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1. Introduction

This paper may be considered as a continuation of our work in [8].

In this paper, we study several aspects of the general theory of Aumann-Pettis
integrable multifunctions.

The organization of the paper is as follows. In Section 2, we give necessary notations,
definitions and preliminaries. In Section 3, we discuss our main results.

In 1977, Hiai and Umegaki [11] made significant contributions to the study of closed-
valued Aumann integrable (and integrably bounded) multifunctions. In fact, apart
from the book of Castaing and Valadier [7], this paper may be considered as fun-
damental in the sense that most of the subsequent works, in some way or other,
depend on this paper so far as the integration theory of closed-valued measurable
multifunctions is concerned. In [10, Lemma 23, p. 7], Godet-Thobie and Satco ex-
tended Lemma 1.1 of [11] to closed-valued Aumann-Pettis integrable multifunctions.
The main objective of Section 3.1 of our main results is to generalize the results of
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Section 1 of [11] to the closed-valued Aumann-Pettis integrable multifunctions with
the help of Lemma 23 of [10].

In Section 3.2 of our main results, we extend some of the results of Section 4 of [11]
to Aumann-Pettis integrable multifunctions.

In [11, Theorem 3.1, p. 158], Hiai and Umegaki discussed the existence of a closed-
valued Aumann integrable multifunction F for a nonempty closed and decomposable
subset K of L1(µ,X), the space of all Bochner integrable functions taking values
on a separable Banach space X, such that K = S1

F , the collection of all Bochner
integrable selectors of F . Assuming norm separability of the space P1(µ,X), Godet-
Thobie and Satco [10, Theorem 25, p. 9] showed that the nonempty norm-closed
decomposable subset K of P1(µ,X) coincides with the adherence of SP

F in P1(µ,X)
for an Aumann-Pettis integrable multifunction F . Imposing more conditions on
the Banach space X as well as on the subset K of L1(µ,X), Papageorgiou [16,
Theorem 5.2, p. 252] further extended the result of Hiai and Umegaki [11, Theorem
3.1, p. 158] in which he proved the existence of a weakly compact convex-valued
integrably bounded multifunction F such that K = S1

F . Here in Section 3.3 we
generalize Theorem 5.2 of [16] to P1(µ,X), which is an improvement of Theorem
25 of [10, p. 9].

The study of weakly compact subsets of P1(µ,X) was initiated by Brooks and Din-
culeanu in [4, 5]. In [1], Amrani and Castaing studied weak compactness property
in P1(µ,X) by using the method of Grothendieck’s interchangeable double limits
property and James’s theorem [13]. In [8], we studied weak compactness in P1(µ,X)
by using regular methods of summability. Barcenas and Urbina proved a necessary
and sufficient condition for the weak compactness of S1

F for a closed convex-valued
integrably bounded multifunction F [3, Theorem 3.2, p. 1215]. In [15, Theorem
3.1, p. 187], Papageorgiou proved the sufficiency part of [3, Theorem 3.2, p. 1215]
using a separate method. In this section we generalize Theorem 3.2 of [3] to SP

F for
a closed, convex-valued Pettis integrable multifunction F . Castaing [6, Theorem
3.2, p. 413] also proved the sufficiency condition for the weak compactness of SP

F

for a closed convex-valued Pettis integrable multifunction F on X. But our proof
is different and it is based on Theorem 3.6 of [8, p. 102].

