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This paper is concerned with the study of M -structures in spaces of polynomials. More precisely,
we discuss for E and F Banach spaces, whether the class of weakly continuous on bounded sets
n-homogeneous polynomials, Pw(

nE,F ), is an M -ideal in the space of continuous n-homogeneous
polynomials P(nE,F ). We show that there is some hope for this to happen only for a finite
range of values of n. We establish sufficient conditions under which the problem has positive
and negative answers and use the obtained results to study the particular cases when E = ℓp
and F = ℓq or F is a Lorentz sequence space d(w, q). We extend to our setting the notion of
property (M) introduced by Kalton which allows us to lift M -structures from the linear to the
vector-valued polynomial context. Also, when Pw(

nE,F ) is an M -ideal in P(nE,F ) we prove a
Bishop-Phelps type result for vector-valued polynomials and relate norm-attaining polynomials
with farthest points and remotal sets.
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Introduction

M -ideals emerged in the geometric theory of Banach spaces as a generalization,
to the Banach space setting, of the closed two-sided ideals in a C∗-algebra. This
notion, introduced by Alfsen and Effros in their seminal article [3] of 1972, leads
us to a better understanding of the isometric structure of a Banach space in terms
of geometric and analytic properties of the closed unit ball of the dual space. To
be more precise, a closed subspace J of a Banach space X is an M-ideal in X, if
its annihilator, J⊥, is the kernel of a projection P on the dual space X∗ such that
‖x∗‖ = ‖P (x∗)‖+ ‖x∗ − P (x∗)‖, for all x∗ ∈ X∗. When J is an M -ideal in X, the
canonical complement of J⊥ in X∗ is (isometrically) identified with J∗. Then, we
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may write X∗ = J⊥ ⊕1 J
∗, which in some sense tells us that there is a maximum

norm structure underlying the geometry of the unit ball of X and this structure is
closely related to J . If it is possible to decompose X as J ⊕∞ J̃ , for some closed
subspace J̃ of X, we say that J is an M-summand of X. Clearly, M -summands
are M -ideals, but there exist subtle differences. For instance, c0 is an M -ideal in ℓ∞
and it is not an M -summand. Since M -ideals appeared, they have been intensively
studied. A comprehensive exposition of the main developments in this subject can
be found in the outstanding book by Hardmand, Werner and Werner [24].

The Gelfand-Naimark theorem states that any arbitrary C∗-algebra is isometrically
∗-isomorphic to a C∗-algebra of bounded operators on a Hilbert space. Here the
only norm closed two-sided ∗-ideal is the subspace of compact operators. Then, it
is natural to investigate under which conditions the closed subspace J of compact
operators between Banach spaces E and F , J = K(E,F ), results anM -ideal inX =
L(E,F ), the space of linear and bounded operators, endowed with the supremum
norm. During the last thirty years a number of papers have been devoted to this
question (see, for example [24, 25, 26, 27, 28, 30, 31]), where the case E = F is of
special interest.

In this paper we focus our study in determining the presence of an M -structure
in the space of continuous n-homogeneous polynomials between Banach spaces E
and F , denoted by P(nE,F ). Here the lack of linearity and, more specifically, the
degree of homogeneity will play a crucial role. In the polynomial setting, the space
of compact operators is usually replaced by the space of homogeneous polynomials
which are weakly continuous on bounded sets, denoted by Pw(

nE,F ). Recall that
a polynomial P ∈ P(nE,F ) is compact if maps the unit ball of E into a relatively
compact set in F and that P is in Pw(

nE,F ) if maps bounded weak convergent
nets into convergent nets. For linear operators both properties, to be compact
and to be weakly continuous on bounded sets, produce the same subspace. For n-
homogeneous polynomials with n > 1, that coincidence is no longer true. Although
any polynomial in Pw(

nE,F ) is compact (as it can be derived from results in [9] and
[8]), the reverse inclusion fails. This is due to the fact that continuous polynomials
are not, in general, weak-to-weak continuous. Then, every scalar-valued continuous
polynomial is compact but it is not necessarily weakly continuous on bounded sets,
as the standard example P (x) =

∑
k x

2
k, for all x = (xk)k ∈ ℓ2, shows. With

this in mind, our main purpose is to discuss whether Pw(
nE,F ) is an M -ideal in

P(nE,F ). In [16], the first author studied the analogous question when F is the
scalar field. We will see that the vector-valued case is not a mere generalization of
the scalar-valued case.

The problem of stating if Pw(
nE,F ) is a proper subspace of P(nE,F ) is nontrivial

at all. However, when this is not the situation our question is trivially answered.
We refer the reader to [4, 13, 22, 23], where the equality Pw(

nE,F ) = P(nE,F ) is
studied.

As it happens for n-homogeneous polynomials in the scalar-valued case, the value
of n for which Pw(

nE,F ) has the chance to be a nontrivial M -ideal in P(nE,F )
cannot be chosen arbitrarily. Thus, our firsts efforts are focused to discuss this
matter. In order to do so, following [24] and [16], we define the essential norm
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of a vector-valued polynomial P as the distance from P to the space Pw(
nE,F ).

Also we describe the extreme points of the ball of the dual space of Pw(
nE,F ).

Then, combining this with properties of the essential norm we obtain the range
within we may expect to find an M -structure. When Pw(

nE,F ) is an M -ideal in
P(nE,F ), the essential norm allows us to obtain a Bishop-Phelps type theorem.
We use this result to study the existence of farthest points and densely remotal
sets. These concepts are related to geometric properties such us the existence of
exposed points, the Mazur intersection property and norm attaining functions, see
[11, 20]. These results appear in Section 1.

Section 2 is dedicated to give sufficient conditions on E and F so that Pw(
nE,F )

is an M -ideal in P(nE,F ). The main requirement stays around the concept of
shrinking approximations of the identity. When F is an M∞-space, without any
further assumption on the space E, we prove that Pw(

nE,F ) is a nontrivial M -
ideal in P(nE,F ) for all but one possible value of n in the range of interest. For
the remaining value of n, we obtain the result when E satisfies some additional
conditions, see Propositions 2.8 and 2.10.

In Section 3, we focus our attention on classical sequence spaces E and F , for
E = ℓp (1 < p < ∞) and F = ℓq or F = d(w, q) a Lorentz sequence space,
(1 < q < ∞). The questions of whether K(ℓp, ℓq) is an M -ideal in L(ℓp, ℓq) and
K(ℓp, d(w, q)) is an M -ideal in L(ℓp, d(w, q)) were previously addressed in [24] and
[30]. In [16], it was studied when Pw(

nℓp) is an M -ideal in P(nℓp). We analyze
here when Pw(

nℓp, ℓq) is an M -ideal in P(nℓp, ℓq) and when Pw(
nℓp, d(w, q)) is an

M -ideal in P(nℓp, d(w, q)). Giving conditions on n, p, q and w we solve the problem
for all the possible situations.

In the last section we study the property (M), introduced by Kalton in [26] for
Banach spaces, developed later for operators by Kalton and Werner in [27] and
finally generalized to the scalar-valued polynomial setting in [16]. Here, we present
a natural extension to the vector-valued polynomial setting of the notions mentioned
before and establish the connection this property has with our main problem. We
apply the results obtained to give examples ofM -ideals in vector-valued polynomial
spaces defined on Bergman spaces.

Before proceeding, we fix some notation and give basic definitions. Every time we
write X,E or F we will be considering Banach spaces over the real or complex field,
K. The closed unit ball of X will be noted by BX and the unit sphere by SX . Also,
if x ∈ X and r > 0, B(x, r) will stand for the closed ball in X with center at x and
radius r. As usual, X∗ and X∗∗ will be the notations for the dual and bidual of X,
respectively. The space of linear bounded operators from E to E will be noted by
L(E) and its subspace of compact mappings will be noted by K(E).

A function P : E → F is said to be an n-homogeneous polynomial if there exists a

(unique) symmetric n-linear form
∨

P : E × · · · × E︸ ︷︷ ︸
n

→ F such that

P (x) =
∨

P (x, . . . , x),

for all x ∈ E. As we have already mentioned, the space of continuous n-homogeneous
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polynomials from E to F will be denoted by P(nE,F ). For scalar-valued mappings
we will write P(nE) instead of P(nE,K) to denote the space of all continuous n-
homogeneous polynomials from E to K. The space P(nE,F ) endowed with the
supremum norm

‖P‖ = sup{‖P (x)‖F : x ∈ BE},

is a Banach space. We may write ‖P (x)‖ instead of ‖P (x)‖F unless we prefer to
emphasize the space where the norm is taken.

Every polynomial P ∈ P(nE,F ) has two natural mappings associated: the linear
adjoint or transpose P ∗ ∈ L(F ∗,P(nE)) which is given by

(P ∗(y∗))(x) = y∗(P (x)), for every x ∈ E and y∗ ∈ F ∗,

and the polynomial P ∈ P(nE∗∗, F ∗∗), the canonical extension of P from E to E∗∗

obtained by weak-star density, known as the Aron-Berner extension of P [5]. For
each z ∈ E∗∗, ez will refer to the application given by ez(P ) = P (z); for x ∈ E, ex
denotes the evaluation map.

