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Let a : Rn → R
n be monotonic, but unnecessarily strictly monotonic. We study the existence of

Lipschitz or locally Lipschitz solutions to the equation div a(∇u) = 0 when the Lipschitz boundary
datum fulfills some recent unilateral Bounded Slope Conditions.
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1. Introduction

The aim of this paper is to establish two existence results concerning the solutions
to div a(∇u) = 0, where a : Rn → R

n is a monotonic and continuous vector field,
i.e.

∀p, q ∈ R
n (a(q)− a(p)) · (q − p) ≥ 0. (1)

By a solution to div a(∇u) = 0 we mean a function u in a suitable Sobolev space
satisfying

∀η ∈ C∞
c (Ω)

∫

Ω

a(∇u(x)) · ∇η(x) dx = 0, (2)

where Ω is a prescribed open and bounded subset of Rn. The interest in looking
for (possibly) degenerate equations is motivated by the Euler equation for function-
als that arise from non convex problems of the calculus of variations: indeed the
convexified problem in this case has typically a non strictly convex lagrangean.

The reference model here and main source of inspiration is a result of Hartman and
Stampacchia [7] stating that if the boundary datum φ satisfies the Bounded Slope

Condition (BSC) then (2) has a solution u that is Lipschitz and equal to φ on ∂Ω.
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We recall that φ is said to satisfy the (BSC) if, at every point of the graph of φ
there are two hyperplanes containing the point and that bound the graph of φ from
below and from above; it is required moreover that the slopes of these hyperplanes
are uniformly bounded. The (BSC) is a quite restrictive condition that forces for
instance the boundary datum to be affine on the flat parts of ∂Ω. This existence
result is obtained even for a more general class of non homogeneous nonlinear elliptic
equations of the form

− div a(∇u) = F [u] (3)

by assuming, instead of (1) and among other requirements on F , a uniform ellipticity
condition on the field a like

∀p, q ∈ R
n (a(q)− a(p)) · (q − p) ≥ ν|q − p|2 (4)

for some ν > 0. It must be said that, in the homogeneous case, the result is obtained
by a perturbation of the field a so it becomes uniformly elliptic, and the conclusion
is achieved by a limiting process. Under some similar assumptions, Bousquet proved
in [1] that the equation (3) has a solution in φ +W 1,2

0 (Ω) that is locally Lipschitz

whenever φ satisfies just the Lower (BSC), a unilateral version of the original (BSC)
introduced in [4] by Clarke, see Definition 6.1. This new condition is less restrictive
than the (BSC); it is worth mentioning that φ satisfies the Lower (BSC) if and only
if it is the restriction of a convex function. The Lipschitz constant of the solution
on any compact subset of the domain and many intermediate estimates in the proof
of [1, Theorem 2.1] depend strongly on the constant ν that appears in (4), giving
a priori little chance to raise a conclusion when the field a is not uniformly elliptic
by means of a limiting process.

We encompass the difficulty of the lack of strict monotonicity by means of the notion
of quasi–solutions to div a(∇u) = 0; we refer to [7] for the main results on the
subject. Of course the comparison principle among quasi–solutions, a main tool in
the existence theory of [7], fails in general without assuming the strict monotonicity
of the operator a. However, similarly to what has been recently established in
[8] for minimizers of integrals functions that are not strictly convex, we establish
a comparison principle among some particular quasi–solutions, together with the
proof of their existence. Under just (1), Theorem 6.3 shows that if φ satisfies the
Lower or Upper (BSC) then there is a function u that is locally Lipschitz and solves
(2); moreover u is locally a uniform limit of quasi–solutions uK to div a(∇u) = 0
among Lipschitz functions of constant less than K and that are equal to φ on
∂Ω; the notion of quasi–solution recalled in Definition 3.1 is classical in the field
of the variational inequalities, we refer to [7] for the main results on the subject.
This solution turns out to belong to W 1,p(Ω) as soon as the field a satisfies growth
assumptions from below and from above. The same conclusion is obtained by
weakening the unilateral (BSC) with a unilateral Generalized (BSC) obtained by
replacing the affine functions in the (BSC) with a new class of functions introduced
by Cellina in [3]: in the case of a non strictly monotonic operator this Generalized
unilateral (BSC) is satisfied by a wider class of boundary data than the unilateral
(BSC): for instance if the level set {q : a(q) = a(0)} of a is not reduced to 0 then
every Lipschitz function of rank suitably small satisfies both the Generalized Lower
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and Upper (BSC). Of course anything comes free of charge: as a counterpart we
require here a further mild ellipticity assumption, namely that

∀p, q ∈ R
n (a(q)− a(p)) · (q − p) = 0 ⇐⇒ a(q) = a(p) : (5)