2. Notations, Definitions and Preliminaries

Throughout this paper, unless otherwise stated, (Ω,Σ, µ) is a complete finite pos-
itive measure space and X is a separable Banach space with dual X∗. The closed
unit ball of X (respectively X∗) is denoted by BX (resp. BX∗). If C is a subset of X,
then coC and coC denote the convex hull of C and the closed convex hull of C re-
spectively. CL(X), C(X), CB(X), WK(X) and CWK(X) denote the non-empty
closed, closed convex, closed convex bounded, weakly compact and weakly compact
convex subsets of X respectively. The symbol L1(µ,X), denotes the Banach space
of all equivalence classes of Bochner integrable functions f : Ω → X with respect
to the measure µ equipped with the norm

‖f‖1 =

∫

Ω

‖f‖dµ.
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A measurable function f : Ω → X is said to be scalarly (or weakly) integrable if for
each x∗ ∈ X∗, 〈x∗, f〉 is a member of L1(µ), the set of all of µ-integrable real valued
functions. A scalarly integrable function is also called Dunford integrable. It is well
known that given a scalarly integrable function f and a member A ∈ Σ, there exists
x∗∗
A ∈ X∗∗, the bidual of X, such that 〈x∗, x∗∗

A 〉 =
∫

A
〈x∗, f〉dµ, for all x∗ ∈ X∗. x∗∗

A

is called the Dunford integral of f for all A ∈ Σ and is denoted by D −
∫

A
fdµ.

The scalarly integrable function f is said to be Pettis integrable if for every A ∈ Σ,
there exists xA ∈ X such that 〈x∗, xA〉 =

∫

A
〈x∗, f〉dµ, for all x∗ ∈ X∗.xA is called

the Pettis integral of f over A and is denoted by P −
∫

A
fdµ (or simply by

∫

A
fdµ,

if no confusion arises).

We denote by P1(µ,X), the space of all scalarly equivalence classes of X-valued
Pettis integrable functions f : Ω → X, equipped with the semivariation norm

‖f‖P = sup

{
∫

Ω

|〈x∗, f〉|dµ; x∗ ∈ BX∗

}

.

It is well known that P1(µ,X) is a normed linear space which, in general, is not a
Banach space.

We can define another topology on P1(µ,X) induced by the duality (P1(µ,X),L∞(µ)
⊗X∗), since the operation

〈v ⊗ x∗, f〉 =

∫

Ω

v(ω)〈x∗, f(ω)〉dµ,

where v ∈ L∞(µ) and x∗ ∈ X∗, is a bilinear form. This topology is known as weak
topology of P1(µ,X) [10, p. 3].

A subset K of L1(µ,X) is said to be

(i) uniformly integrable if

lim
c→∞

sup
f∈K

∫

[‖f‖≥c]

‖f‖dµ = 0;

(ii) equi-integrable if

lim
µ(A)→0

sup
f∈K

∫

A

‖f‖dµ = 0.

It is well known that K is uniformly integrable iff it is equi-integrable and bounded.
The two concepts of uniform integrability and equi-integrability coincide if the mea-
sure space (Ω,Σ, µ) is non-atomic [10, p. 2–3].

A subset K of P1(µ,X) is said to be Pettis uniformly integrable (PUI) if, for each
ε > 0, there exists δε > 0 such that µ(A) < δε implies that ‖

∫

A
hdµ‖ < ε, for all

h ∈ K. It is not difficult to see that a subset K of P1(µ,X) is Pettis uniformly
integrable iff {〈x∗, h〉;x∗ ∈ BX∗ , h ∈ K} is equi-integrable [10, p. 4].

A family K of scalarly integrable functions is said to be weakly Pettis uniformly
integrable (WPUI) if, for each x∗ ∈ BX∗ , the family {〈x∗, h〉;h ∈ K} is equi-
integrable [10, p. 4].
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It is obvious that PUI ⇒ WPUI, but the reverse implication may not be true.
Sufficient conditions for the reverse implication have been studied in [10].

Let K be a set of measurable functions f : Ω → X. We call K decomposable with
respect to Σ, if f1 and f2 ∈ K and A ∈ Σ imply χAf1+χAcf2 ∈ K. It is clear that if
K is decomposable, then

∑n

i=1 χAi
fi ∈ K, for each finite partition {A1, A2, . . . , An}

of Ω and {f1, f2, . . . , fn} ∈ K.

For every C ∈ CL(X), the support function of C is denoted by σ(., C) and defined
on X∗ by

σ(x∗, C) = sup{〈x∗, x〉;x ∈ C}, for all x∗ ∈ X∗.