Besides the subspace of weakly continuous on bounded sets n-homogeneous poly-
nomials which was already introduced, we will consider the following classes. The
first one is the space of n-homogeneous polynomials that are weakly continuous on
bounded sets at 0, which consists on those polynomials mapping bounded weakly
null nets into null nets. This space will be denoted by Pw0(

nE,F ). We also have the
subspace formed by polynomials of finite type, which are of the form

∑N

j=1(x
∗
j)

n ·yj,
with x∗

j ∈ E∗, yj ∈ F for all j = 1, . . . , N and N ∈ N. The space of finite type
n-homogeneous polynomials will be denoted by Pf (

nE,F ). Its closure (in the supre-
mum norm) is the space of approximable n-homogeneous polynomials which will
be noted by PA(

nE,F ). When F is K we omit F and write Pw0(
nE),Pf (

nE) or
PA(

nE) for instance.

Recall that if E does not contain a subspace isomorphic to ℓ1, then, for any Ba-
nach space F , Pw(

nE,F ) coincides with the space of weakly sequentially continuous
polynomials Pwsc(

nE,F ) [8, Proposition 2.12]. The space of n-homogeneous poly-
nomials that are weakly sequentially continuous at 0 will be denoted Pwsc0(

nE,F ).
As usual, P(E,F ) (Pw(E,F )) stands for the space of all continuous (weakly con-
tinuous on bounded sets) polynomials from E to F . We refer to [18, 29] for the
necessary background on polynomials on Banach spaces.

Related to the study of M -structures there are two relevant geometric properties
that we will use repeatedly. The first one is a well-known characterization, called
the 3-ball property, given by Alfsen and Effros in [3, Theorem A] to which the main
part of their article is dedicated, see also [24, Theorem I.2.2 (iv)]:

Theorem A. Suppose that J is a closed subspace of X. The following are equiva-
lent:

(i) J is an M-ideal.

(ii) J satisfies the 3-ball property: for every x1, x2, x3 ∈ X and positive numbers
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r1, r2, r3 such that

3⋂

j=1

B(xj, rj) 6= ∅ and B(xj, rj) ∩ J 6= ∅, j = 1, 2, 3,

it holds that
3⋂

j=1

B(xj, rj + ε) ∩ J 6= ∅ for all ε > 0.

(iii) J satisfies the (restricted) 3-ball property: for every y1, y2, y3 ∈ BJ , x ∈ BX

and ε > 0, there exists y ∈ J satisfying

‖x+ yj − y‖ ≤ 1 + ε, j = 1, 2, 3.

Note that one of the benefits of having the 3-ball property is that we have a criterium
to decide if a closed subspace of a Banach space X is an M -ideal in terms of an
intersection of balls in X. Thus, there is no need to appeal to the dual space to
determine the existence of an M -structure. The 2-ball property is not sufficient to
this end, see [24]. When a closed subspace of X satisfies the 2-ball property we say
that we are in presence of a semi M-ideal structure.

The second property we referred, provides us with a nice description of the extreme
points of the unit ball of X∗ in terms of the sets of the extreme points of the unit
balls of J⊥ and J∗, if J is an M -ideal in X, see [24, Lemma 1.5]. As usual Ext(BX)
denotes the set of extreme points of the unit ball of a Banach space X.

Theorem B. Suppose that J is an M-ideal in X. Then, the extreme points of the
unit ball of X∗ satisfy

Ext(BX∗) = Ext(BJ⊥) ∪ Ext(BJ∗).

Many authors investigatedM -structures on Banach spaces. Hardmand, Werner and
Werner summarized the main results on this topic in their monograph [24]. The
reader will find out that it is a very clear and well-organized survey on M -ideals.
Along this paper, we will recourse to the ideas and results in it.

1. General results

It is natural to begin our research with vector-valued polynomial versions of basic
results stated for linear operators in [24, Propositions VI.4.2 and VI.4.3] and for
scalar-valued polynomials in [16, Propositions 1.1 and 1.2]. We omit the proofs
since they are straightforward.

Proposition 1.1.

(a) If Pw(
nE,F ) is an M-summand in P(nE,F ), then Pw(

nE,F ) = P(nE,F ).

(b) If Pw(
nE,F ) is an M-ideal in P(nE,F ) and E1 ⊂ E, F1 ⊂ F are 1-comple-

mented subspaces, then Pw(
nE1, F1) is an M-ideal in P(nE1, F1).
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(c) The class of Banach spaces E and F for which Pw(
nE,F ) is an M-ideal in

P(nE,F ) is closed with respect to the Banach-Mazur distance.

The knowledge of the extreme points of the unit ball of a Banach space provides a
crucial tool in the geometric study of the space. We borrow some ideas of [24] and
[16] to examine the extreme points of the unit ball of the dual spaces: P(nE,F )∗

and Pw(
nE,F )∗.

Note that if J is a subspace of P(nE,F ) that contains Pf (
nE,F ), then ex⊗y∗ ∈ J∗

is a norm one element, for all x ∈ SE and y∗ ∈ SF ∗ . Indeed, the application ex ⊗ y∗

belongs to BJ∗ and since J contains all finite type n-homogeneous polynomials, it
contains the elements of the form (x∗)n · y, for every x∗ ∈ E∗ and y ∈ F , thus
‖ex ⊗ y∗‖ = 1.

Proposition 1.2.

(a) If J is a subspace of P(nE,F ) that contains all finite type n-homogeneous
polynomials, then

ExtBJ∗ ⊂
{
ex ⊗ y∗ : x ∈ SE, y∗ ∈ SF ∗

}w∗

,

where w∗ designates the topology σ(J∗, J).

(b) For the particular case J = Pw(
nE,F ) we can be more precise:

ExtBPw(nE,F )∗ ⊂ {ez ⊗ y∗ : z ∈ SE∗∗ , y∗ ∈ SF ∗

}
.

Proof. (a) Through Hahn-Banach theorem and the comment made above, it easily
follows that

BJ∗ = Γ
{
ex ⊗ y∗ : x ∈ SE, y∗ ∈ SF ∗

}w∗

.

Now, by Milman’s theorem [21, Theorem 3.41] we derive the desired inclusion:

ExtBJ∗ ⊂
{
ex ⊗ y∗ : x ∈ SE, y∗ ∈ SF ∗

}w∗

.

(b) Suppose that J = Pw(
nE,F ). Let us see that {ex ⊗ y∗ : x ∈ SE, y∗ ∈ SF ∗}

w∗

⊂

{ez ⊗ y∗ : z ∈ BE∗∗ , y∗ ∈ BF ∗

}
. If Φ ∈ {ex ⊗ y∗ : x ∈ SE, y∗ ∈ SF ∗}

w∗

, then there

exist nets {xα}α in SE and {y∗α}α in SF ∗ such that exα
⊗ y∗α

w∗

→ Φ. Without loss of
generality, we may assume that {xα}α is σ(E∗∗, E∗)-convergent to an element z in
BE∗∗ and {y∗α}α is σ(F ∗, F )-convergent to an element y∗ in BF ∗ .

Note that for any P ∈Pw(
nE,F ), its Aron-Berner extension P belongs to P(nE∗∗, F )

(see for instance [14, Proposition 2.5]) and the compacity of P implies that P is
w∗-continuous on bounded sets. Then, we have that y∗α

(
P (xα)

)
→ y∗

(
P (z)

)
, for

every P ∈ Pw(
nE,F ). Thus, exα

⊗ y∗α
w∗

→ ez ⊗ y∗ and therefore, Φ = ez ⊗ y∗. When
Φ is a norm one element we have that both z and y are elements in the respective
unit spheres SE∗∗ and SF ∗ . Now, the result follows.
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In [16], the notion of the essential norm was extended from operators to scalar-
valued polynomials and was used to determine that Pw(

nE) may be a nontrivial
M -ideal of P(nE) for at most only one value of n. For vector-valued polynomials,
also through the essential norm, we obtain a finite range of possible values of n for
which Pw(

nE,F ) has the chance to be a nontrivial M -ideal of P(nE,F ). Recall
that the essential norm of a linear operator T is the distance from T to the subspace
of compact operators. When K(E,F ) is an M -ideal in L(E,F ), there is an explicit
alternative formula to compute this essential norm [24, Proposition VI.4.7]. Now
we proceed to discuss de degrees of homogeneity for which our problem might have
a nontrivial solution.

Definition 1.3. Let P ∈ P(nE,F ) be an n-homogeneous polynomial. The essen-
tial norm of P is defined by

‖P‖es = d(P,Pw(
nE,F )) = inf{‖P −Q‖ : Q ∈ Pw(

nE,F )}.

In order to obtain a good description of the essential norm, we will make use of
the transpose of a polynomial. Note that if P ∈ P(nE,F ) and we denote by
LP :

⊗n,s

πs
E → F the linearization of P , where πs is the projective symmetric

tensor norm; then P ∗ is the usual adjoint of LP .

Lemma 1.4. If P ∈ Pw(
nE,F ) then P ∗ belongs to L(F ∗,Pw(

nE)) and it is w∗-
continuous on bounded sets.

Proof. If P ∈ Pw(
nE,F ) then P is compact and P ∗ ∈ L(F ∗,Pw(

nE)). By [10,
Proposition 3.2], P ∗ is a compact operator. Since P ∗ = L∗

P it follows that LP is
compact and its adjoint P ∗ is w∗-continuous.

Now we can obtain an alternative formula for the essential norm in the case that
there is an M -structure.