This assumption is fulfilled for instance in the case the equation div a(∇u) = 0
is variational, i.e. when a is strictly monotonic or if a is the gradient of a convex
and smooth function; more details are presented in [10] where condition (5) was
introduced. The proof of Theorem 6.3 follows narrowly that of [1], by trying to
encompass the difficulty that the field a is not uniformly elliptic: this is realized in
two different ways depending whether the boundary datum satisfies either Clarke’s
Lower (BSC) or the Generalized Lower (BSC). In the first version of this paper
condition (5) appeared among the assumptions of Theorem 6.3 even in the case of a
boundary datum satisfying the Lower (BSC): I thank Pierre Bousquet for suggesting
me that in this case condition (5) could be thrown away.

As a byproduct of our methods we prove, again under (5), the existence of a Lip-
schitz solution to div a(∇u) = 0 if the boundary datum φ satisfies the Generalized
(BSC), thus extending the result of Hartman–Stampacchia quoted above.

The methods involved in [7] were certainly inspired by the paper [12] of Stampacchia
concerning the minimizers of an integral functional. Similarly, the techniques here
arise from [2], [4], [8] for problems of the calculus of variations, and rely mostly
on some comparison principles for quasi–solutions to diva(∇u) = 0 on spaces of
Lipschitz functions. A similar approach in dealing with solutions to diva(∇u) = 0
in Sobolev spaces instead, as here, of quasi–solutions among Lipschitz functions,
was first used in [10] in a joint work with Treu where we study the problem of the
Hölder regularity of solutions to (2). We establish there some comparison principles
among solutions to (2) in Sobolev spaces; the existence of solutions is ensured in
[10] thanks to the fact that the field a satisfies some growth conditions that are not
assumed here.

2. Basic assumptions and preliminary results

Here Ω is an open and bounded subset of Rn; its boundary is denoted by Γ and its
closure by Ω. The scalar product in R

n is denoted by “·�. If u and v are functions
then u ∧ v (resp. u ∨ v) stands for the pointwise minimum (resp. maximum) of u
and v; u+ = u ∨ 0 is the positive part of u.

Definition 2.1. A subset X of W 1,1(Ω) is a sublattice of W 1,1(Ω) if u∧ v ∈ X and
u ∨ v ∈ X whenever both u, v ∈ X. If φ ∈W 1,1(Ω) we denote by Xφ the set

Xφ = {u ∈ X : u− φ ∈W 1,1
0 (Ω)}

Example 2.2. We will be mostly concerned here with X = KK(Ω) (or simply
KK), the set of Lipschitz functions on Ω of rank less or equal to K > 0 or with
X = W 1,1(Ω).

Definition 2.3 (Monotonicity assumptions). The field a : Rn → R
n is contin-

uous and monotonic :

∀p, q ∈ R
n (a(q)− a(p)) · (q − p) ≥ 0. (6)
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We will sometimes consider the following mild ellipticity condition:

∀p, q ∈ R
n (a(q)− a(p)) · (q − p) = 0 ⇐⇒ a(q) = a(p). (7)

In what follows, for p ∈ R
n, the sets of the form

Fp = {q ∈ R
n : a(q) = a(p)}

will be called the level sets of a.

Remark 2.4. Condition (7) is of course satisfied if the field a is strictly monotonic.
As it is pointed out in [10], conditions (6) and (7) are both satisfied if for instance
a = ∇f where f : Rn → R is convex of class C1.

As it is pointed out in [10] we have the following simple result, whose short proof
is given here for the convenience of the reader:

Lemma 2.5. Assume (6) and (7). The level sets of the field a are convex.

Proof. Assume a(q) = a(p) for some p, q ∈ R
n and let ζ = λp + (1 − λ)q with

λ ∈]0, 1[. Then

0 ≤ (a(ζ)− a(p)) · (ζ − p) = (1− λ)(a(ζ)− a(p)) · (q − p)

and

0 ≤ (a(ζ)− a(q)) · (ζ − q) = −λ(a(ζ)− a(p)) · (q − p)

so that (a(ζ)− a(p)) · (ζ − p) = 0 whence the conclusion.

3. Comparison Principles for quasi–solutions to div a(∇u) = 0

Definition 3.1. Let X be a sublattice of W 1,1(Ω) and φ ∈ W 1,1(Ω). A quasi–

solution to div a(∇u) = 0 in Xφ is a function u ∈ Xφ satisfying

∀v ∈ Xφ a(∇u) · ∇(v − u) ∈ L1(Ω),

∫

Ω

a(∇u) · ∇(v − u) dx ≥ 0.

We will also say that u is a quasi–solution to div a(∇u) = 0 in X if u is a quasi–
solution to div a(∇u) = 0 in Xu.