A multifunction F : Ω → CL(X) is said to be weakly measurable (or simply
measurable) if for every open subset V of X, the set {ω ∈ Ω;F (ω) ∩ V 6= ∅}
belongs to Σ.

The reader is referred to Theorem 1.0 of [11] for different notions of measurability
of a multifunction and their equivalences.

A function f : Ω → X is said to be a selector of F : Ω → CL(X) if f(ω) ∈
F (ω), µ-a.e. The collection of all measurable selectors of F is denoted by SF . S1

F

(respectively SP
F ) denotes the family of all Bochner (resp. Pettis) integrable selectors

of the measurable multifunction F .

A measurable multifunction F : Ω → CL(X) is said to be scalarly integrable if the
scalar function σ(x∗, F (·)) is integrable with respect to µ, for each x∗ ∈ X∗.

A measurable multifunction F : Ω → CL(X) is said to be Aumann-Pettis integrable
(respectively Aumann integrable or simply integrable) if SP

F (resp. S1
F ) is non-empty.

In this case we denote the Aumann-Pettis integral of F over A ∈ Σ by IA(F ) and is
defined by IA(F ) =

{∫

A
fdµ; f ∈ SP

F

}

.IΩ(F ) is simply denoted by I(F ) [2, p. 341].

A measurable multifunction F : Ω → C(X) is said to be Pettis integrable if F is
scalarly integrable and for each A ∈ Σ, there exists CA(F ) ∈ C(X) such that

σ(x∗, CA(F )) =

∫

A

σ(x∗, F )dµ, for each x∗ ∈ X∗.

CA(F ) is called the Pettis integral of F over A ∈ Σ and is denoted by
∫

A
Fdµ.

If F : Ω → CWK(X) is a scalarly integrable multifunction then it follows from [2,
Theorem 5.4, p. 352] or [17, Theorem 3.2, p. 126] or [18, Theorem 1, p. 228] that
F is Aumann-Pettis integrable iff it is Pettis integrable and in this case IA(F ) =
CA(F ) ∈ CWK(X), for each A ∈ Σ.

The set of all Pettis integrable multifunctions is denoted by P1(µ,X).

A multifunction F : Ω → CL(X) is said to be integrably bounded if there is a
µ-integrable the real valued function h with ‖F (ω)‖ ≤ h(ω), µ a.e.
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3. Main Results

3.1. Aumann-Pettis integrable multifunctions

We define the following two operations in the family of Aumann-Pettis integrable
multifunctions.

1. Addition: (F1 �+F2)(ω) = {F1(ω) + F2(ω)}, for all w ∈ Ω, where F1 : Ω →
CWK(X) and F2 : Ω → CWK(X) are two Aumann-Pettis integrable multifunc-
tions.

2. Closed Convex hull: (coF )(ω) = coF (ω), the closed convex hull in X, for all
w ∈ Ω, where F : Ω → CL(X) is an Aumann-Pettis integrable multifunction such
that F (ω) is WK(X)-valued for all ω ∈ Ω.

Lemma 3.1. If F : Ω → CL(X) is Aumann-Pettis integrable, then there exists a

sequence {gn} contained in SP
F such that

F (ω) = c1{gn(ω);n ≥ 1}, µ a.e.

Proof. The proof is given in [10, Lemma 23, p. 7].

Corollary 3.2. Let F1 : Ω → CL(X) and F2 : Ω → CL(X) be two measurable

multifunctions such that SP
F1

and SP
F2

are both nonempty. If SP
F1

= SP
F2
, then F1(ω) =

F2(ω), µ a.e.

Proof. The proof is easy and so omitted.

Lemma 3.3. Let F : Ω → CL(X) be an Aumann-Pettis integrable multifunction.