Proposition 1.5. Suppose Pw(
nE,F ) is an M-ideal in P(nE,F ). Then, for any

P ∈ P(nE,F ),
‖P‖es = max{w(P ), w∗(P )},

where

w(P ) = sup
{
lim sup ‖P (xα)‖ : ‖xα‖ = 1, xα

w
→ 0

}
and

w∗(P ) = sup
{
lim sup ‖P ∗(y∗α)‖ : ‖y∗α‖ = 1, y∗α

w∗

→ 0
}
.

Proof. Let P ∈ P(nE,F ). For any Q ∈ Pw(
nE,F ) and for any normalized weak-

star null net {y∗α}α, it holds

‖P −Q‖ = ‖P ∗ −Q∗‖ ≥
∥∥(P ∗ −Q∗)(y∗α)

∥∥ ≥
∥∥P ∗(y∗α)

∥∥−
∥∥Q∗(y∗α)

∥∥.

Since, by Lemma 1.4,
∥∥Q∗(y∗α)

∥∥ → 0 it follows that ‖P − Q‖ ≥ lim sup ‖P ∗(y∗α)‖
and thus ‖P‖es ≥ w∗(P ).

The other inequality follows analogously. Thus,

‖P‖es ≥ max{w(P ), w∗(P )}.
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Now suppose that Pw(
nE,F ) is an M -ideal in P(nE,F ). Then we have

ExtBP(nE,F )∗ = ExtBPw(nE,F )⊥ ∪ ExtBPw(nE,F )∗ .

The essential norm of P , ‖P‖es, is the norm of the class of P in the quotient space
P(nE,F )/Pw(

nE,F ) and the dual of this quotient can be isometrically identified
with Pw(

nE,F )⊥. Then, there exists Φ ∈ ExtBPw(nE,F )⊥ such that Φ(P ) = ‖P‖es.

So, Φ ∈ ExtBP(nE,F )∗ and, by Proposition 1.2(a), Φ∈ {ex⊗y∗ : x∈ SE, y∗ ∈ SF ∗}
w∗

.

Chose nets {xα}α in SE and {y∗α}α in SF ∗ such that exα
⊗ y∗α

w∗

→ Φ, where w∗ means
the topology σ(P(nE,F )∗,P(nE,F )). In passing to appropriate subnets, we can
suppose that {xα}α is σ(E∗∗, E∗)-convergent to an element z in BE∗∗ and {y∗α}α is
σ(F ∗, F )-convergent to an element y in BF ∗ .

For any x∗ ∈ E∗ and y ∈ F , the polynomial (x∗)n · y belongs to Pw(
nE,F ). This

gives
0 = Φ((x∗)n · y) = lim

α
x∗(xα)

ny∗α(y) = z(x∗)ny∗(y).

So it should be z = 0 or y∗ = 0. In the first case, {xα}α is weakly null and

‖P‖es = Φ(P ) = lim
α

y∗α (P (xα)) ≤ lim sup ‖P (xα)‖ ≤ w(P ).

In the second case, {y∗α}α is weak-star null and it follows similarly that ‖P‖es ≤
w∗(P ).

As in the scalar-valued polynomial case this result enable us to narrow the possible
values of n for which Pw(

nE,F ) could be an M -ideal in P(nE,F ). To see this, we
extend the definition of critical degree of a Banach space cd(E) given in [16] to the
case of vector-valued polynomials.

If Pw(E,F ) 6= P(E,F ) we define the critical degree of (E,F ) as:

cd(E,F ) = min{k ∈ N; Pw(
kE,F ) 6= P(kE,F )}.

Note that if F = K then cd(E) = cd(E,K).

Remark 1.6. Since the same arguments from [13] and [6] used to state Remark
1.8 in [16] also work for vector-valued polynomials we obtain that for Banach spaces
E and F if Pw(E,F ) 6= P(E,F ) and n = cd(E,F ),

• Pw(
kE,F ) = Pw0(

kE,F ) = P(kE,F ), for all k < n.

• Pw(
nE,F ) = Pw0(

nE,F ) $ P(nE,F ).

• Pw(
kE,F ) $ Pw0(

kE,F ) ⊂ P(kE,F ), for all k > n.

Observe that if a scalar-valued polynomial P ∈ P(nE) is not weakly continuous on
bounded sets then, for any y ∈ F , y 6= 0, the polynomial x 7→ P (x)y belongs to
P(nE,F ) and it is not weakly continuous on bounded sets. This says that, for any
Banach space F ,

cd(E,F ) ≤ cd(E).

Note also that cd(E,F ) could be much smaller than cd(E). For instance, cd(ℓp, c0) =
1 while cd(ℓp) is the integer number satisfying p ≤ cd(ℓp) < p+ 1.
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Example 1.7. Let E = ℓp and F = ℓq, 1 < p, q < ∞ or, more generally, E =⊕
ℓp
Xm and F =

⊕
ℓq
Ym, where Xm and Ym are finite dimensional spaces. From

[23] we can derive that the critical degree is the integer number cd(E,F ) satisfying
p

q
≤ cd(E,F ) < p

q
+ 1.

Lemma 1.8. Let P ∈ P(nE,F ) be a compact polynomial.

(a) If n < cd(E) then P is weakly continuous on bounded sets.

(b) w∗(P ) = 0.

Proof. (a) If n < cd(E), then every scalar-valued n-homogeneous polynomial on
E is weakly continuous on bounded sets. Then, P is weak-to-weak continuous
on bounded sets. So, for any bounded net {xα}α in E such that xα

w
→ x, we

have P (xα)
w
→ P (x). Being P compact, the bounded net {P (xα)}α should have a

convergent subnet. By a canonical argument we derive that P (xα)→P (x) and thus
P is weakly continuous on bounded sets.

(b) This is a consequence of the proof of Lemma 1.4.

Proposition 1.9. Every polynomial in P(nE,F ) which is weakly continuous on
bounded sets at 0 and compact is weakly continuous on bounded sets if and only if
n ≤ cd(E).

Proof. If n > cd(E), there exists a polynomial p ∈ Pw0(
nE) \Pw(

nE). Then, for a
fixed non null y ∈ F the polynomial P (x) = p(x)y is weakly continuous on bounded
sets at 0 and compact but it is not weakly continuous on bounded sets.

Reciprocally, let n ≤ cd(E) and let P ∈ P(nE,F ) be a polynomial weakly con-
tinuous on bounded sets at 0 and compact. We know from [10, Proposition 3.4]
that, for 0 < k < n, any derivative dkP (x) is compact. Thus, by Lemma 1.8(a), we
obtain that dkP (x) is weakly continuous on bounded sets, for all 0 < k < n. This
fact together with the hypothesis of P being weakly continuous on bounded sets at
0 implies that P is weakly continuous on bounded sets.

The previous results allow us to obtain an upper bound for the numbers n such
that Pw(

nE,F ) could be an M -ideal in P(nE,F ).

Corollary 1.10. If Pw(
nE,F ) is an M-ideal in P(nE,F ), then n ≤ cd(E).

Proof. By Lemma 1.8(b), if P ∈ P(nE,F ) is weakly continuous on bounded sets
at 0 and compact then w(P ) = w∗(P ) = 0. If, in addition, Pw(

nE,F ) is an M -ideal
in P(nE,F ), Proposition 1.5 states that ‖P‖es = 0 and so P is weakly continuous
on bounded sets. Thus, by Proposition 1.9, it should be n ≤ cd(E).

Remark 1.11. Clearly, if n< cd(E,F ), Pw(
nE,F ) is a trivialM -ideal in P(nE,F ).

On the other hand, by Corollary 1.10 if Pw(
nE,F ) is an M -ideal in P(nE,F ) then

n ≤ cd(E). Therefore, the problem of whether Pw(
nE,F ) is an M -ideal is worth

being studied only for polynomials of degree n, with cd(E,F ) ≤ n ≤ cd(E).
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The fact that Pw(
nE,F ) is an M -ideal in P(nE,F ) has some incidence in the set of

polynomials whose Aron-Berner extension attains the norm. As we have for scalar-
valued polynomials [16, Proposition 1.10], the following version of [24, Proposition
VI.4.8] is a Bishop-Phelps type result for vector-valued polynomials. The proof is
omitted since it can be obtained as a slight modification of the proof given in [16].

Proposition 1.12. Let E and F be Banach spaces and suppose that Pw(
nE,F ) is

an M-ideal in P(nE,F ).

(a) If P ∈ P(nE,F ) is such that its Aron-Berner extension P does not attain its
norm at BE∗∗, then ‖P‖ = ‖P‖es.

(b) The set of polynomials in P(nE,F ) whose Aron-Berner extension does not
attain the norm is nowhere dense in P(nE,F ).

We finish this section relating norm attaining polynomials with farthest points and
remotal sets. The study of the existence of farthest points in a set of a Banach
space can be traced to the articles of Asplund [11] and Edelstein [20]. This concept
is related to several geometric properties of the space, like the existence of exposed
points and the Mazur intersection property.

Perhaps some definitions are in order. Let J be a subspace of a Banach space X.
Fix x ∈ X, the farthest distance from x to the unit ball of J is given by

ρ(x,BJ) = sup{‖x− y‖ : y ∈ BJ}.

A point x ∈ X has a farthest point in BJ if there exists y ∈ BJ such that
‖x− y‖ = ρ(x,BJ). The set of points in X having farthest points in BJ is denoted
by R(BJ). Then we have:

R(BJ) = {x ∈ X : ∃ y ∈ BJ such that ‖x− y‖ = ρ(x,BJ)} .

It is said that BJ is densely remotal in X if R(BJ) is dense in X and it is almost

remotal in X if R(BJ) contains a dense Gδ set.

