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We show in this paper that on most convex surfaces there exist points with arbitrarily large lower
curvature in every tangent direction.

Moreover, we show that, astonishingly, on most convex surfaces, although the set of points with
curvature 0 in every tangent direction has full measure, it contains no pair of opposite points, i.e.
points admitting parallel supporting planes.
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1. Introduction

The space K of all convex bodies (i.e. compact convex sets with non-empty interior)
in IRd, equipped with the Pompeiu-Hausdorff metric h, is a Baire space. Indeed,
on one hand the space C of all convex compact sets is closed in the complete space
of all compact sets (see e.g. [10]), hence itself complete, and on the other the lower-
dimensional convex compact sets obviously form a nowhere dense set in C.

The generic investigation of the smoothness (i.e. being of class C1) and curvature
of convex surfaces (i.e. boundaries of convex bodies) started with Victor Klee, who
proved in 1959 the following result about most (or typical) convex bodies (i.e. all
except those in a set of first Baire category).

Theorem 1.1 ([3]). Most convex bodies are smooth and strictly convex.

This was rediscovered later by Gruber [2], and refined in [6], [7], and [10], chapter
8.

Lemma Z. If Z is a space of second Baire category, Y is residual in Z, and X is

residual in Y , then X is residual in Z.
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This is easy (or see [10], p. 17).

The first generic result about the curvature of convex surfaces was established by
Peter Gruber [2] in 1977. He showed that most convex surfaces are not of class C2.
For arbitrary convex surfaces a lower and an upper curvature can be defined, as
follows.

Consider a smooth, strictly convex body K, a point x on its boundary bdK, and
a tangent direction (unit vector) τ at x. Take the 2-dimensional half-plane

H = {ατ + βν : α > 0, β ∈ IR}

spanned by τ and the outer normal unit vector ν of K in x. Then for any point
z ∈ (x + H) ∩ bdK, there is exactly one circle with its centre on the normal line
x+ IRν, containing both x and z. Let rz be the radius of this circle. Then

ρτi (x) = lim inf
z→x

rz, ρτs(x) = lim sup
z→x

rz

are called the lower and upper curvature radius and

γτ
i (x) =

1

ρτs(x)
, γτ

s (x) =
1

ρτi (x)

the lower and upper curvature of bdK at x in direction τ . If γτ
i (x) = γτ

s (x), then
the curvature in direction τ exists and equals the common value γτ (x). (See [1], p.
14.)

Moreover, the intersection D of x+H with a ball containing x and having its centre
in x+ IRν is called a supporting half-disc of K at x in direction τ if D ⊂ K.

In 1980 the second author proved the following.

Theorem 1.2 ([4]). For most K ∈ K, K is smooth and strictly convex; moreover,

at each point x ∈ bdK and in any tangent direction τ at x,

γτ
i (x) = 0 or γτ

s (x) = ∞.

All theorems and corollaries of this paper refer – like Theorem 1.2 – to most convex
bodies (or surfaces) and describe properties in addition to being smooth and strictly
convex. From now on, in the statements we shall omit mentioning each time the
smoothness and strict convexity, which are however necessary for the use of tangent
directions, curvature etc.

Theorem 1.2, together with A. D. Alexandrov’s well-known theorem which guar-
antees the existence of a finite curvature a.e. in all tangent directions, implies the
following.

Corollary Y ([4]). On most convex surfaces,

γτ (x) = 0 a.e.

in all tangent directions τ at x.
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Another result obtained on the curvature states the following.

Theorem 1.3 ([5]). On most convex surfaces, at most points x,

γτ
i (x) = 0 and γτ

s (x) = ∞

for any tangent direction τ .

The generic existence of points where a finite non-zero curvature in some tangent
direction exists is excluded by Theorem 1.2. We saw that points with zero curvature
must exist, by Corollary Y. The question about the generic existence of points with
infinite curvature naturally arises. This could be proved for dimension d = 2 in
both tangent directions [8]. In higher dimensions, only the existence of points
with infinite curvature in some tangent directions could be shown [8], the following
question remaining open.

Question 1.4. Does there exist, on most convex surfaces, a point where the cur-
vature in every tangent direction is ∞ ? (1990, see [9])

Regarding all tangent directions, even the following question was unanswered.

Question 1.5. Do there exist, on most convex surfaces, points with arbitrarily
large lower curvature in every tangent direction?

One goal of this paper is to answer Question 1.5.

2. Points of large lower curvature

Let B(z, α) denote the open ball of centre z ∈ IRd and radius α > 0. Now, let us
take a sphere S of radius ǫ > 0, and a point x on that sphere. Let ν be the outer
unit normal vector at x. Also, choose δ ∈]0, 1[. We define

Sν(x, ε, δ) = {y ∈ S : ρ(x, y) ≤ εδ} (1)

where ρ is the inner metric on the sphere. Also define

Cν(x, ε, δ) =
⋃

L∈K,Sν(x,ε,δ)⊂bdL

L. (2)

We write S(x, ε, δ) and C(x, ε, δ) instead of Sν(x, ε, δ) and Cν(x, ε, δ) if the vector
ν is clear from the context.