Example 3.2. It is an obvious but useful fact that constants and affine functions
in X are quasi–solutions, due to the fact that the integral of a partial derivative of
a function in W 1,1

0 (Ω) is equal to zero. Moreover if u is a quasi–solution in Xφ and
c ∈ R then u+ c is still a quasi–solution in Xφ+c: indeed ∇(u+ c) = ∇u.

The forthcoming results are based in the following well known existence theorem of
Hartman-Stampacchia [7].

Theorem 3.3. Let a be continuous and satisfy the monotonicity assumption (6).
Let φ ∈ KK. There exists at least one quasi–solution u to div a(∇u) = 0 in KK

φ .
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If the monotonicity assumption (6) is not strict, the quasi–solutions to the equation
div a(∇u) = 0 are not unique; the following lattice property turns out to be useful.

Theorem 3.4 (Lattice property for quasi–solutions). Assume that the field

a satisfies (6) and (7). Let X be a sublattice of W 1,1(Ω) and φ1, φ2 be two Lipschitz

functions on Ω with φ1 ≤ φ2 on Γ. Let ui be a quasi–solution to div a(∇u) = 0 in

Xφi
, i = 1, 2. Then u1 ∧ u2 (resp. u1 ∨ u2) is a quasi–solution to div a(∇u) = 0 in

Xφ1
(resp. Xφ2

).

The proof of Theorem 3.4 is postponed after the following lemma.

Lemma 3.5.Under the assumptions of Theorem 3.4 we have a(∇u1(x))=a(∇u2(x))
a.e. on the “bad set� {u1 > u2}

.
= {x ∈ Ω : u1(x) > u2(x)} and moreover

∫

{u1>u2}

a(∇ui) · ∇(u1 − u2) dx = 0 (i = 1, 2) (8)

In particular if φ1 = φ2 then a(∇u1(x)) = a(∇u2(x)) a.e. on Ω.

Proof of Lemma 3.5. We know that

∀v ∈ Xφi

∫

Ω

a(∇ui) · ∇(v − ui) dx ≥ 0 (i = 1, 2)

so that by taking v = min{u1, u2} ∈ Xφ1
for i = 1 we get

∫

{u1>u2}

a(∇u1) · ∇(u1 − u2) dx ≤ 0 (9)

whereas by taking v = max{u1, u2} ∈ Xφ2
for i = 2 we get

∫

{u1>u2}

a(∇u2) · ∇(u1 − u2) dx ≥ 0. (10)

Now (9) and (10) give

∫

{u1>u2}

(a(∇u1)− a(∇u2)) · ∇(u1 − u2) dx ≤ 0;

the monotonicity condition (6) then implies that

(a(∇u1)− a(∇u2)) · ∇(u1 − u2) = 0 a.e. on {u1 > u2} :

the weak non degeneracy condition (7) yields that a(∇u1) = a(∇u2) on {u2 > u1};
(8) follows then directly from (9)–(10).

Proof of Theorem 3.4. Let v ∈ Xφ1
. Then

I
.
=

∫

Ω

a(∇(u1 ∧ u2)) · ∇(v − (u1 ∧ u2)) dx = A+B
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where

A =

∫

{u1≤u2}

a(∇u1) · ∇(v − u1) dx, B =

∫

{u1>u2}

a(∇u2) · ∇(v − u2) dx.

Writing that

A =

∫

Ω

a(∇u1) · ∇(v − u1) dx−

∫

{u1>u2}

a(∇u1) · ∇(v − u1) dx

the fact that u1 is a quasi–solution yields

A ≥ −

∫

{u1>u2}

a(∇u1) · ∇(v − u1) dx

so that

I ≥

∫

{u1>u2}

a(∇u2) · ∇(v − u2)− a(∇u1) · ∇(v − u1) dx.

Now by Lemma 3.5 we have a(∇u1) = a(∇u2) a.e. on {u1 > u2}, thus

I ≥

∫

{u1>u2}

a(∇u2) · ∇(u1 − u2) dx = 0

thanks to (8), proving that u1 ∧ u2 is a quasi–solution to div a(∇u) = 0 in Xφ1
; the

other part of the claim follows similarly.

We need to compare quasi-solutions upon their behavior at the boundary of the
domain. The difficulty here is that the field a is not strictly monotonic so that the
comparison principle does not hold in general.

Definition 3.6 (Minimal and maximal of the quasi–solutions). Let X be a
sublattice of W 1,1(Ω) and φ ∈W 1,1(Ω). A quasi–solution u to div a(∇u) = 0 in Xφ

is said to be the minimal (resp. maximal) one if u ≤ v (u ≥ v) on Ω for every other
quasi–solution v to div a(∇u) = 0 in Xφ.

The next example will be used in the sequel.