In [12], Bandyopadhyay, Lin and Rao studied dense remotality of the ball ofK(E,F )
in the space L(E,F ). Adapting some of their ideas and applying the previous propo-
sition, in Corollary 1.17, we obtain a result about almost remotality of BPw(nE,F ) in
P(nE,F ).

Lemma 1.13. For any P ∈ P(nE,F ) we have that

ρ
(
P,BPw(nE,F )

)
= ‖P‖+ 1.

Proof. It is clear that ρ
(
P,BPw(nE,F )

)
≤ ‖P‖ + 1, for every P ∈ P(nE,F ) and

the equality is obvious for the polynomial P ≡ 0. For the reverse inequality, given
P ∈ P(nE,F ), P 6≡ 0, and ε > 0, fix x ∈ SE and y∗ ∈ SF ∗ such that y∗(P (x)) >
(1− ε)‖P‖. Now, take y ∈ SF and x∗ ∈ SE∗ satisfying y∗(y) > 1− ε and x∗(x) = 1
and consider the polynomial Q = −(x∗)n · y ∈ BPw(nE,F ).

Then, we have

‖P −Q‖ = ‖P + (x∗)n · y‖ ≥ |y∗(P (x)) + x∗(x)ny∗(y)|

= y∗(P (x)) + y∗(y) > (1− ε) (‖P‖+ 1) ,
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for all ε > 0, which proves the lemma.

The relation between norm attaining linear functions and the set of operators which
admit farthest points in the unit ball of the space of compact operators was studied
in [12]. To simplify our statements let us introduce the following notations:

NA (P(nE,F )) = {P ∈ P(nE,F ) : P attains its norm at BE},

AB −NA (P(nE,F )) = {P ∈ P(nE,F ) : P attains its norm at BE∗∗}.

Proposition 1.14. NA (P(nE,F )) ⊂ R
(
BPw(nE,F )

)
.

Proof. By the previous lemma, it is plain that the polynomial P ≡ 0 belongs to
R
(
BPw(nE,F )

)
. Now, if P ∈ NA (P(nE,F )), P 6≡ 0, there exists x ∈ SE such that

‖P (x)‖ = ‖P‖. Let x∗ ∈ SE∗ satisfying x∗(x) = 1.

Consider the polynomial Q = −(x∗)n · P (x)
‖P‖

∈ BPw(nE,F ). So Q is a farthest point
for P because

‖P −Q‖ =

∥∥∥∥P + (x∗)n ·
P (x)

‖P‖

∥∥∥∥ ≥

∥∥∥∥P (x) +
P (x)

‖P‖

∥∥∥∥ = ‖P‖+ 1.

In [15], Choi and Kim proved that if E has the Radon-Nykodým property, then
the set of norm attaining polynomials of P(nE,F ) is dense in P(nE,F ). As a
consequence of this result we obtain:

Corollary 1.15. If E has the Radon-Nykodým property, then BPw(nE,F ) is densely
remotal in P(nE,F ).

When Pw(
nE,F ) is an M -ideal in P(nE,F ), the set R

(
BPw(nE,F )

)
does not only

contain the set of norm attaining polynomials but it is also contained in the set of
all the polynomials whose Aron-Berner extension is norm attaining.

Proposition 1.16. If Pw(
nE,F ) is an M-ideal in P(nE,F ), then R

(
BPw(nE,F )

)
⊂

AB −NA (P(nE,F )).

Proof. Let P ∈ R
(
BPw(nE,F )

)
. So, there exists Q ∈ BPw(nE,F ) such that ‖P−Q‖ =

‖P‖+ 1. Take Φ ∈ ExtBP(nE,F )∗ satisfying

Φ(P −Q) = ‖P −Q‖ = ‖P‖+ 1.

Being Pw(
nE,F ) an M -ideal in P(nE,F ), we should have that

Φ ∈ ExtBPw(nE,F )∗ or Φ ∈ ExtBPw(nE,F )⊥ .

If Φ ∈ ExtBPw(nE,F )⊥ , we obtain that Φ(P − Q) = Φ(P ) and so Φ(P ) = ‖P‖ + 1,
which is not possible. Hence, it should be Φ ∈ ExtBPw(nE,F )∗ and, by Proposition
1.2(b), Φ = ez ⊗ y∗, for certain z ∈ SE∗∗ and y∗ ∈ SF ∗ . Therefore,

‖P‖+ 1 = Φ(P −Q) = y∗(P (z))− y∗(Q(z)) ≤ ‖P‖+ ‖Q‖ = ‖P‖+ 1.

It follows that y∗(P (z)) = ‖P‖ and so ‖P (z)‖ = ‖P‖, meaning that P ∈ AB −
NA (P(nE,F )).
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As a consequence of Propositions 1.12, 1.14 and 1.16, we obtain:

Corollary 1.17. If E is reflexive and Pw(
nE,F ) is an M-ideal in P(nE,F ), then

R
(
BPw(nE,F )

)
= NA (P(nE,F )) ,

and thus, P(nE,F ) \ R
(
BPw(nE,F )

)
is nowhere dense. This implies that BPw(nE,F )

is almost remotal in P(nE,F ).

2. Sufficient conditions

In this section we present several kind of sufficient conditions which enable us to
ensure that Pw(

nE,F ) is an M -ideal in P(nE,F ). All of them involve bounded
nets of compact operators on E. The following lemma and proposition are the
vector-valued versions of [16, Lemma 2.1 and Proposition 2.2], the proofs of which
are analogous to those in [16].

Lemma 2.1. Let E and F be Banach spaces and suppose that there exists a bounded
net {Sα}α of linear operators from E to E satisfying S∗

α(x
∗) → x∗, for all x∗ ∈ E∗.

Then, for all P ∈ Pw(
nE,F ), we have that ‖P − P ◦ Sα‖ → 0.

Proposition 2.2. Let E and F be Banach spaces and let n = cd(E,F ). Suppose
that there exists a bounded net {Kα}α of compact operators from E to E satisfying
the following two conditions:

• K∗
α(x

∗) → x∗, for all x∗ ∈ E∗.

• For all ε > 0 and all α0 there exists α > α0 such that for every x ∈ E,

‖Kα(x)‖
n + ‖x−Kα(x)‖

n ≤ (1 + ε)‖x‖n.

Then, Pw(
nE,F ) is an M-ideal in P(nE,F ).

Remark 2.3. A Banach space E is an (Mp)-space (1 ≤ p ≤ ∞) if K(E ⊕p E) is
an M -ideal in L(E ⊕p E). This concept was introduced by Oja and Werner in [31].
By [24, Theorem VI.5.3], if E is an (Mp)-space with p ≤ n, then there exists a
bounded net {Kα}α of compact operators from E to E satisfying both conditions
of Proposition 2.2.

Recall that a Banach space E has a finite dimensional decomposition {Ej}j if each
Ej is a finite dimensional subspace of E and every x ∈ E has a unique representation
of the form

x =
∞∑

j=1

xj, with xj ∈ Ej, for every j.

Associated to the decomposition there is a bounded sequence of projections {πm}m,
given by πm

(∑∞
j=1 xj

)
=
∑m

j=1 xj. The decomposition is called shrinking if π∗
m(x

∗)→
x∗, for all x∗ ∈ E∗.

It is clear that in this case {πm}m is a bounded sequence of compact operators
that satisfies the first item of the previous proposition. Thus, for spaces with
shrinking finite dimensional decompositions we state the following simpler version
of Proposition 2.2.
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Corollary 2.4. Let E and F be Banach spaces and let n = cd(E,F ). Suppose
that E has a shrinking finite dimensional decomposition with associate projections
{πm}m such that:

• For all ε > 0 and all m0 ∈ N there exists m > m0 such that for every x ∈ E,

‖πm(x)‖
n + ‖x− πm(x)‖

n ≤ (1 + ε)‖x‖n.

Then, Pw(
nE,F ) is an M-ideal in P(nE,F ).

Note that the hypothesis of Corollary 2.4 are fulfilled for the classical spaces E = ℓp
and F = ℓq, 1 < p, q < ∞, in the case of n = cd(E,F ) ≥ p. In this situation
Pw(

nℓp, ℓq) is an M -ideal in P(nℓp, ℓq).

The conditions in the following theorem were inspired by those of [24, Lemma
VI.6.7]. They concern bounded nets of compact operators both in E and in F .

Theorem 2.5. Let E and F be Banach spaces and suppose that there exist bounded
nets of compact operators {Kα}α ⊂ K(E) and {Lβ}β ⊂ K(F ) and numbers 1 <
p, q < ∞ such that:

• K∗
α(x

∗) → x∗, for all x∗ ∈ E∗ and Lβ(y) → y, for all y ∈ F .

• For all ε > 0 and all α0 there exists α > α0 such that for every x ∈ E,

‖Kα(x)‖
p + ‖x−Kα(x)‖

p ≤ (1 + ε)p‖x‖p.

• For all ε > 0 and all β0 there exists β > β0 such that for every y1, y2 ∈ F ,

‖Lβ(y1) + (Id− Lβ)(y2)‖
q ≤ (1 + ε)q (‖y1‖

q + ‖y2‖
q) .

Suppose also that n = cd(E,F ) satisfies that p ≤ nq and n < cd(E). Then,
Pw(

nE,F ) is an M-ideal in P(nE,F ).