If K ∈ K, x ∈ K, and K ⊂ C(x, ε, δ), then we call C(x, ε, δ) a hat of K at x.

Hat Lemma. Suppose K has a hat of radius ε > 0 at x. Then

(i) if K is smooth, ρτs(x) ≤ ε for all tangent directions τ,

(ii) for any ǫ′ > ǫ, there exists φ > 0 so that each K ′ with h(K,K ′) < φ has a hat

of radius ǫ′ at some point in B(x, ε′).
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Proof. (i) is obvious.

We show (ii). Assume that, at x, bdK has the outer unit normal vector ν and K
the hat C(x, ε, δ). We choose φ > 0 smaller than (1− cos δ)(ε′ − ε)/3. Consider a
convex body K ′ with h(K,K ′) < φ. Let x′ = x+ (ε′ − ε)ν and

λ = sup{t : K ′ + tν ⊂ C(x′, ε′, δ)}.

Then
(K ′ + λν) ∩ bdC(x′, ε′, δ) 6= ∅.

Take y in the above set. We show that y ∈ relintS(x′, ε′, δ). Indeed, suppose y ∈
bdC(x′, ε′, δ)\relintS(x′, ε′, δ). We have y−λν ∈ K ′, and K ′ ⊂ C(x, ε, δ)+B(0, φ).
Since the distance from y to C(x, ε, δ) +B(0, φ) is ε′ − ε− φ, it follows that

λ >
ε′ − ε− φ

cos δ
>

ε′ − ε− (1−cos δ)(ε′−ε)
3

cos δ
=

2
cos δ

+ 1

3
(ε′ − ε).

On the other hand, let x′′ be the point of K ′ closest to x (possibly x′′ = x), and ξ
the number verifying x′′ + ξν ∈ bdC(x′, ε′, δ). Of course, ξ should not be smaller
than λ. But

ξ ≤ ‖x′ − x‖+ ‖x− x′′‖ ≤ ε′ − ε+ φ

< ε′ − ε+
(1− cos δ)(ε′ − ε)

3
=

4− cos δ

3
(ε′ − ε)

and
4− cos δ

3
(ε′ − ε) <

2
cos δ

+ 1

3
(ε′ − ε),

because
cos2 δ − 3 cos δ + 2 > 0,

which is true since s2− 3s+2 > 0 for all s ∈]0, 1[. Hence, ξ < λ. This contradiction
shows that y ∈ relintS(x′, ε′, δ). Thus, K ′ admits a hat C(y, ε′, δ′) at y for some
angle δ′ > 0. Here, ‖y − x‖ < max{‖y − x′‖, ε′} = ε′, since ‖y − x′‖ ≤ δε′ < ε′.

Proposition. Let ε > 0. The set of those convex bodies which have no hat of
radius ε at any point of some open ball of radius ε centred at a boundary point of
K is nowhere dense in K.

Proof. Let K∗ be the above set of convex bodies. In any open set of K we can find
a polytope P such that every point on bdP has distance less than ε/3 from some
vertex. Let v1, v2, ..., vn be the vertices of P . P admits a hat of radius ε/4 at every
vertex. By the Hat Lemma (ii), we can find a neighbourhood N of P such that,
for any K ∈ N with h(K,K ′) < ε/3 and for each index i, K admits a hat of radius
ε/3 at some point at distance less than ε/3 from vi. Now, for each z ∈ bdK, there
exists z′ ∈ bdP with ‖z − z′‖ < ε/3, there exists some i for which ‖z′ − vi‖ < ε/3,
and there exists a suitable hat of K at a point w with ‖w − vi‖ < ε/3. Thus,
‖z − w‖ < ε, and K /∈ K∗.
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Theorem 2.1. For most convex bodies K ∈ K and for any number r ∈ IR, there
are densely many points x ∈ bdK such that

γτ
i (x) > r and γτ

s (x) = ∞

in all tangent directions τ.

Proof. Let n be a natural number, and Kn be the family of all K ∈ K admitting no
hat of radius 1/n at any point of some open ball of radius 1/n centred at a point of
bdK. By the Proposition, Kn is nowhere dense. Hence ∪∞

n=1Kn is of first category.
Therefore, for most K ∈ K, and for any natural number n, there are densely many
points x at which K admits a hat of radius 1/n. By the Hat Lemma (i), γτ

i (x) > n
in all tangent directions τ . Moreover, by Theorem 1.2 (and Lemma Z), γτ

s (x) = ∞.

3. Strengthening to nearly all convex bodies

Already results in [8] showed that for most convex bodies in IRd, the lower curvature
λτ
i (x), as a function of x and τ , is not bounded. By the Proposition, for any number

r ∈ IR, there is a point x ∈ bdK with γτ
i (x) > r in any tangent direction τ at x.