Let {fi} be a sequence in SP
F such that F (ω) = cl{fi(ω)}, µ a.e. Then for each

f ∈ SP
F and ε > 0, there exists a finite measurable partition {A1, A2, . . . , An} of Ω

such that
∥

∥

∥

∥

∥

f −
n

∑

i=1

χAi
fi

∥

∥

∥

∥

∥

P

< ε.

Proof. The proof is contained in the first part of Theorem 24 of [10, p. 8].

Note. The following theorem is generalisation of [11, Theorem 1.4, p. 153] and
[12, Proposition 3.28, p. 184] for Aumann-Integrable multifunctions to the case of
Aumann-Pettis Integrable multifunctions. The proof follows by necessary modifi-
cation. So we omit the proof.

Theorem 3.4. Let F1 : Ω → CWK(X) and F2 : Ω → CWK(X) be two Aumann-

Pettis integrable multifunctions and let F : Ω → 2X \ {∅} be defined as F (ω) =
{F1(ω) + F2(ω)} for all ω ∈ Ω. Then F is a CWK(X)-valued Aumann-Pettis

integrable multifunction such that

SP
F = cl{SP

F1
+ SP

F2
} in P1(µ,X).

Theorem 3.5. Let F : Ω → WK(X) be a measurable multifunction such that SP
F

is non-empty. Let (coF )(ω) = coF (ω), the closed convex hull in X, for all ω ∈ Ω.
Then coF is a CWK(X)-valued Aumann-Pettis integrable multifunction such that

SP
coF = coSP

F in P1(µ,X).
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Proof. Put G = coF .

Since SP
F is nonempty, so by Lemma 3.1, there exists a sequence {fi} in SP

F such
that

F (ω) = cl{fi(ω)}, µ a.e.

Define U = {g; g =
∑m

i=1 αifi, αi ≥ 0 rational,
∑m

i=1 αi = 1,m ≥ 1}

Then U is a countable subset of measurable functions such that

G(ω) = cl{g(ω), g ∈ U}, µ a.e.

Hence by [11, Theorem 1.0(V), p. 151], G is measurable multifunction from Ω to
C(X).

Again since F is Aumann-Pettis integrable, so is G.

As F (ω) is WK(X)-valued, by Krein-Smulian theorem [9, Theorem 11, p. 51], G(ω)
is CWK(X)-valued.

So G is a CWK(X)-valued Aumann-Pettis integrable multifunction. Therefore by
[10, Corollary 17, p. 6], SP

G is ‖ · ‖P -norm closed and it is also convex as G(ω) is
convex, µ a.e.

Now since
SP
F ⊆ SP

G , we have coSP
F ⊆ coSP

G = SP
G (1)

To prove the converse, let f ∈ SP
G and ε > 0, then by Lemma 3.3, we can choose a

finite measurable partition {A1, A2, . . . , An} of Ω and g1, g2, . . . , gn ∈ SP
G such that

∥

∥

∥

∥

∥

f −
n

∑

i=1

χAi
gi

∥

∥

∥

∥

∥

P

< ε.

Now proceeding as in the proof of Theorem 1.5 of [11, p. 154], we can show that
∑n

i=1 χAi
gi is a convex combination of elements of SP

F .

Hence
f ∈ coSP

F , and so SP
G ⊆ coSP

F (2)

Combining (1) and (2), we have

SP
coF = coSP

F .

Corollary 3.6. Let F : Ω → WK(X) be an Aumann-Pettis integrable multifunc-

tion, then SP
F is convex if and only if F (ω) is convex, µ a.e.

Proof. It immediately follows from Theorem 3.5 and Corollary 3.2.