Example 3.7. Let φ be Lipschitz in Ω and u be a quasi–solution to div a(∇u) = 0
in KK

φ (Ω). Let D ⊂ Ω be open. The restriction u|D of u to D is a quasi–solution to
div a(∇u) = 0 in KK(D). Indeed any v ∈ KK

u|D
(D) can be extended to a function ṽ

in KK
φ (Ω) with ṽ = u out of D and thus

∫

D

a(∇u|D) · ∇(v − u|D) dx =

∫

Ω

a(∇u) · ∇(ṽ − u) dx ≥ 0.

Notice that if u is maximal in KK
φ (Ω) then u|D is maximal in KK

u|D
(D).
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The proof of the next result is inspired by that of [10, Theorem 3.2] for weak
solutions instead of quasi–solutions; however there is no need here to assume that
the field a satisfies some further growth conditions, due to the fact that we deal
with Lipschitz functions whose rank is bounded.

Proposition 3.8 (Existence of the minimal and the maximal quasi–solu-
tion in KK

φ ). Assume that the field a satisfies (6) and (7). Let K > 0 and φ
be Lipschitz of rank less or equal than K. The minimal and the maximal quasi–

solutions to div a(∇u) = 0 in KK
φ do exist.

Proof. Let S be the set of the quasi–solutions to div a(∇u) = 0 in KK
φ ; we prove

the existence of a maximal element in S. Notice first that S is closed in W 1,1(Ω).
Indeed if uk ∈ S converges to u in W 1,1(Ω) then, modulo a subsequence, ∇uk
converges a.e. to ∇u; therefore for v ∈ KK

φ we have

lim
k→+∞

a(∇uk) · (∇v −∇uk) = a(∇u) · (∇v −∇u) a.e.

and a(∇uk)·(∇v−∇uk) remains bounded in L∞(Ω) since |∇v| ≤ K and |∇uk| ≤ K
a.e. in Ω for all k: the dominated convergence theorem then implies that

∫

Ω

a(∇u) · (∇v −∇u) dx = lim
k

∫

Ω

a(∇uk) · (∇v −∇uk) dx ≥ 0.

Moreover S is convex. Indeed assume u1, u2 ∈ S and let u = λu1 + (1 − λ)u2 for
some λ ∈ [0, 1]. By Lemma 3.5 we have a(∇u1) = a(∇u2) a.e.; Lemma 2.5 implies
that a(∇u) = a(∇u1) = a(∇u2) a.e. so that for v ∈ KK

φ we get

∫

Ω

a(∇u) · (∇v −∇u) dx

= λ

∫

Ω

a(∇u1) · (∇v −∇u1) dx+ (1− λ)

∫

Ω

a(∇u2) · (∇v −∇u2) dx ≥ 0

proving that u is a quasi–solution to our problem.

Since W 1,1(Ω) is separable and S is closed there is a family vk (k ∈ N) of functions
that is dense in S for the topology in W 1,1. The lattice property Theorem 3.4
implies that uk = v1 ∨ ... ∨ vk ∈ S for any k: let u be the pointwise limit of uk. We
claim that u is the maximal quasi–solution we are looking for. Of course u ∈ KK

φ

and u ≥ v a.e. for any v ∈ S, due to the fact that a convergent sequence in L1 has
a subsequence that converges a.e.; it remains to show that u is a quasi–solution.
Since the functions uk are bounded in W 1,∞(Ω) we may assume that they weakly
converge in W 1,2(Ω), necessarily to u. Mazur’s Lemma then yields a sequence in
the convex hull of {uk : k ∈ N} that strongly converges to u inW 1,1(Ω): the closure
of S yields the conclusion.

Theorem 3.9 (Comparison Principle for quasi–solutions). Assume that the

field a satisfies (6) and (7). Let X be a sublattice of W 1,1(Ω) and φ1, φ2 be two

Lipschitz functions on the closure of Ω with φ1 ≤ φ2 on Γ. Let ui be a quasi–

solution to div a(∇u) = 0 in Xφi
, i = 1, 2 and u1 be minimal or u2 be maximal.

Then u1 ≤ u2 a.e. on Ω.
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Proof. It follows from Theorem 3.4 that u1∧u2 is a quasi–solution to the equation
div a(∇u) = 0 in Xφ1

and u1 ∨ u2 is a quasi–solution to div a(∇u) = 0 in Xφ2
. If u1

is the minimal quasi–solution then u1 ≤ u1 ∧ u2; analogously if u2 is the maximal
quasi–solution then u1 ∨ u2 ≤ u2. In both cases the last inequalities yield u1 ≤ u2
a.e..