Proof. We prove that the 3-ball property holds. Let P1, P2, P3 ∈ BPw(nE,F ), Q ∈
BP(nE,F ) and ε > 0. Define P = Q− (Id− Lβ)Q(Id−Kα). We want to show that
P is weakly continuous on bounded sets and ‖Q+ Pj − P‖ ≤ 1 + ε, for j = 1, 2, 3,
for some convenient choice of α and β.

To see that P is weakly continuous on bounded sets, we write P = Q − Q(Id −
Kα)+LβQ(Id−Kα). The proof of [16, Proposition 2.2] shows that Q−Q(Id−Kα)
is weakly continuous on bounded sets at 0 and since n = cd(E,F ), we have that
Q − Q(Id − Kα) belongs to Pw(

nE,F ). Also, as LβQ(Id − Kα) is a compact
polynomial and n < cd(E), Lemma 1.8(a) says that it is in Pw(

nE,F ).

Now, to show the (1 + ε)-bound, consider the inequality

‖Q+ Pj − P‖ ≤ ‖Q+ LβPjKα − P‖+ ‖Pj − LβPjKα‖.

On the one hand, we have:

‖Pj − LβPjKα‖ ≤ ‖Pj − PjKα‖+ ‖PjKα − LβPjKα‖

≤ ‖Pj − PjKα‖+ ‖Pj − LβPj‖‖Kα‖
n.



698 V. Dimant, S. Lassalle / M-Structures in Vector-Valued Polynomial Spaces

By Lemma 2.1, ‖Pj − PjKα‖ → 0 with α. Also, since Lβ approximates the
identity on compact sets and the Pj’s are compact polynomials, we have that
‖Pj − LβPj‖‖Kα‖

n → 0 with β, for all α.

Furthermore, we can find α and β such that:

‖Q+ LβPjKα − P‖ = sup
x∈BE

‖(Id− Lβ)Q(Id−Kα)(x) + LβPjKα(x)‖

≤ sup
x∈BE

(1 + ε) (‖Q(Id−Kα)(x)‖
q + ‖PjKα(x)‖

q)
1
q

≤ (1 + ε) sup
x∈BE

(‖(Id−Kα)(x)‖
nq + ‖Kα(x)‖

nq)
1
q

≤ (1 + ε) sup
x∈BE

(‖(Id−Kα)(x)‖
p + ‖Kα(x)‖

p)
n
p

≤ (1 + ε)(1 + ε)n = (1 + ε)n+1,

and the result follows.

Remark 2.6. If E is an (Mp)-space and F is an (Mq)-space the conditions about
the nets of compact operators of the previous theorem are fulfilled.

Proposition 2.7. Let E =
⊕

ℓp
Xm and F =

⊕
ℓq
Ym, with Xm and Ym finite

dimensional spaces and 1 < p, q < ∞. Then, for n = cd(E,F ), Pw(
nE,F ) is an

M -ideal in P(nE,F ).

Proof. As we note in Example 1.7, cd(E,F ) is the integer such that p

q
≤ cd(E,F ) <

p

q
+ 1. Also we know that cd(E) is the integer satisfying p ≤ cd(E) < p+ 1. Thus,

the result follows from Corollary 2.4 if cd(E,F ) ≥ p and from Theorem 2.5 in the
case of cd(E,F ) < p.

In all the previous results (Proposition 2.2, Corollary 2.4 and Theorem 2.5) the
M -structure is obtained only in the case n = cd(E,F ). Let us show now some
positive results for values of n greater than cd(E,F ).

Proposition 2.8. Let E be a Banach space and F be an (M∞)-space. If n < cd(E),
then Pw(

nE,F ) is an M-ideal in P(nE,F ).

Proof. Being F an (M∞)-space, by [24, Theorem VI.5.3], there exists a net {Lβ}β
contained in the unit ball of K(F ) satisfying Lβ(y) → y for all y ∈ F such that for
any ε > 0, there exists β0 with

‖Lβ(y1) + (Id− Lβ)(y2)‖ ≤
(
1 +

ε

2

)
max{‖y1‖, ‖y2‖}, (1)

for all β ≥ β0 and for any y1, y2 ∈ F . Let P1, P2, P3 ∈ BPw(nE,F ) and Q ∈ BP(nE,F ),
we show that with P = LβQ, choosing β properly, the 3-ball property is satisfied.

First, note that by Lemma 1.8(a), P is weakly continuous on bounded sets. Also,
‖Q+Pj −P‖ ≤ ‖Q+LβPj −P‖+ ‖Pj −LβPj‖. Reasoning as in Theorem 2.5, we



V. Dimant, S. Lassalle / M-Structures in Vector-Valued Polynomial Spaces 699

have that ‖Pj − LβPj‖ < ε
2
for β large enough. Now, from (1) we obtain

‖Q+ LβPj − P‖ = ‖(Id− Lβ)Q+ LβPj‖ ≤
(
1 +

ε

2

)
max{‖Q‖, ‖Pj‖} =

(
1 +

ε

2

)
,

and the result follows.

Remark 2.9. Let E be a Banach space such that cd(E) > 2 and let F be an
infinite dimensional (M∞)-space. Then, for any degree n, with 1 ≤ n < cd(E),
Pw(

nE,F ) is a nontrivial M -ideal in P(nE,F ). This is a simple consequence of the
above proposition and the fact that cd(E,F ) = 1.

The next proposition somehow complements Proposition 2.8. It states that if F is
an (M∞)-space, with an additional hypothesis on E, then Pw(

nE,F ) is an M -ideal
in P(nE,F ) also in the case n = cd(E).

Proposition 2.10. Let F be an (M∞)-space and let E be a Banach space. If
n = cd(E) and there exists a bounded net of compact operators {Kα}α ⊂ K(E)
satisfying both conditions:

• K∗
α(x

∗) → x∗, for all x∗ ∈ E∗.

• For all ε > 0 and all α0 there exists α > α0 such that for every x ∈ E,

‖Kα(x)‖
n + ‖x−Kα(x)‖

n ≤ (1 + ε)‖x‖n,

then Pw(
nE,F ) is an M-ideal in P(nE,F ).

Proof. Let P1, P2, P3 ∈ BPw(nE,F ), Q ∈ BP(nE,F ) and ε > 0. We will find P ∈
Pw(

nE,F ) such that the 3-ball property is satisfied. Reasoning as in Theorem 2.5,
we find α and β so that ‖Pj−LβPjKα‖ < ε

2
, where {Lβ}β is a net inK(F ), associated

to the (M∞)-space F . Moreover, α and β may be chosen to satisfy at the same
time ‖Kα(x)‖

n + ‖x − Kα(x)‖
n ≤ (1 + ε̃)‖x‖n and ‖Lβ(y1) + (Id − Lβ)(y2)‖ ≤

(1 + ε̃)max{‖y1‖, ‖y2‖} for all y1, y2 ∈ F , where ε̃ is such that (1 + ε̃)2 ≤ 1 + ε
2
.

Let P be the polynomial P = Lβ(Q−Q(Id−Kα)). As in the proof of [16, Propo-
sition 2.2], we can see that P is weakly continuous on bounded sets at 0. Since
n = cd(E) and P is compact, we may appeal to Proposition 1.9 to derive that P is
weakly continuous on bounded sets.

Also we have,

‖Q+ Pj − P‖ ≤ ‖Q+ LβPjKα − P‖+ ‖Pj − LβPjKα‖

≤ ‖(Id− Lβ)Q+ Lβ(PjKα +Q(Id−Kα))‖+
ε

2

≤ (1 + ε̃) sup
x∈BE

max{‖Q(x)‖, ‖PjKα(x) +Q(x−Kα(x))‖}+
ε

2
.

Now, the hypothesis on E gives us

‖PjKα(x) +Q(x−Kα(x))‖ ≤ ‖Kα(x)‖
n + ‖x−Kα(x)‖

n ≤ (1 + ε̃),

for all x ∈ BE, and the result follows.
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Example 2.11. Let E = ℓp, with 1 < p < ∞, and let F be an (M∞)-space. As a
consequence of the previous propositions, since p ≤ cd(ℓp), Pw(

nℓp, F ) is an M -ideal
in P(nℓp, F ) for all 1 ≤ n ≤ cd(ℓp).

3. Polynomials between classical sequence spaces

This section is devoted to study whether Pw(
nE,F ) is an M -ideal in P(nE,F ), for

all the values of n between cd(E,F ) and cd(E), in the cases E = ℓp and F = ℓq or
F the Lorentz sequence space F = d(w, q), 1 < p, q < ∞. Recall that given a non
increasing sequence w = (wj)j of positive real numbers satisfying w ∈ c0 \ ℓ1, the
Lorentz sequence space d(w, q) is the space of all sequences x = (xj)j ⊂ K, such
that

sup
σ

∞∑

j=1

wj|xσ(j)|
q < ∞,

(where σ varies on the set of permutations of N) endowed with the norm ‖x‖d(w,q) =

supσ

(∑∞
j=1 wj|xσ(j)|

q
) 1

q . We will consider weights w = (wj)j so that w1 = 1, which
implies that the canonical vectors of d(w, q) form a basis of norm 1 elements.

We begin our study with a result about polynomials from a general Banach space E
to a Banach space F having a finite dimensional decomposition (FDD) {Fn}n. As
usual, {πm}m denotes the sequence of projections associated to the decomposition;
that is πm(y) =

∑m

j=1 yj for all y =
∑∞

j=1 yj, with yj ∈ Fj. Also, we denote by
πm = Id− πm. When the FDD is unconditional with unconditional constant 1, we
have that ‖πm‖ ≤ 1 and ‖πm + πk‖ ≤ 1, for all k ≥ m. In the sequel, we will use,
without further mentioning, that for any Banach space E and any Q ∈ Pw(

nE,F ),
‖πmQ−Q‖ → 0, or equivalently, ‖πmQ‖ → 0, both claims can be derived from the
fact that Q is compact.