We strengthen now this via porosity.

A subset M of K is said to be porous if, for any K ∈ K, there exists α > 0 such
that, for any ε > 0, there exists K ′ ∈ B(K, ε) satisfying

M∩B(K ′, αh(K,K ′)) = ∅.

Here, B(K, ε) = {K ′′ ∈ K : h(K,K ′′) < ε}. We say that nearly all convex bodies
have property P if those not enjoying P form a countable union of porous sets.

Theorem 3.1. For nearly all convex bodies K and for any number r ∈ IR, there is

a point x ∈ bdK with γτ
i (x) > r in any tangent direction τ at x.

Proof. Let us first recall that, in the terms of the Hat Lemma, the choice of

φ = (1− cos δ)(ε′ − ε)/6 (∗)

suffices. Now let An be the set of all those smooth convex bodies with lower
curvature in any point and in any tangent direction smaller than the natural number
n > 0. Because nearly all convex bodies are smooth [6] (see also [10]), we can
disregard all nonsmooth bodies. Thus, if we can prove that ∪n∈INAn is σ-porous,
we are done. To achieve that, we will prove that every An is porous. Let us take
m > 0 such that K ∈ K can be inscribed into an open ball of radius m. Obviously,
there is a boundary point x of K such that K has a hat of radius m in x. Let δ be
the angle of this hat Cνx(x,m, δ), where νx is the outer normal of bdK in x. Let
further θ be an arbitrary positive real number. We define xθ = x+ θνx,

Kθ = conv({xθ} ∪K), Cθ = conv({xθ} ∪ Cνx(x,m, δ)).

In xθ, both Cθ and Kθ have the hat

Cνx

(

xθ,
1

2n
, δθ

)

,
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where

δθ = min

(

δ, arccos
m

m+ θ

)

.

Now recall that if we choose

φ(θ) =
1

2n

1− cos δθ
6

then, by the Hat Lemma, using (∗), every K ′ ∈ B(Kθ, φ(θ)) has a hat C(y, 1/n, δ′)
with some δ′ > 0. Now, for small θ,

1− cos δθ = 1−
m

m+ θ
≥

θ

2m
,

whence

φ(θ) ≥
1

24mn
θ.

Thus, we can choose θ > 0 so that eventually

An ∩ B

(

Kθ,
1

24mn
h(K,Kθ)

)

= An ∩ B

(

Kθ,
1

24mn
θ

)

= ∅,

and this shows that An is porous.

4. Upper curvature at opposite points

Let S be the (Baire) space of all convex surfaces. Take K ∈ K smooth and strictly
convex. For any x ∈ bdK, let x∗ denote the unique point of bdK such that the
hyperplanes tangent to bdK at x and x∗ are parallel.

Theorem 4.1. On most convex surfaces there exists no point x and no tangent

direction τ such that

γτ
s (x) < ∞ and γτ

s (x
∗) < ∞.

Proof. Let S∗ be the family of all boundaries of smooth strictly convex bodies.
By Theorem 1.1, this family is residual in S. Let Sε be the family of all convex
surfaces containing a point x such that at both points x and x∗ there are supporting
half-discs of radius ε in direction τ . It is routine to show that Sε is closed in S∗.

Now we shall show that Sε is nowhere dense in S∗. Let S ∈ Sε. Choose a neigh-
bourhood N of S in S. Let P ∈ N be a polytope in general position, which in our
context should mean that no pair of faces of positive dimension are parallel. Neither
P , nor its parallel body P +B(0, ε/3) belongs to Sε. But P +B(0, ε/3) ∈ N ∩S∗.
Hence Sε is nowhere dense in S∗.

Each smooth convex surface containing a point x and a tangent direction τ at x
such that

γτ
s (x) < ∞ and γτ

s (x
∗) < ∞

lies in Sε for some ε > 0. Thus, the family S∗ of all such surfaces lies in ∪∞
i=1S1/n.

As each S1/n is nowhere dense, it follows that S∗ is of first category in S∗. The
theorem now follows from Lemma Z.
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Corollary V. On most convex surfaces, for any point x and tangent direction τ ,
γτ (x) = 0 implies γτ

s (x
∗) = ∞.

Corollary W. On most convex surfaces, for almost all x,

γτ (x) = 0 and γτ
s (x

∗) = ∞

in all tangent directions τ at x.

Proof. Corollaries V and W immediately follow from Theorem 3.1, Corollary Y
and Theorem 1.2.

At a first glance, one may wonder how the situation described in Corollary W may
occur, while almost everywhere the curvature vanishes. Indeed, if the mapping
x 7→ x∗ were Lipschitz, then a contradiction would be obtained. But, as it follows,
this mapping is, on most convex surfaces not Lipschitz a.e.

In contrast to this, the preceding mapping transforms residual sets into residual
sets, so Theorem 1.3 implies that, on most convex surfaces, for most points x, there
is no curvature in both x and x∗.
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