space. Then Mcp0(X) satisfies the condition
that for every h ∈ CPH(B

∗), and for all x∗, y∗ ∈ B∗, x∗ 6= y∗ there exist C,D ∈
cp0(X) such that

(σC − σD)(x
∗) = h(x∗) and (σC − σD)(y

∗) = h(y∗).

Proof. Since h and all functions in Mcp0(X) are w
∗ continuous and positively ho-

mogenous, we can assume that x∗, y∗ ∈ SX∗ . Let h(x∗) = α, h(y∗) = β, and α ≥ β.
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Case (i): x∗ = −y∗. we choose x ∈ X such that x∗(x) = 1. If α ≥ β ≥ 0, then we
take C = co{−βx, αx} and D = {0}; if α ≥ 0 ≥ β, then we set C = co{0, αx} and
D = co{0, βx}; if 0 ≥ α ≥ β, we put C = {0} and D = co{βx,−αx}.
Case (ii): x∗ 6= −y∗. Obviously, x∗ and y∗ are linearly independent. So we can
choose y ∈ ker(x∗) and x ∈ ker(y∗) such that y∗(y) = 1 and x∗(x) = 1. If α ≥ β ≥ 0,
then we take C = co{αx, βy, 0} and D = {0}; if α ≥ 0 ≥ β, we set C = co{0, αx}
and D = co{0,−βy}; if 0 ≥ α ≥ β, we put C = {0} and D = co{−αx,−βy, 0}.

Now, we apply Lemmas 3.2 and 3.3 to prove the following result.

Theorem 3.4. Mcp0(X) is a dense subspace of CPH(B
∗

w∗).

Proof. Let h ∈ CPH(B
∗

w∗). We want to show that for every ε > 0 there exists
f ∈Mcp0(X) such that

| f(u)− h(u) |< ǫ, for all u ∈ B∗.

Let t 6= s ∈ B∗. By Lemma 3.3, we assert that there exists fst ∈Mcp0(X) such that
fst(s) = h(s), and fst(t) = h(t). Given ǫ > 0 and a point t ∈ B∗, then, for each
s ∈ B∗, there is a w∗ open neighborhood U(s) of s such that fst(u) > h(u) − ǫ
whenever u ∈ U(s). w∗-compactness of B∗ entails that there exist n such w∗

open neighborhoods {U(si)}ni=1 which form a covering of B∗. We define ft by
ft = fs1t ∨ · · · ∨ fsnt. Then, by Lemma 3.2, ft ∈ Mcp0(X) and ft(u) > h(u) − ǫ for
all u ∈ B∗. We also have ft(t) = h(t) since fsit(t) = h(t). Hence there is a w∗

open neighborhood V (t) of t such that ft(u) < h(u) + ε whenever u ∈ V (t). Let
{V (tj)}mj=1 be a w∗ open covering of B∗. Let f = ft1 ∧ · · · ∧ ftm . Then (again by
Lemma 3.2) f ∈ Mcp0(X) and f(u) < h(u) + ǫ for all u ∈ B∗. On the other hand,
we have f(u) > h(u) − ǫ for all u ∈ B∗ because that ftj(u) > h(u) − ǫ and for all
1 ≤ j ≤ m. Therefore, | f(u)− h(u) |< ǫ, for all u ∈ B∗.

Corollary 3.5. Suppose that f is w∗-continuous positively homogenous function
defined on X∗. Then for all ε > 0 and for every nonempty bounded subset A ⊂ X∗

there are convex polyhedrons C,D ⊂ X such that

sup
x∗∈A

|f(x∗)− (σC(x
∗)− σD(x

∗))| < ε.

Let Kw be a weakly compact set of a Banach space X endowed with the weak
topology, and let CPH(Kw) be the Banach space of all the weakly continuous posi-
tively homogenous functions on X restricted to Kw. Then we have analogously the
following theorem.