The following proposition gives conditions under which, if F is a Banach space
with 1-unconditional FDD, Pw(

nE,F ) is not a semi M -ideal in P(nE,F ). This is
a polynomial generalization of [30, Proposition 2] and our proof is modeled on the
proof given in that article. From this, it is obviously inferred that Pw(

nE,F ) is not
an M -ideal in P(nE,F ).

Proposition 3.1. Let E and F be Banach spaces such that F has an unconditional
FDD with unconditional constant equal to 1 and associated projections {πm}m. Sup-
pose that there exist polynomials P ∈ P(nE,F ) and Q ∈ Pw(

nE,F ) and numbers
δ > 0 and m0 ∈ N such that:

• 0 < ‖Q‖ ≤ ‖P‖ < δ,

• ‖πmP +Q‖ ≥ δ, for all m ≥ m0.

Then, Pw(
nE,F ) is not a semi M-ideal in P(nE,F ).

Proof. Fix ε > 0 so that ε < δ−‖P‖
2

. Since ‖πmQ‖ → 0, we may assume that
‖πmQ‖ < ε

3
, for all m ≥ m0. Now, fix m ≥ m0 and consider the following two

closed balls of radius ‖P‖: B1 = B(πmP + Q, ‖P‖) and B2 = B(πmP − Q, ‖P‖).
Note that πmP ∈ B1 ∩B2, Q ∈ B1 ∩ Pw(

nE,F ) and −Q ∈ B2 ∩ Pw(
nE,F ).
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If Pw(
nE,F ) is a semi M -ideal in P(nE,F ), then for any r > ‖P‖, the intersection

B(πmP +Q, r) ∩B(πmP −Q, r) ∩ Pw(
nE,F ) is non void. Take r = ‖P‖+δ

2
− ε and

suppose that there exists R ∈ B(πmP +Q, r)∩B(πmP −Q, r)∩Pw(
nE,F ). Since

‖πkR‖ → 0, we may choose k ≥ m such that ‖πkR‖ < ε
3
. To get a contradiction

we estimate ‖πkP +Q‖. Note that

2‖πkP +Q‖ ≤ ‖πkP + πmQ− πmR‖+ ‖πkP + πmQ+ πmR‖+ 2‖πmQ‖. (2)

From the equality (πm + πk)(πmP +Q−R) = πkP + πmQ− πmR+ πkQ− πkR, we
obtain:

‖πkP + πmQ− πmR‖ ≤ ‖πm + πk‖‖πmP +Q−R‖+ ‖πkQ‖+ ‖πkR‖ < r +
2ε

3
.

Also, we have that ‖πkP + πmQ + πmR‖ = ‖πkP − πmQ − πmR‖, since F has
1-unconditional finite dimensional decomposition. Proceeding as before, we obtain:

‖πkP − πmQ− πmR‖ ≤ ‖πm + πk‖‖πmP −Q−R‖+
2ε

3
< r +

2ε

3
.

Finally, using (2), we have that

2δ ≤ 2‖πkP +Q‖ < 2r + 2ε = ‖P‖+ δ < 2δ.

Thus, we conclude that Pw(
nE,F ) is not a semi M -ideal in P(nE,F ).

Now we can complete the case E = ℓp and F = ℓq.

Theorem 3.2. Let n = cd(ℓp, ℓq).

(a) Pw(
nℓp, ℓq) is an M-ideal in P(nℓp, ℓq).

(b) Pw(
kℓp, ℓq) is not a semi M-ideal in P(kℓp, ℓq), for all k > n.

Proof. Statement (a) follows from Proposition 2.7. To prove statement (b) take
k > n. We will construct polynomials P ∈ P(kℓp, ℓq) and Q ∈ Pw(

kℓp, ℓq) satisfying:
‖P‖ = ‖Q‖ and ‖πmP + Q‖ ≥ δ > ‖P‖, for some δ > 0, where {πm}m is the
sequence of projections associated to the canonical basis of ℓq and πm = Id − πm,
for all m ∈ N.

We have that k − 1 ≥ cd(ℓp, ℓq) ≥
p

q
, as shown in Example 1.7, so we may define

the continuous k-homogeneous polynomial P (x) = e∗1(x)(x
k−1
j )j≥2. To compute the

norm of P , we look, for each x ∈ ℓp, at the inequality

‖P (x)‖ℓq = |x1|

(
∞∑

j=2

|xj|
(k−1)q

) 1
q

≤ |x1|

(
∞∑

j=2

|xj|
p

) k−1
p

.

Then, ‖P‖ ≤ max{abk−1 : ap+bp = 1, a, b ≥ 0} =
[
1
k
(1− 1

k
)k−1

] 1
p . Now, considering

x̃ =
(
1
k

) 1
p e1 +

(
1− 1

k

) 1
p e2,
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we obtain a norm one element where P attains the bound
[
1
k
(1− 1

k
)k−1

] 1
p .

Let Q ∈ Pw(
kℓp, ℓq) be the polynomial Q(x) = ‖P‖e∗1(x)

ke1. It is clear that ‖P‖ =

‖Q‖. Take m ≥ 1, and x̃ = ( 1
k
)
1
p e1 + (1− 1

k
)
1
p em+2, then ‖x̃‖ℓp = 1 and

‖πmP +Q‖ ≥ ‖(πmP +Q)(x̃)‖ℓq

=
∥∥∥( 1k )

1
p (1− 1

k
)
k−1
p em+1 + ‖P‖( 1

k
)
k
p e1

∥∥∥
ℓq

= ‖P‖
(
1 + ( 1

k
)
kq

p

) 1
q

.

Then, with δ = ‖P‖
(
1+ ( 1

k
)
kq

p

) 1
q

> ‖P‖, which is independent of m, we obtain the

inequality we were looking for. And the theorem is proved.

Now we focus our attention on spaces of polynomials from ℓp to d(w, q), 1 < p, q <
∞. We study whether Pw(

kℓp, d(w, q)) is an M -ideal in P(kℓp, d(w, q)) for k ≥
cd(ℓp, d(w, q)). To this end we extend to the vector-valued case a couple of results
of [17] about polynomials from spaces with finite dimensional decompositions.

Lemma 3.3. Let E be a Banach space which has an unconditional FDD with
associated projections {πm}m. For any fixed subsequence {mj}j of N, let σj =
πmj

− πmj−1
, for all j. Given P ∈ P(nE,F ), the application

P̃ (x) =
∞∑

j=1

P (σj(x)), for all x ∈ E,

defines a continuous n-homogeneous polynomial from E to F .

Proof. We first show that the series
∑∞

j=1 P (σj(x)) is convergent for every x ∈ E.
Indeed, by [17, Proposition 1.3], there exists C > 0 such that

∥∥∥∥∥

M∑

j=N

P (σj(x))

∥∥∥∥∥ ≤ sup
y∗∈BF∗

M∑

j=N

|y∗ ◦ P (σj(x))|

= sup
y∗∈BF∗

M∑

j=N

|y∗ ◦ P (σj(πmM
(x)− πmN−1

(x)))|

≤ C‖P‖‖πmM
(x)− πmN−1

(x)‖n,

which converges to 0 with M and N . Then, P̃ (x) is well defined and ‖P̃‖ ≤
C‖P‖.

Recall that whenever a Banach space E has a shrinking FDD, by [8], Pw(
nE,F ) =

Pwsc(
nE,F ). This allows us to work with sequences instead of nets.

Proposition 3.4. Let E be a Banach space with an unconditional FDD and let F
be a Banach space. For any n ∈ N, the following are equivalent:

(i) P(nE,F ) = Pwsc(
nE,F ).
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(ii) P(nE,F ) = Pwsc0(
nE,F ).

Proof. By means of the previous lemma, the scalar valued result given in [17,
Corollary 1.7] (see also [13]) can be easily modified to obtain this vector valued
version.

In [30], Eve Oja studies when K(ℓp, d(w, q)) is an M -ideal in L(ℓp, d(w, q)). In
Proposition 1 of that article, she establishes a criterium to ensure that every con-
tinuous linear operator is compact. A polynomial version of this result can be stated
as follows.

Proposition 3.5. Let {ej}j and {fj}j be sequences in Banach spaces E and F ,
respectively, satisfying:

• For any semi-normalized weakly null sequence {xm}m ⊂ E, there exists a
subsequence {xmj

}j and an operator T ∈ L(E) such that T (ej) = xmj
, for all

j.

• For any semi-normalized weakly null sequence {ym}m ⊂ F , there exists a
subsequence {ymj

}j and an operator S ∈ L(F ) such that S(ymj
) = fj, for all

j.

• For any subsequence {ejl}l of {ej}j, there exists an operator R ∈ L(E) such
that R(el) = ejl, for all l.

Take n < cd(E) and suppose that it does not exist a polynomial P ∈ P(nE,F ) such
that P (ej) = fj, for every j. Then, P(nE,F ) = Pwsc0(

nE,F ).