The next result is a version for quasi–solutions to div a(∇u) = 0 of the Haar–Radò
type results proven in [9] in the framework of minimizers of the calculus of variations
and in [10] concerning weak solutions in Sobolev spaces to the same equation. It
will be used in the proof of Theorem 5.1.

Theorem 3.10 (A Haar–Radò type result for quasi–solutions). Assume that

the field a satisfies (6) and (7). Let φ be Lipschitz of rank less or equal than K and

u be the minimal or the maximal quasi–solution to div a(∇u) = 0 in KK
φ . Assume

that there is K1 ≥ K such that

∀γ ∈ Γ, ∀x ∈ Ω |u(x)− φ(γ)| ≤ K1|x− γ|. (11)

Then the Lipschitz constant of u is less or equal than K1.

We need the following simple lemma concerning quasi–solutions to diva(∇u) = 0.

Lemma 3.11. Let K > 0. If u is a quasi–solution in KK(Ω) then, for every

h ∈ R
n, the function u(x− h) is a quasi–solution in KK(h+ Ω).

Proof. Let v ∈ KK(h + Ω) with v(y) = u(y − h) for each y ∈ ∂(h + Ω) = h + Γ.
Then the change of variables y = x+ h yields

∫

h+Ω

a(∇u(y − h)) · (∇v(y)−∇u(y − h)) dy

=

∫

Ω

a(∇u(x)) · (∇v(x+ h)−∇u(x)) dx ≥ 0

since v(x+ h) ∈ KK(Ω) and v(x+ h) = u(x) for every x ∈ Γ, proving that u(y− h)
is a quasi–solution.

Proof of Theorem 3.10. By extending u out of Ω to a Lipschitz function of rank
less or equal than K we may assume that (11) holds for every x in R

n. Fix h ∈ R
n

such that Ω∩ (h+Ω) 6= ∅. Then u(x−h) ≤ u(x)+K1|h| on ∂(Ω∩ (h+Ω)). Indeed
let r ∈ ∂(Ω ∩ (h+ Ω)): if r = γ ∈ Γ then

u(r − h)− u(r) = u(γ − h)− u(γ) = u(γ − h)− φ(γ) ≤ K1|h|;

if r = h+ γ ∈ h+ Γ then

u(r − h)− u(r) = u(γ)− u(h+ γ) = φ(γ)− u(h+ γ) ≤ K1|h|.

It follows from Lemma 3.11 and Example 3.2 that both u(x − h) − K1|h| and u
are quasi–solutions in KK(Ω ∩ (h + Ω)). If u is maximal in KK(Ω) then u is still
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maximal in KK(Ω∩(h+Ω)); if instead u is minimal in KK(Ω) then u(x−h)−K1|h|
is minimal in KK(Ω ∩ (h+Ω)): Theorem 3.9 implies that u(x− h)−K1|h| ≤ u(x)
on Ω ∩ (h+ Ω). Now if a, b ∈ Ω set h = a− b: then

u(b)− u(a) = u(a− h)− u(a) ≤ K1|h| = K1|b− a|.

Remark 3.12. A slight modification in the proofs above shows that the claims
of Theorem 3.4 and Theorem 3.9 hold also for quasi–solutions to the equation
div a(∇u)+b(x, u) = 0, where b is a Carathéodory map and u 7→ b(x, u) is monotonic
increasing for a.e. x; a more subtle modification as in [10, §3.2] is needed to adapt
Theorem 3.10. We do not formulate these results explicitly since we do not use
them here.

4. A generalized Bounded Slope Condition and an existence result

The functions introduced below were first introduced by Cellina in the framework of
the calculus of variations; they play the role of the affine functions in minimization
problems in the case where the integrand is not strictly convex.

Definition 4.1. Whenever F is a compact and convex subset of Rn and x0 ∈ R
n

let
h+F,x0

(x) = max{ξ · (x− x0) : ξ ∈ F}

h−F,x0
(x) = min{ξ · (x− x0) : ξ ∈ F} = −h+−F,x0

(x).

Example 4.2. Let F be the unit ball. Then h+F,x0
(x) = |x − x0| and h−F,x0

(x) =
−|x− x0| for all x0.

It is worth mentioning that the functions just defined are Lipschitz of rank less or
equal than LF defined by

LF
.
= max{|ξ| : ξ ∈ F},

that ∇h±F,x0
∈ F a.e. and that h±F,x0

(x) = ∇h±F,x0
(x) · (x−x0) a.e.: this follows easily

from the properties of the support function to a set [11] or see [3] for a direct proof;
these functions are nothing more than affine when F is reduced to a single point.
We prove here that these functions are quasi–solutions to div a(∇u) = 0 and that
they satisfy the Comparison Principle.