3.2. Integrals of Aumann-Pettis integrable multifunctions

Theorem 3.7. Let F1 : Ω → CWK(X) and F2 : Ω → CWK(X) be two Aumann-

Pettis integrable multifunctions. Then

∫

Ω

(F1 �+F2)(ω)dµ =

{
∫

Ω

F1(ω)dµ+

∫

Ω

F2(ω)dµ

}
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Proof. Since F1 and F2 are CWK(X)-valued Aumann-Pettis integrable, by [2,
Theorem 3.7, p. 341], they are Pettis integrable. so for any A in Σ, there exists two
sets CA(F1) and CA(F2) in CWK(X) such that for any x∗ in X∗

σ(x∗, CA(F1)) =

∫

A

σ(x∗, F1(ω)dµ (3)

σ(x∗, CA(F2)) =

∫

A

σ(x∗, F2(ω)dµ (4)

Now by Theorem 3.4, F1 �+F2 is a CWK(X)-valued Aumann-Pettis integrable mul-
tifunction and hence Pettis integrable (see [2, Theorem 3.7, p. 341]). So for any A

in Σ, there exists CA(F1 �+F2) in CWK(X) such that for any x∗ in X∗

σ(x∗, CA(F1) + CA(F2)) = σ(x∗, CA(F1)) + σ(x∗, CA(F2))

=

∫

A

σ(x∗, F1(ω)dµ+

∫

A

σ(x∗, F1(ω)dµ

=

∫

A

{σ(x∗, F1(ω) + σ(x∗, F2(ω)dµ}

=

∫

A

σ(x∗, F1 �+F2)dµ

= σ(x∗, CA(F1 �+F2))

So, for any A in Σ we have, CA(F1) + CA(F2) = CA(F1 �+F2)

Or,
∫

A

F1(ω)dµ+

∫

A

F2(ω)dµ =

∫

A

(F1 �+F2)dµ,

as F1, F2, (F1 �+F2) are CWK(X) Pettis integrable multifunctions, by [2, Theorem
5.4, p. 352], their Pettis integrals and their Aumann-Pettis integral are same. Hence
we have,

∫

Ω

F1(ω)dµ+

∫

Ω

F2(ω)dµ =

∫

Ω

(F1 �+F2)dµ.

Note. The following theorem follows from Corollary 3.10 of [2, p. 345]. However,
we give an independent proof of this result.

Theorem 3.8. If F : Ω → WK(X) is an Aumann-Pettis integrable multifunction,

then
∫

Ω

(coF )(ω)dµ = coI(F ).

Proof. By Theorem 3.5, coF is a CWK(X)-valued Aumann-Pettis integrable mul-
tifunction and SP

coF = coSP
F . Hence by [2, Theorem 3.7, p. 341], coF is Pettis

integrable and

I(F ) ⊆

∫

Ω

(coF )(ω)dµ.

Also
∫

Ω
(coF )(ω)dµ is CWK(X)-valued by [2, Theorem 5.4, p. 352].
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So

coI(F ) ⊆

∫

Ω

(coF )(ω)dµ (5)

To prove the reverse inclusion, let x ∈
∫

Ω
(coF )(ω)dµ. Then there exists an f ∈ SP

coF

such that

x =

∫

Ω

f(ω)dµ.

Since f ∈ SP
coF and since by Theorem 3.5,

SP
coF = coSP

F ,

for an arbitrary positive number ε, there exist f1, f2, . . . , fn ∈ SP
F and λ1, λ2, . . . , λn

with λi ≥ 0, 1 ≤ i ≤ n,
∑n

i=1 λi = 1, such that

∥

∥

∥

∥

∥

f −
n

∑

i=1

λifi

∥

∥

∥

∥

∥

P

< ε

Since ‖ ‖P -norm is equivalent to norm supA∈Σ

∥

∥

∫

A
fdµ

∥

∥ [10, p. 3], it follows that

sup
A∈Σ

∥

∥

∥

∥

∥

∫

A

(f(ω)−
n

∑

i=1

λifi(ω))dµ

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

f −
n

∑

i=1

λifi

∥

∥

∥

∥

∥

P

< ε

or,
∥

∥

∥

∥

∥

∫

A

(f(ω)−
n

∑

i=1

λi

∫

A

fi(ω)dµ

∥

∥

∥

∥

∥

< ε, for all A ∈ Σ

and hence,
∥

∥

∥

∥

∥

∫

Ω

f(ω)−
n

∑

i=1

λi

∫

Ω

fi(ω)dµ

∥

∥

∥

∥

∥

< ε

or,
∥

∥

∥

∥

∥

x−
n

∑

i=1

λi

∫

Ω

fi(ω)dµ

∥

∥

∥

∥

∥

< ε (6)