Proof. Suppose there exists P ∈ P(nE,F ) which is not in Pwsc0(
nE,F ). Then,

there exists a weakly null sequence (xm)m such that ‖P (xm)‖ > ε, for some ε > 0
and allm. As n < cd(E), (P (xm))m is weakly null. Now, we may find a subsequence
(xmj

)j and operators R, T ∈ L(E) and S ∈ L(F ) satisfying:

ej
T◦R
−→ xmj

P
−→ P (xmj

)
S

−→ fj,

which is a contradiction since S ◦ P ◦ T ◦R belongs to P(nE,F ).

Remark 3.6. If the Banach space E has an unconditional basis {ej}j with coordi-
nate functionals {e∗j}j and {fj}j is a sequence in the Banach space F, we derive from
Lemma 3.3 that the existence of a polynomial P ∈ P(nE,F ) such that P (ej) = fj,

for all j, is equivalent to the existence of the polynomial P̃ ∈ P(nE,F ) given by

P̃ (x) =
∞∑

j=1

(
e∗j(x)

)n
fj, for all x ∈ E.

When E and F are Banach sequence spaces with canonical bases {ej}j and {fj}j

respectively, we write the polynomial above as P̃ (x) = (xn
j )j.

Let 1 < p, q < ∞. To study whether Pw(
nℓp, d(w, q)) is anM -ideal in P(nℓp, d(w, q))

for n ≥ cd(ℓp, d(w, q)), we need first to establish the value of the critical degree,
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cd(ℓp, d(w, q)). To this end and in view of the previous remark and proposition, the
point is to determine the values of n, p and q such that the polynomial x 7→ (xn

j )j,
from ℓp to d(w, q), is well defined. For 1 < r < ∞ we use the standard notation
s = r∗ to denote de conjugate number of r: 1

r
+ 1

s
= 1.

Proposition 3.7. The polynomial P (x) = (xn
j )j belongs to P(nℓp, d(w, q)) if and

only if one of the following two conditions holds:

(a) n ≥ p

q
. In this case, ‖P‖ = 1.

(b) n < p

q
and w ∈ ℓs, for s = ( p

nq
)∗. In this case, ‖P‖ = ‖w‖

1
q

ℓs
.

Proof. Let (ej)j and (fj)j be the canonical bases of ℓp and d(w, q), respectively.
Suppose that n ≥ p

q
, as ‖w‖∞ = 1, we have

‖P (x)‖d(w,q) = sup
σ

(
∞∑

j=1

wj|xσ(j)|
nq

) 1
q

≤ ‖x‖nℓp .

Then, P is a well defined polynomial with norm less than or equal to 1. Also,
P (ej) = fj implies ‖P‖ = 1.

Now, suppose that n < p

q
and w ∈ ℓs, with s = ( p

nq
)∗. Put W = ‖w‖ℓs , by Hölder

inequality, we have

‖P (x)‖d(w,q) = sup
σ

(
∞∑

j=1

wj|xσ(j)|
nq

) 1
q

≤ W
1
q ‖x‖nℓp .

Thus, ‖P‖ ≤ W
1
q and considering x̃ = W− s

p (w
s
p

j )j ∈ Sℓp , we obtain that ‖P‖ =

W
1
q = ‖w‖

1
q

ℓs
.

Finally, suppose that n < p

q
and w 6∈ ℓs. Then, there exists (bj)j ∈ ℓ p

nq
with

b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0 such that the series
∑∞

j=1 wjbj does not converge. Taking

x̃ ∈ ℓp, x̃ = (b
1
nq

j )j we have that P (x̃) = (b
1
q

j )j 6∈ d(w, q). Now, the proof is
complete.

Proposition 3.8. Pw(
nℓp, d(w, q)) = P(nℓp, d(w, q)) if and only if n < p

q
and w 6∈

ℓs, with s = ( p

nq
)∗.

Proof. By the previous proposition, whenever n ≥ p

q
or n < p

q
and w ∈ ℓs, s =

( p

nq
)∗, the polynomial P (x) = (xn

j )j belongs to P(nℓp, d(w, q)) and fails to be weakly
continuous on bounded sets.

For the converse, by Remark 3.6 and Proposition 3.7, we have that it does not
exist P ∈ P(nℓp, d(w, q)) such that P (ej) = fj, for every j. Finally, as n <
p

q
≤ p ≤ cd(ℓp), all the hypothesis of Proposition 3.5 are fulfilled. Therefore,

P(nℓp, d(w, q)) = Pwsc0(
nℓp, d(w, q)). Now, by Proposition 3.4, P(nℓp, d(w, q)) =
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Pwsc(
nℓp, d(w, q)) and the result follows from [8], since weakly sequentially contin-

uous polynomials and weakly continuous polynomials on bounded sets coincide on
ℓp.

Let n = cd(ℓp, d(w, q)). Taking into account that for every k < n, any polynomial
in P(kℓp, d(w, q)) is weakly continuous on bounded sets, from the last proposition
we derive that there are two possible values for n:

(I) p

q
≤ n < p

q
+ 1 and w 6∈ ℓ( p

(n−1)q )
∗ , or

(II) n < p

q
and w ∈ ℓ( p

nq )
∗ \ ℓ( p

(n−1)q )
∗ .

Theorem 3.9. Let n = cd(ℓp, d(w, q)).

(a) If n and w satisfy condition (I) above, then
• Pw(

nℓp, d(w, q)) is an M-ideal in P(nℓp, d(w, q)), and
• Pw(

kℓp, d(w, q)) is not a semi M-ideal in P(kℓp, d(w, q)), for all k > n.

(b) If n and w satisfy condition (II) above, then Pw(
kℓp, d(w, q)) is not a semi

M-ideal in P(kℓp, d(w, q)), for all k ≥ n.

Proof. Suppose n and w satisfy condition (I) above. Then, n = cd(ℓp, d(w, q)) ≥
p

q

and cd(ℓp) is the integer number satisfying p ≤ cd(ℓp) < p + 1. If n < cd(ℓp), the
hypothesis of Theorem 2.5 are fulfilled. If n = cd(ℓp) we may apply Proposition 2.2.
In both cases the conclusion follows.

Now, take k > cd(ℓp, d(w, q)). According to Proposition 3.1, the result is proven if
we find polynomials P ∈ P(kℓp, d(w, q)) and Q ∈ Pw(

kℓp, d(w, q)) such that there
exists δ > 0 with ‖P‖ = ‖Q‖ and ‖πmP +Q‖ ≥ δ > ‖P‖, for all m.

By Proposition 3.7, as k − 1 ≥ p

q
, the mapping R(x) = (xk−1

j )j≥2 is a well defined

norm one polynomial from ℓp to d(w, q). Then, P (x) = e∗1(x)R(x) belongs to
P(kℓp, d(w, q)). In order to compute its norm, take x so that ‖x‖ℓp = 1,

‖P (x)‖d(w,q) = |x1|‖R(x)‖d(w,q) ≤ |x1|‖(xj)j≥2‖
k−1
ℓp

≤
(

1
k

) 1
p
(
1− 1

k

) k−1
p

,

where the last inequality was shown in the proof of Theorem 3.2. Now, with x̃ =

( 1
k
)
1
p e1 + (1 − 1

k
)
1
p e2 ∈ Sℓp we have that P (x̃) = ( 1

k
)
1
p (1 − 1

k
)
k−1
p e1, whence ‖P‖ =

( 1
k
)
1
p (1− 1

k
)
k−1
p .

LetQ be the weakly continuous on bounded sets polynomial given byQ=‖P‖(e∗1)
k·e1.

Then, ‖Q‖ = ‖P‖ and x̃ = ( 1
k
)
1
p e1 + (1− 1

k
)
1
p em+2, for m ≥ 1, is a norm one vector

so that

‖(πmP +Q)(x̃)‖d(w,q) = ‖P‖
∥∥∥em+1 + ( 1

k
)
k
p e1

∥∥∥
d(w,q)

= ‖P‖
(
1 + w2(

1
k
)
kq

p

) 1
q

> ‖P‖,

which completes the proof of (a).

To prove (b), take n and w satisfying condition (II) and take k ≥ n. Let us denote
s = ( p

nq
)∗ = p

p−nq
and W = ‖w‖ℓs . By Proposition 3.7(b), the n-homogeneous
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polynomial R(x) = (xn
j )j satisfies

‖R(x̃)‖d(w,q) = ‖R‖ = W
1
q , where x̃ = W− s

p (w
s
p

j )j.

Observe that x∗ = (w
s
p∗

j )j belongs to ℓp∗ and, as a continuous functional, it also
attains its norm at x̃:

x∗(x̃) = ‖x∗‖ = W
s
p∗ .

Now we are ready to construct two polynomials P and Q fulfilling the statement of
Proposition 3.1. Let P ∈ P(kℓp, d(w, q)) and Q ∈ Pw(

kℓp, d(w, q)) be given by

P (x) = x∗(x)k−nR(x) and Q(x) = W
1
q
− sn

p∗ x∗(x)ke1.

It is easy to see that

‖P (x̃)‖d(w,q) = ‖P‖ = W r = ‖Q(x̃)‖d(w,q) = ‖Q‖, where r =
s(k − n)

p∗
+

1

q
.

Finally,

‖πmP +Q‖ ≥ ‖(πmP +Q)(x̃)‖d(w,q) =

∥∥∥∥∥W
re1 +W

s(k−n)
p∗

∞∑

j=m+1

x̃n
j ej

∥∥∥∥∥
d(w,q)

= W r

[
1 +W−1

∞∑

j=2

wj|x̃m−1+j|
nq

] 1
q

> W r = ‖P‖.