Proposition 4.3. Assume that a satisfies the monotonicity assumptions (6) and

(7). Let F be a compact level set for a and let K ≥ LF = max{|ξ| : ξ ∈ F}. The

following assumptions hold:

i) For every x0 ∈ R
n and c ∈ R the functions c + h±F,x0

are quasi–solutions to

div a(∇u) = 0 in KK;

ii) If x0 /∈ Ω then c + h±F,x0
satisfy the Comparison Principle: if u is a quasi–

solution to div a(∇u) = 0 in KK and u ≤ c + h+F,x0
on Γ then u ≤ c + h+F,x0

on Ω (C.P. from above); analogously if u ≥ c+ h−F,x0
on Γ then u ≥ c+ h−F,x0

on Ω (C.P. from below).
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Proof. i) We assume without restriction that c = 0. Assume that F = {q ∈ R
n :

a(q) = a(p)} for some p in R
n. The fact that c + h±F,x0

are quasi–solutions follows

immediately since ∇h±F,x0
∈ F a.e. and thus

a(∇(h±F,x0
)) = a(p)

is a constant.

ii) We consider now h
.
= h+F,x0

and we prove that h satisfies the Comparison Principle

from above; the proof of the claim concerning h−F,x0
is similar. It follows from

Theorem 3.9 that it is enough to prove that h is a maximal quasi–solution. Let
u be a quasi–solution of div a(∇u) = 0 in KK

h . It follows from Lemma 3.5 that
a(∇u) = a(∇h) a.e. on Ω so that ∇u ∈ F a.e. whence

∇u(x) · (x− x0) ≤ max{ξ · (x− x0) : ξ ∈ F} = h(x) = ∇h(x) · (x− x0) a.e..

Extend u with u = h out of Ω. For x ∈ Γ set

gx(t) = (h− u)(x0 + t(x− x0)), t ∈ R.

Since h− u is Lipschitz then it is differentiable on a.e. line through x0 and for a.e.
x ∈ Γ (for the (n− 1)–dimensional Hausdorff measure) we have

g′x(t) = ∇(h− u)(x0 + t(x− x0)) · (x− x0) a.e. t.

Since x0 /∈ Ω then gx(0) = h(x0)− u(x0) = 0; moreover

g′x(t) = ∇(h− u)(x0 + t(x− x0)) · (x− x0) ≥ 0

so that gx is decreasing and gx(1) = h(x)− u(x) ≥ 0, proving that u(x) ≤ h(x) for
a.e. (and thus every) x ∈ Γ.

An analogous of the next variant of the (BSC) was formulated in [3] in the framework
of the calculus of variations: there the level sets of a that appear below in our
definition are replaced by some sets that depend on the faces of a convex lagrangean.

Definition 4.4 (Generalized (BSC)). The pair (φ, a) satisfies the Generalized
(BSC) of rank Q > 0 if for every γ ∈ ∂Ω:

i) there exists a level set F−
γ for a, contained in a ball of radius Q, such that

∀γ′ ∈ ∂Ω φ(γ) + h−
F−
γ ,γ

(γ′) ≤ φ(γ′); (12)

ii) there exists a level set F+
γ for a, contained in a ball of radius Q, such that

∀γ′ ∈ ∂Ω φ(γ) + h+
F+
γ ,γ

(γ′) ≥ φ(γ′). (13)

Example 4.5. The fact that the field a has some non trivial level sets increases
the chances that a given function φ satisfies the Generalized (BSC): assume that a
level set F of a contains a closed ball B(p,R] of center p and radius R and let ψ be
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any Lipschitz function of rank less than R; then ψ(x) + p · x fulfills the generalized
(BSC). Indeed for any γ ∈ Γ and x ∈ R

n we have

h+F,γ(x) ≥ max{ξ · (x− γ) : ξ ∈ B(p,R]} = p · (x− γ) +R|x− γ|,

h−F,γ(x) ≤ min{ξ · (x− γ) : ξ ∈ B(p,R]} = p · (x− γ)−R|x− γ|.

Thus if φ(x) = p · x+ ψ(x) we have

φ(x)− φ(γ) = p · (x− γ) + ψ(x)− ψ(γ)

so that, if ψ is Lipschitz of rank less than R,

φ(x)− φ(γ) ≤ p · (x− γ) +R|x− γ| ≤ h+F,γ(x)

and, analogously,

φ(γ)− φ(x) ≥ p · (x− γ)−R|x− γ| ≥ h−F,γ(x).

Remark 4.6. It is an easy matter to show that the (BSC) of rank Q implies the
Generalized (BSC) of rank Q′ if |q| ≤ Q′ whenever a(q) = a(p) for some |p| ≤ Q.