Theorem 3.6. Suppose that Kw is a weakly compact set of a Banach space X.
Then Mcp0(X

∗) is a dense subspace of CPH(Kw), that is, for all ε > 0 and for
every weakly continuous positively homogenous function f on X there are convex
polyhedrons C,D ⊂ X∗ such that

sup
x∈Kw

|f(x)− (σC(x)− σD(x))| < ε.
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4. On representation of cc(X)∗ and wcc(X)∗

There is a large number of articles concerning fixed point property and applications
of the hyperspaces cc(X) and wcc(X) endowed with the Hausdorff metric. See,
for example, [8], [11], [12] and [13]. In this section, we shall give representation of
their dual spaces in view of normed semigroup. We recall first that the definition
of normed semigroup. Let G be an Abelian semigroup and let F ∈ {R,C}. G is
said to be a module if there are two operations (x, y) ∈ G × G → x + y ∈ G, and
(α, x) ∈ (F×G) → αx ∈ G satisfying

(λµ)g = λ(µg), ∀λ, µ ∈ F and g ∈ G;

λ(g1 + g2) = λg1 + λg2, ∀λ ∈ F and g1, g2 ∈ G;

and
1g = g and 0g = 0 ∀g ∈ G.

A module G endowed with a norm is called a normed semigroup.

A function φ on a normed semigroup G is called a linear functional if it satisfies
that

φ(αg1 + βg2) = αφ(g1) + βφ(g2), ∀α, β ∈ R
+ and g1, g2 ∈ G.

It is said to be bounded provided ‖φ‖ = sup{φ(g) : g ∈ G, ‖g‖ ≤ 1} < ∞. We
denote by G∗ the Banach space of all bounded functionals on G, and call it the
dual of G.

Given a (real) Banach space X, let

cc(X) = {K ⊂ X : K is nonempty convex and compact},
cc0(X) = {K ⊂ X : K is convex compact and with 0 ∈ K},

wcc(X) = {K ⊂ X : K is nonempty convex and weakly compact}.

and
wcc0(X) = {K ∈ wcc(X) with 0 ∈ K}.

Clearly, all the four sets with the usual operations K1 +K2 = {k1 + k2 : k1 ∈ K1

and k2 ∈ K2} and λK = {λk : k ∈ K} are modules. We endow the Hausdorff
metric dH on Z ∈ {cc(X), cc0(X),wcc(X),wcc0(X)}, i.e.,

dH(K1, K2) = max

{

sup
x∈K1

d(x,K2), sup
y∈K2

d(K1, y)

}

, for K1, K2 ∈ Z.

This metric induces further a norm ‖ · ‖H for K ∈ Z

‖K‖H = dH(0, K) = sup{‖k‖ : k ∈ K}.

Therefore, cc(X), cc0(X), wcc(X) and wcc0(X), endowed with the norm, are normed
semigroups.

We would like to mention two remarkable results concerning embedding of cc(X)
and representation of cc(Rn)∗. Radstrom [20] showed that cc(X) is (additivity
and nonnegative scalar multiplication preserved) isometric to cone of a real Banach
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space. While Keimel and Roth [17] proved that cc(Rn∗)∗ ≃ C(SX∗)∗, where SX∗

denotes the unit sphere of (Rn)∗, and C(SX∗) stands for the space of all continuous
functions on SX∗ equipped with the sup-norm. For a Banach space X, let

Pcc(X) = {σK : K ∈ cc(X)}
Mcc(X) = {σK1

− σK2
: K1, K2 ∈ cc(X)}

Pwcc(X) = {σK : K ∈ wcc(X)}
Mwcc(X) = {σK1

− σK2
: K1, K2 ∈ wcc(X)}.

Pwcc0(X) = {σK : K ∈ wcc0(X)}
Mwcc0(X) = {σK1

− σK2
: K1, K2 ∈ wcc0(X)}.

A function f defined on a convex set C ⊂ X is said to be ∆-convex provided there
are two convex functions f1, f2 such that f = f1 − f2 [3]. f is called ∆-lower semi-
continuous if there are lower semi-continuous functions f1, f2 such that f admits
the decomposition f = f1 − f2. If f is defined on a convex set C∗ ⊂ X∗, then it
is said to be a ∆-support function if there are convex sets C,D ⊂ X such that
f = σC−σD. Clearly, a ∆-support function is necessarily ∆-convex and ∆-w∗-lower
semi-continuous.

We also use ∆SFSD to represent "∆-support functions whose decomposition func-
tions are square Fréchet differentiable", i.e., those functions f = σC − σD (for some
closed convex sets C, D ⊂ X) satisfying that σC

2 and σD
2 are Fréchet differentiable

on B∗, and we denote by C∆SFSD(B
∗) the closure of the space of all such ∆-support

functions.