Also,
n

∑

i=1

λi

∫

Ω

fidµ ∈ co I(F ). (7)

Hence from (6) and (7), we have x =
∫

Ω
f(ω)dµ ∈ coI(F ).

That is,
∫

Ω

(coF )(ω)dµ. ⊆ coI(F ). (8)

Combining (5) and (8) it follows that,

∫

Ω

(coF )(ω)dµ = coI(F ).
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3.3. Existence of Pettis Integrable Multifunction

Theorem 3.9. Assume that P1(µ,X) is norm separable. Let K be any non-empty

closed, decomposable, convex subset of P1(µ,X). Also assume that K(ω), where

K(ω) = {f(ω); f ∈ K}, is weakly compact for all ω ∈ Ω. Then there exists a Pettis

integrable multifunction G : Ω → CWK(X) such that

K = SP
G

Proof. Since P1(µ,X) is norm separable and K is a non-empty closed, decompos-
able subset of P1(µ,X), it follows by [10, Theorem 25, p. 9] that there exists a
measurable multifunction F : Ω → CL(X) such that,

K = SP
F

‖·‖P

Since SP
F

‖·‖P
= K is nonempty, so is SP

F . Hence F is Aumann-Pettis integrable.

Therefore, by Lemma 3.1, there exists a sequence {gn} ∈ SP
F ⊂ K such that

F (ω) = cl{gn(ω); n ≥ 1}, µ a.e.

Let us now define a multifunction G : Ω → 2X \ {∅} as

G(ω) = coF (ω).

Then,
G(ω) = co cl{gn(ω);n ≥ 1} = co{gn(ω);n ≥ 1}, µ a.e.

So,
G(ω) ⊂ coK(ω), µ a.e.

Then G(ω) is CWK(X)-valued, µ a.e., as K(ω) is weakly compact for all ω ∈ Ω.
Without any loss of generality we may assume that G(ω) is CWK(X) for all ω ∈ Ω.
To show that G is measurable, let

U =

{

h;h =
m
∑

j=1

λigi, λi ≥ 0, are rational and
m
∑

i=1

λi = 1

}

.

Then U is countable and G(ω) = cl{h(ω), h ∈ U}, µ a.e. So by [11, Theorem 1(V),
p. 151], G is measurable. As F is Aumann-Pettis integrable, so is G. We now show
that SP

G = coSP
F , the closed convex hull in P1(µ,X). Since G is CWK(X)-valued

Aumann-Pettis integrable, by [10, Corollary 17, p. 6], SP
G is ‖ · ‖P -norm closed and

convex as G(ω) is convex, µ a.e.

Now since SP
F ⊆ SP

G , it follows that

coSP
F ⊆ coSP

G = SP
G (9)

To prove the converse let f ∈ SP
G .

Now G(ω) = cl{h(ω);h ∈ U}, µ a.e.
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So by Lemma 3.3, for an arbitrary ε > 0, there exists a finite measurable partition
{A1, A2, . . . , An} and h1, h2, . . . , hn ∈ U such that

∥

∥

∥

∥

∥

f −
n

∑

i=1

χAi
hi

∥

∥

∥

∥

∥

P

< ε

As U = {h;h =
∑m

i=1 λigi, λi ≥ 0; are rational and
∑m

i=1 λi = 1} with gi ∈ SP
F ,

proceeding as in the proof of 1.5 [11, p. 154], we can show that
∑n

i=1 χAi
hi is a

convex combination of elements of SP
F .