Example 4.7. The Generalized (BSC) is strictly more general than the (BSC):
when the field a is not uniformly elliptic the class of functions that satisfy the
Generalized (BSC) is wider than the class of functions that satisfy the (BSC). For
instance if

a(ξ) = ∇f(ξ), f(ξ) =

{

(|ξ|2 − 1)2 if |ξ| ≥ 1,

0 otherwise

then the level set F of a containing the origin is the closed unit ball. It follows
from Example 4.2 that h+F,x0

(x) = |x − x0| and h−F,x0
(x) = −|x − x0|. Therefore

any Lipschitz function φ of rank less or equal than 1 is such that (φ, a) satisfies the
Generalized (BSC); note that the domain may be not convex whereas the validity
of the (BSC) implies the convexity of the domain.

5. Existence of a Lipschitz solution to div a(∇u) = 0 under the Gene-
ralized (BSC)

The next result generalizes [7, Theorem 13.1], where the authors establish the ex-
istence of a Lipschitz weak solution to div a(∇u) = 0 under the (BSC); its proof is
based on the original one, modulo the obvious changes.

Theorem 5.1 (Existence of a Lipschitz solution to div a(∇u) = 0 under the
Generalized (BSC)). Assume that a satisfies the monotonicity assumptions (6)
and (7). Let φ be Lipschitz and that (φ, a) satisfies the Generalized (BSC) of rank
Q. There is at least one Lipschitz function u of rank less or equal than Q and equal

to φ on ∂Ω satisfying

∀η ∈W 1,2
0 (Ω)

∫

Ω

a(∇u) · ∇η dx = 0
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Proof. For every K > Q there is, from Proposition 3.8 a quasi–solution in KK
φ to

div a(∇u) = 0 that is either minimal or maximal: in any case we call it uK . For
every γ ∈ Γ conditions (12) and (13) together with Proposition 4.3 imply that

∀x ∈ Ω φ(γ) + h−
F−
γ ,γ

(x) ≤ uK(x) ≤ φ(γ) + h+
F+
γ ,γ

(x)

so that in particular

∀γ ∈ Γ ∀x ∈ Ω |uK(x)− φ(γ)| ≤ Q|x− γ|. (14)

The Haar–Radò type Theorem 3.10 yields that uK is Lipschitz of rank less or equal
thanQ. We have thus obtained a sequence of Lipschitz functions uK whose Lipschitz
rank is bounded by the same constant Q such that, for each K > Q,

∀v ∈ KK
φ

∫

Ω

a(∇uK) · (∇v −∇uK) dx ≥ 0.

We thus proceed as in [7, Lemma 12.3]: we may assume modulo a subsequence
that uK converges uniformly and weakly in W 1,2(Ω) to a Lipschitz function u, of
rank less or equal than Q. Let η be a smooth function with compact support in Ω.
Since for any K > Q the function u + η is Lipschitz of rank less than 2Q, for K
sufficiently large we have

∫

Ω

a(∇uK) · (∇(u+ η)−∇uK) dx ≥ 0

so that, by the monotonicity assumption (6),

∫

Ω

a(∇(u+ η)) · (∇(u+ η − uK) dx ≥ 0.

Now ∇uK converges weakly to ∇u in L2 and a(∇(u + η)) is bounded; passing to
the limit as K → +∞ in the latter inequality we obtain

∫

Ω

a(∇(u+ η)) · ∇η dx ≥ 0.

By taking tη instead of η, for t→ 0+ and to 0− we obtain

∀η ∈ C∞
c (Ω)

∫

Ω

a(∇u) · ∇η dx = 0;

the conclusion follows by the density of smooth functions with compact support in
W 1,2

0 (Ω) and the fact that a(∇u) is bounded, u being Lipschitz.

6. The existence of a solution to div a(∇u) = 0 under the (LBSC) and its
generalized version

We recall here a notion introduced by Clarke in [4].
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Definition 6.1 (LBSC). A Lipschitz function φ : Ω → R is said to satisfy the
Lower Bounded Slope Condition, (shortly the (LBSC)) of rank Q if given any point
γ ∈ Γ there exists an affine function ζγ · (y − γ) + φ(γ) with |ζγ| ≤ Q such that

∀γ′ ∈ Γ φ(γ′) ≥ ζγ · (γ
′ − γ) + φ(γ). (15)

It can be shown that φ satisfies the (LBSC) of some rank if and only if φ is the
restriction of a convex function.

By replacing the affine functions with the class of functions introduced in Defini-
tion 4.1 we obtain the obvious generalization of the (LBSC), depending of course
on the monotone operator a.