This completes the proof of the theorem.

4. Polynomial property (M)

Property (M) was introduced by Kalton in [26]. It is a geometric property relating
the norm of the traslation by a weakly null net of any two elements of the space.
Namely, a Banach space X has property (M) if for any x, x̃ ∈ X such that ‖x‖ ≤
‖x̃‖, and any bounded weakly null net (xα)α in X, it holds that lim sup ‖x+ xα‖ ≤
lim sup ‖x̃ + xα‖. An operator version of this property was given in [27]. Later
on, in [16], it is extended to the scalar-valued polynomial context. In all these
cases, these properties have incidence in the correspondent M -ideal problems. To
study M -structures in spaces of vector-valued polynomials, we consider a suitable
property (M), which is the result of a natural combination of the definitions given
for operators and scalar-valued polynomials. Before going on, let us state the vector-
valued versions of [16, Lemma 3.1 and Theorem 3.2].

Lemma 4.1. If Pw(
nE,F ) is an M-ideal in P(nE,F ) then, for each P ∈ P(nE,F )

there exists a bounded net {Pα}α ⊂ Pw(
nE,F ) such that Pα(x) → P (x), for all

x ∈ E.
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Proof. Fix P ∈ P(nE,F ). By [24, Remark I.1.13], we may consider {Qα}α
a bounded net in Pw(

nE,F ) such that Qα → P in the topology σ(P(nE,F ),
Pw(

nE,F )∗).

Since ex ⊗ y∗ belongs to Pw(
nE,F )∗, y∗(Qα(x)) = 〈ex ⊗ y∗, Qα〉 → 〈ex ⊗ y∗, P 〉 =

y∗(P (x)), for all x ∈ E and all y∗ ∈ F ∗. This says that Qα(x)
w
→ P (x), for all

x ∈ E, which can be described, in analogy to the operator setting, as Qα → P in
the WPT, the “weak polynomial topology�.

We can also consider on P(nE,F ) the “strong polynomial topology�, SPT, naturally
meaning pointwise convergence of nets. Both topologies, theWPT and the SPT, are
locally convex and have the same continuous functionals (the proof of [19, Theorem
VI.1.4] works also for polynomials). Thus, as in the linear case, we derive that
the closure of any convex set in the strong polynomial topology coincides with its
closure in the weak polynomial topology.

Then, we may find Pα, a convex combination of Qα, converging pointwise to P .

As a consequence of [32, Proposition 2.3] and the previous lemma, we have the
following result which can be proved analogously to [32, Theorem 3.1]:

Theorem 4.2. Let E and F be Banach spaces. The following are equivalent:

(i) Pw(
nE,F ) is an M-ideal in P(nE,F ).

(ii) For all P ∈ P(nE,F ) there exists a net {Pα}α ⊂ Pw(
nE,F ) such that

Pα(x) → P (x), for all x ∈ E and

lim sup ‖Q+ P − Pα‖ ≤ max{‖Q‖, ‖Q‖es + ‖P‖}, for all Q ∈ P(nE,F ).

(iii) For all P ∈ P(nE,F ) there exists a net {Pα}α ⊂ Pw(
nE,F ) such that

Pα(x) → P (x), for all x ∈ E and

lim sup ‖Q+ P − Pα‖ ≤ max{‖Q‖, ‖P‖}, for all Q ∈ Pw(
nE,F ).

Now we state the property (M) for a vector-valued polynomial.

Definition 4.3. Let P ∈ P(nE,F ) with ‖P‖ ≤ 1. We say that P has property
(M) if for all u ∈ E, v ∈ F with ‖v‖ ≤ ‖u‖n and for every bounded weakly null net
{xα}α ⊂ E, it holds that

lim sup
α

‖v + P (xα)‖ ≤ lim sup
α

‖u+ xα‖
n.

Note that every P ∈ Pw(
nE,F ) with ‖P‖ ≤ 1 has property (M). Analogously to

[27, Lemma 6.2], we can prove:

Lemma 4.4. Let P ∈ P(nE,F ) with ‖P‖ ≤ 1. If P has property (M) then for
all nets {uα}α and {vα}α contained in compact sets of E and F respectively, with
‖vα‖ ≤ ‖uα‖

n and for every bounded weakly null net {xα}α ⊂ E, it holds that

lim sup
α

‖vα + P (xα)‖ ≤ lim sup
α

‖uα + xα‖
n.
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Definition 4.5. We say that a pair of Banach spaces (E,F ) has the n-polynomial

property (M) if every P ∈ P(nE,F ) with ‖P‖ ≤ 1 has property (M).

The next two results can be proved mimicking the proofs of Proposition 3.7 and
Theorem 3.9 of [16].

Proposition 4.6. If Pw(
nE,F ) is an M-ideal in P(nE,F ) and n = cd(E,F ) then

(E,F ) has the n-polynomial property (M).

Theorem 4.7. Let E and F be Banach spaces and suppose that there exists a net
of compact operators {Kα}α ∈ K(E) satisfying the following two conditions:

• Kα(x) → x, for all x ∈ E and K∗
α(x

∗) → x∗, for all x∗ ∈ E∗.

• ‖Id− 2Kα‖ −→
α

1.

Suppose also that n = cd(E,F ). Then, Pw(
nE,F ) is an M-ideal in P(nE,F ) if

and only if (E,F ) has the n-polynomial property (M).

Sometimes it is possible to infer M -structures in the space of linear continuous
operators from the existence of geometric structures on the underlying space. For
instance, it is proved in [24, Theorem VI.4.17] that K(E) is an M -ideal in L(E) if
and only if E has property (M) and satisfies both conditions of the theorem above.
A similar result [16, Theorem 3.9] is obtained in the scalar-valued polynomial setting
for n = cd(E) using the polynomial property (M). The following proposition (which
is the vector-valued polynomial version of [24, Lemma VI.4.14] and [16, Proposition
3.10]) paves the way to connect the linear M -structure with M -ideals in vector
valued polynomial spaces.

Proposition 4.8. Let E and F be Banach spaces and n = cd(E,F ) < cd(E). If
E and F have the property (M), then (E,F ) has the n-polynomial property (M).

Proof. Let P ∈ P(nE,F ) with ‖P‖ = 1. Fix u ∈ E, v ∈ F with ‖v‖ ≤ ‖u‖n and
a bounded weakly null net {xα}α ⊂ E. We want to prove that

lim sup
α

‖v + P (xα)‖ ≤ lim sup
α

‖u+ xα‖
n.

Given ε > 0, take x ∈ SE such that ‖P (x)‖ > 1 − ε and x̃ = ‖v‖
1
nx. Then,

(1−ε)‖v‖ < ‖P (x̃)‖ ≤ ‖x̃‖ ≤ ‖u‖. As n < cd(E), every scalar valued polynomial in
P(nE) is weakly continuous on bounded sets. Then, P is weak-to-weak continuous
and P (xα)

w
→ 0. Therefore, since F has property (M),

lim sup
α

‖(1− ε)v + P (xα)‖ ≤ lim sup
α

‖P (x̃) + P (xα)‖

= lim sup
α

‖P (x̃+ xα)‖

≤ lim sup
α

‖x̃+ xα‖
n

≤ lim sup
α

‖u+ xα‖
n,
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where the last inequality holds since E has property (M). Now, letting ε → 0 we
obtain the desired inequality.

If ‖P‖ < 1, the result follows from the previous case through the following convex
combination

v + P (xα) =
1 + ‖P‖

2

(
v +

P

‖P‖
(xα)

)
+

1− ‖P‖

2

(
v −

P

‖P‖
(xα)

)
.

Now we can lift M -structures from the linear to the vector-valued polynomial con-
text. This is done for the particular case of n-homogeneous polynomials when n is
the critical degree of the pair (E,F ) and it is strictly less than the critical degree
of the domain space E. We do not know if the result remains true even for the case
n = cd(E,F ) = cd(E).

Corollary 4.9. Let E and F be Banach spaces and n = cd(E,F ) < cd(E). If
K(E) is an M-ideal in L(E) and F has property (M), then Pw(

nE,F ) is an M-
ideal in P(nE,F ).

Proof. If K(E) is an M -ideal in L(E), appealing to [24, Theorem VI.4.17], E has
property (M) and we may find {Kα}α ⊂ K(E) a net of compact operators satisfying
both conditions of Theorem 4.7. By Proposition 4.8, (E,F ) has the n-polynomial
property (M). Now, we may apply Theorem 4.7 to derive the result.

We finish this section applying the previous result to give some examples ofM -ideals
of polynomials between Bergman and ℓp spaces.

Example 4.10. The Bergman space Bp is the space of all holomorphic functions
in Lp(D, dxdy), where D is the complex disc. If 1 < p < ∞, Bp is isomorphic to ℓp
[33, Theorem III.A.11] and so, for 1 < p, q < ∞,

cd(ℓp, ℓq) = cd(ℓp, Bq) = cd(Bp, ℓq) = cd(Bp, Bq).

Since, by [27, Corollary 4.8], K(Bp) is anM -ideal in L(Bp), we obtain from Corollary
4.9, that, if n = cd(ℓp, ℓq) < cd(ℓp), then:

• Pw(
nℓp, Bq) is an M -ideal in P(nℓp, Bq).

• Pw(
nBp, ℓq) is an M -ideal in P(nBp, ℓq).

• Pw(
nBp, Bq) is an M -ideal in P(nBp, Bq).
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