In this section, inspired by Kermel and Roth [17], we shall show that for any real
Banach space X, we have cc(X)∗ ≃ CPH(B

∗

w∗)∗ and wcc(X)∗ ≃ C∆SFSD(B
∗)∗, where

B∗

w∗ denotes, as before, the closed unit ball B∗ of X∗ endowed with the w∗ topology
of X∗, and CPH(B

∗

w∗) stands for the Banach space of all positively homogenous w∗

continuous functions restricted on B∗ equipped with the sup-norm.

Lemma 4.1. Suppose that X is a Banach space. Then

(1) cc(X) is order isometric to Pcc(X);

(2) Mcc(X) is a vector lattice of C(B∗

w∗).

Proof. (1) Since for all λ ≥ 0, and for all K,K1, K2 ∈ cc(X), σK1+K2
= σK1

+σK2
,

σλK = λσK , and since dH(K1, K2) = ‖σK1
−σK2

‖, cc(X) is order isometric to Pcc(X).

(2) It follows from the same procedure of the proof of Lemma 3.2.

Theorem 4.2. cp0(X)∗ = cc0(X)∗ = cp(X)∗ = cc(X)∗ ≃ CPH(B
∗

w∗)∗.

Proof. By Theorem 3.4, it suffices to noteMpc0(X) ⊂Mcc0(X) ⊂Mcc(X) ⊂CPH(B
∗

w∗).

Similar to Lemma 4.1, we have

Lemma 4.3. Suppose that X is a Banach space. Then

(1 ) wcc(X) is order isometric to Pwcc(X);
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(2 ) Mwcc(X) is a vector lattice of C(B∗).

(3 ) wcc0(X) is order isometric to Pwcc0(X);

(4) Mwcc0(X) is a vector lattice of C(B∗).

To show wcc(X)∗ ≃ C∆SFSD(B
∗)∗, we need more preparation. The following defini-

tion is taken from [7].

Definition 4.4. Suppose that g : X → R ∪ {+∞} is an extended real-valued
convex function with its effective domain dom g ≡ {x ∈ X : g(x) <∞} 6= ∅.
(1) g is said to be locally uniformly convex provided for every x ∈ dom g and every
sequence {xn} ⊂ dom g,

g(x) + g(xn)− 2g
(x+ xn

2

)

→ 0 implies xn → x;

We call the norm ‖ · ‖ of X is locally uniformly convex if g ≡ 1
2
‖ · ‖2 is a locally

uniformly convex function.

(2) g is called Fréchet differentiable at x ∈ X provided that there exists x∗ ∈ X∗

such that

lim sup
t→0+, y∈BX

[

g(x+ ty)− g(x)

t
− 〈x∗, y〉

]

= 0.

In this case, we call dFg(x) ≡ x∗ the Fréchet derivative of g at x. A norm is said
to be Fréchet smooth if it is everywhere Fréchet differentiable off the origin.

(3) The conjugate function g∗of g : X∗ → R ∪ {+∞} is defined for x∗ ∈ X∗ by

g∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ X}.

In particular, letting g = 1
2
‖ · ‖2, then the dual norm of ‖ · ‖ on X∗ is just

√
2g∗.

The following properties are easy to be obtained.

Proposition 4.5. Suppose that f, g : X → R∪{+∞} are two extended real-valued
lower semicontinuous convex functions with dom(f + g) 6= ∅.
(1 ) If X is a dual space (in particular, a reflexive space) and f is w∗ lower semi-

continuous then there exists an extended real-valued lower semicontinuous con-
vex functions h on the predual of X such that f = h∗;

(2 ) If one of f, g is locally uniformly convex, then f + g is also locally uniformly
convex;

(3 ) If f ∗ is locally uniformly convex, then f is Fréchet differentiable in the interior
of dom f.

Recall that an extended real-valued Minkowski functional p on a Banach space X is
a non-negative-valued sublinear function, i.e., p(x) ∈ R∪{+∞} with p(λx) = λp(x)
for all x ∈ X, λ ≥ 0 and with p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

Lemma 4.6. Suppose that X is a Banach space and p : X → R ∪ {+∞} is an
extended real-valued lower semicontinuous Minkowski functional with p ≥ ‖ · ‖ on



210 L. Cheng, Y. Zhou / On Approximation by ∆-Convex Polyhedron Support ...

X. Let q2n = p2 + cn‖ · ‖2 for all n ∈ N, where 0 < cn → 0. Then (q2n)
∗ → (p2)∗

uniformly on B∗.