So, f ∈ coSP
F and hence

SP
G ⊆ coSP

F (10)

Combining (9) and (10), we have

SP
G = coSP

F

We now show that

SP
G = SP

F

‖·‖P
= K.

SP
G = coSP

F ⊆ coSP
F

‖·‖P
= SP

F

‖·‖P
= K, (11)

since by hypothesis SP
F

‖·‖P
= K is ‖ · ‖P -norm closed and convex.

To prove the converse, let f ∈ SP
F

‖·‖P
.

If f ∈ SP
F , then f ∈ SP

G .

If f ∈ SP
F

‖·‖P
\SP

F , then there exists a sequence {fn} in SP
F which converges to f in

‖ · ‖P -norm.

So, f ∈ coSP
F = SP

G .

Therefore, in any case,

f ∈ SP
G .

So,

K = SP
F

‖·‖P
⊆ SP

G . (12)

From (11) and (12), we have

SP
G = SP

F

‖·‖P
= K.

Also G is CWK(X)-valued Aumann-Pettis integrable, so it is Pettis integrable by
[2, Theorem 3.7, p. 341].

3.4. Weak Compactness in P1(µ,X)

Here in this section we use the following notation. Let T = C[0, 1] be the Banach
space of real valued continous functions defined on the unit interval [0, 1] equipped
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with the suppremum norm. Suppose T is endowed with fixed recursive presentation.
Here each of the followings are subset of TN defined as

B1 = {x ∈ TN : x is bounded and weakly precompact};

B2 = {x ∈ TN : x is weakly Cauchy sequence};

B3 = {x ∈ TN : x converges weakly in T};

B4 = B2 \B3;

B5 = {x ∈ TN : x is relatively weakly compact}.

Theorem 3.10. If F : Ω → CB(X) is Aumann-Pettis integrable, then SP
F is con-

vex and sequentially compact for the weak topology of P1(µ,X) if and only if F (ω)
is weakly compact, µ a.e.

Proof. In order to show the sufficiency, let us consider that F is a µ a.e. weakly
compact convex-valued Aumann-Pettis integrable multifunction.
Then by [2, Theorem 3.7, p. 341], it is Pettis integrable. That is, F is a µ a.e.
CWK(X)-valued Pettis integrable multifunction. Without any loss of generality,
we may assume that F is CWK(X)-valued for all ω ∈ Ω. Hence SP

F is nonempty.
Also by Corollary 3.1.6, SP

F is convex as F (ω) is convex, µ a.e.
Now by [2, Theorem 5.4, p. 352], the set {〈x∗, f〉;x∗ ∈ BX∗ , f ∈ SP

F } is uniformly
integrable.
So by [8, Theorem 3.6, p. 102], SP

F is sequentially compact for the weak topology
of P1(µ,X).
Hence the condition is sufficient.
In order to prove that the condition is necessary, let us assume that SP

F is convex
and sequentially compact for the weak topology of P1(µ,X).
We know that C[0, 1] contains isomorphically any separable Banach space.
Weak compactness, being a topological invariant property, we may assume without
loss of generality that X = C[0, 1].
Let {xn} be a sequence in P1(µ,X) such that {xn(ω), n ≥ 1} dense in F (ω), µ a.e.
In order to prove the necessary part, it is sufficient to show that {xn(ω), n ≥ 1} is
relatively compact, µ a.e. Let

K(ω) = (xn(ω))n and A = K−1(XN \B5) (13)

Assume that the condition is not necessary. Then F (ω) is not weakly compact, µ
a.e. and so {xn(ω), n ≥ 1} is not relatively compact, µ a.e.

Hence, A is a µ−measurable set of positive measure. (14)

Also by [14, Lemma 3.1, p. 310], K(ω) ∈ B1, µ a.e.
Hence for almost every ω ∈ A, K(ω) ∈ B1 ∩ (XN \B5).
Theorem 3.5 in [14] guarantees the existence of a universally measurable function
s = (sn) from B1 ∩ (XN \B5) to B4 such that s(x) is a subsequence of x.
In other words, or almost every ω ∈ A, sn(K(ω)) is a weakly Cauchy sequence
which does not converge weakly in X.
Also each function sn ⊙K is easily seen to belong to SP

F .
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Now by the hypothesis,SP
F is sequentially compact for the weak topology of P1(µ,X).