Proof. By definition of conjugate function, it sufficies to note that for all x∗ ∈ X∗,

1√
1 + cn

(p2)∗(x∗) = {(1 + cn)p
2}∗(x∗) ≤ (q2n)

∗

(x∗)

= sup{〈x∗, x〉 − (p2(x) + cn‖x‖2) : x ∈ dom p}
≤ (p2)∗(x∗) ≤ (‖ · ‖2)∗(x∗).

The following theorem is due to Troyanski [24], see, also [9] and [14].

Theorem 4.7. Every reflexive Banach space X can be renormed in such a way
that X and X∗ have Fréchet smooth and locally uniformly convex norms.

The following lemma was motivated by [4] and [6].

Lemma 4.8. Pwcc0(X) is dense in the closure of

F ≡ {σK : K ∈ wcc0(X), σK
2 is Frechet differentiable}.

Proof. We show first that if K ⊂ X is a closed convex set with σK ⊂ F , then K
is weakly compact. Let σn ≡ σKn

∈ F such that σn → σK in C(B∗). Then, by
Theorem 4.6 of [4], Kn are weakly compact for all n ∈ N. This entails that for
every ε > 0 there exists n ∈ N such that K ⊂ Kn+εB. According to Grothendiek’s
lemma, K is weakly compact. Conversely, let K ∈ wcc0(X), and let X0 be the
closure of spanK in X. Since K is also weakly compact in X0, by a revised version
of the Davis-Figiel-Johnson-Pelczyski factoring lemma [5], there is a reflexive space
(Y, | · |) such that K ⊂ BY ⊂ BX0

. Reflexivity of Y and Theorem 4.7 enable us
to assume that the dual norm | · |∗ of | · | is both locally uniformly convex and
Fréchet smooth on Y ∗. By Proposition 4.5, there is an extended real-valued lower
semicontinuous Minkowski functional p ≥ | · | on Y such that (p2)∗ = σ2

K , and
hn ≡ p2 + 2−n| · |2 are locally uniformly convex on Y . Note that h∗n are real-
valued positively homogeneous of the second degree and w∗ lower semi continuous
on Y ∗. Since Y is reflexive, h∗n must be everywhere Fréchet differentiable in Y ∗.
Therefore, within the natural norm-preserved restriction to Y , we obtain X∗

0 ⊂ Y ∗

and BX∗

0
⊂ BY ∗ . These further imply that h∗n are Fréchet differentiable and w∗-

l. s. c. on X∗

0 = X∗/X0
0 . Now, we define Minkowski functionals {qn}n∈N on X∗ for

x∗ ∈ X∗ by qn(x
∗) =

√

h∗n(Q(x
∗)), where Q : X∗ → X∗/X0

0 denotes the quotient
mapping. Then it is easy to see that q2n are Fréchet differentiable on X∗. By Lemma
4.6, qn → σK uniformly on BX∗ .

Theorem 4.9. Mwcc(X) is a dense subspace of C∆SFSD(B
∗).

Proof. We show first that Mwcc(X) ⊂ C∆SFSD(B
∗). Since Mwcc(X) = Pwcc(X) −

Pwcc(X), it suffices to prove Pwcc(X) ⊂ C∆SFSD(B
∗). By Lemma 4.7, Pwcc0(X) ⊂ F ⊂

C∆SFSD(B
∗). For every K ∈ wcc(X), we choose x0 ∈ K and let K0 = K−x0. Then
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σK = σK0
− (−x0) ∈ F − C∆SFSD(B

∗) = C∆SFSD(B
∗). Next, we show density of

Mwcc(X) in C∆SFSD(B
∗). Given ε > 0 and f ∈ C∆SFSD(B

∗), let fε = σK1
− σK2

such
that both σ2

K1
and σ2

K2
are Fréchet differentiable on X∗ satisfying |f(x∗)−fε(x∗)| <

ε uniformly for x∗ ∈ BX∗ . Again by Theorem 4.6 of [4], C1 = coK1 and C2 = coK2

are weakly compact. We complete our proof by noticing that σK1
= σC1

and
σK2

= σC2
.

Corollary 4.10. Suppose that X is a Banach space. Then

wcc(X)∗ = C∆SFSD(B
∗)∗.
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