So the sequence sn(K) has a subsequence snk
(K) and there exists a function f ∈

P1(µ,X) such that snk
(K) converges weakly to f in P1(µ,X).

Also for almost every ω ∈ A, sn(K(ω)) is a weakly Cauchy sequence in X. So
snk

(K(ω)) is weakly cauchy in X.
Now by Proposition 3.10 of [8], snk

(K(ω)) converges weakly to f(ω), for almost all
ω ∈ A

Hence µ(A) = µ(s⊙K)−1(B4) = 0.
This contradicts (14).
Hence {xn(ω), n ≥ 1} is relatively compact, µ a.e and so F (ω) is weakly compact,
µ a.e.
Hence the condition is necessary.
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[3] D. Bárcenas, W. Urbina: Measurable multifunctions in nonseparable Banach spaces,
SIAM J. Math. Anal. 28(5) (1997) 1212–1226.

[4] J. K. Brooks, N. Dinculeanu: Weak and strong compactness in the space of Pettis in-
tegrable functions, in: Integration, Topology, and Geometry in Linear Spaces (Chapel
Hill, 1979), W. H. Graves (ed.), Contemp. Math. 2, Amer. Math. Soc., Providence
(1980) 161–187.

[5] J. K. Brooks, N. Dinculeanu: On weak compactness in the space of Pettis integrable
functions, Adv. Math. 45 (1982) 255–258.

[6] C. Castaing: Weak compactness criteria in set-valued integration, Atti Semin. Mat.
Fis. Univ. Modena 45 (1997) 411–426.

[7] C. Castaing, M. Valadier: Convex Analysis and Measurable Multifunctions, Lecture
Notes in Math. 580, Springer, Berlin (1977).

[8] N. D. Chakraborty, T. Choudhury: Convergence theorems for Pettis integrable func-
tions and regular methods of summability, J. Math. Anal. Appl. 359 (2009) 95–105.

[9] J. Diestel, J. J. Uhl Jr.: Vector Measures, Math. Surveys Monogr. 15, Amer. Math.
Soc., Providence (1977).

[10] C. Godet-Thobie, B. Satco: Decomposability and uniform integrability in Pettis
integration, Quaest. Math. 29 (2006) 1–20.

[11] F. Hiai, H. Umegaki: Integrals, conditional expectations and martingales of multi-
valued functions, J. Multivariate Anal. 7 (1977) 149–182.

[12] S. Hu, N. S. Papageorgiou: Handbook of Multivalued Analysis. Vol. I: Theory,
Kluwer, Dordrecht (1997).

[13] R. C. James: Weakly compact sets, Trans. Amer. Math. Soc. 1133 (1964) 129–140.

[14] H. A. Klei: A compactness criterion in L1(E) and Radon-Nikodým theorems for
multimeasure, Bull. Sci. Math., II. Sér. 112 (1988) 305–324.



N.D.Chakraborty, T. Choudhury / On Some Properties of Pettis Integrable ... 683

[15] N. S. Papageorgiou: On the theory of Banach space valued multifunctions. I: inte-
gration and conditional expectation, J. Multivariate Anal. 17 (1985) 185–206.

[16] N. S. Papageorgiou: Contributions to the theory of set valued functions and set
valued measures, Trans. Amer. Math. Soc. 304(1) (1997) 245–265.

[17] H. Ziat: Convergence theorems for Pettis integrable multifunctions, Bull. Pol. Acad.
Sci., Math. 45(2) (1997) 123–137.

[18] H. Ziat: On a characterization of Pettis integrable multifunctions, Bull. Pol. Acad.
Sci., Math. 48(3) (2000) 227–230.