Definition 6.2 (Generalized (LBSC)). The pair (φ, a) is said to satisfy the
Generalized (LBSC) of rank Q > 0 if (12) holds for every γ ∈ ∂Ω, i.e. there
exists a level set F−

γ for a, contained in a ball of radius Q, such that

∀γ′ ∈ ∂Ω φ(γ) + h−
F−
γ ,γ

(γ′) ≤ φ(γ′)

We prove that if φ satisfies the (LBSC), or the Generalized (LBSC) jointly with
the weak ellipticity condition (7), then there exists a solution u to (16) that on
every compact set is Lipschitz and a uniform limit of functions in KK

φ . Moreover if
a fulfills the natural growth conditions then u agrees with the boundary datum in
the trace sense.

Theorem 6.3 (Existence of a locally Lipschitz solution to div a(∇u) = 0).1

Assume that Ω is convex. Let a be a monotonic field, i.e. such that (6) holds, and
assume that one of the following conditions holds:

A) the function φ satisfies the (LBSC) of rank Q, or

B) the operator a satisfies the weak ellipticity condition (7), the level set F0 =
{η ∈ R

n : a(η) = a(0)} of the field a is bounded and φ satisfies the Generalized

(LBSC) of rank Q.

Then:

i) There exists a sequence of functions (uK)K∈N with uK ∈ KK
φ and a function

u such that:

a) For every K, uK is a quasi–solution to div a(∇u) = 0 in KK
φ ;

b) the sequence uK converges uniformly to u and ∇uK converges to ∇u for

the weak∗ topology of L∞ on every compact subset of Ω;
c) u is a locally Lipschitz solution to div a(∇u) = 0 in the sense of distribu-

tions, i.e.

∀η ∈ C∞
c (Ω)

∫

Ω

a(∇u(x)) · ∇η(x) dx = 0. (16)

ii) If, moreover, there are α > 0, β > 0 and r ∈ R satisfying

∀ξ ∈ R
n a(ξ) · ξ ≥ α|ξ|p, |a(ξ)| ≤ β|ξ|p−1 + r (p > 1) (17)

1I thank again here Pierre Bousquet for pointing out that there is no need to assume (7) in order
to obtain the conclusion of Theorem 6.3 under Assumption A).
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then the locally Lipschitz function u defined in i) is a weak solution to div a(∇u)
= 0 in W 1,p

φ (Ω), i.e. u ∈W 1,p
φ (Ω), a(∇u) ∈ Lp′(Ω) (1/p′ + 1/p = 1) and

∀η ∈W 1,p
0 (Ω)

∫

Ω

a(∇u(x)) · ∇η(x) dx = 0.

Remark 6.4. The conclusion of ii), more precisely the existence of a weak solution
to div a(∇u) = 0 assuming that the field a satisfies the growth assumptions (17)
and φ satisfies the (LBSC) is obtained also in [10] with a different approach, by
using Minty’s theorem for the existence of a solution in Sobolev spaces.

The proof of Theorem 6.3 is based on the following Lemma. We recall that by [7,
Lemma 12.1] a solution to div a(∇u) = 0 exists in KK

φ whenever K is greater than
the Lipschitz constant of φ.

Lemma 6.5. Let K > Q > 0. Under the assumptions A) or B) of Theorem 6.3
there exist a quasi–solution uK to div a(∇u) = 0 in KK

φ and constants T,C depen-

ding only on a, φ,Ω (in any case not on K), satisfying

∀x ∈ Ω ‖uK‖∞ ≤ T, |∇uK(x)| ≤
C

dist(x,Γ)
(18)

Moreover, when a is strictly monotonic, then T = ‖φ‖∞ and C does not depend on

a.

Proof. Assume first that Assumption B) holds. Let uK be a maximal quasi–
solution to div a(∇u) = 0 in KK

φ . Let u− be the minimal quasi–solution in KK
−‖φ‖∞

and u+ be the maximal quasi–solution in KK
‖φ‖∞

, where ‖φ‖∞ is the sup–norm of

φ; notice that u− = −‖φ‖∞ and u+ = ‖φ‖∞ if a is strictly monotonic. Since
−‖φ‖∞ ≤ uK ≤ ‖φ‖∞ on Γ then Theorem 3.9 implies that u− ≤ uK ≤ u+ on
Ω. Since constants are quasi–solutions it follows from Lemma 3.5 that a(∇u−) =
a(∇(−‖φ‖∞)) = a(0) and a(∇u+) = a(∇(‖φ‖∞)) = a(0) so that |∇u±| ≤M where
M = sup{|q| : a(q) = a(0)}. Thus u± are bounded by a constant T depending only
on M , Ω and φ (in any case not on K), proving the first part of the claim. Fix now
z ∈ Γ; for λ ∈]0, 1] we set

Ωλ
.
= λ(Ω− z) + z, Γλ

.
= ∂Ωλ

∀y ∈ Ωλ, uKλ (y) = λuK((y − z)/λ+ z)

∀γ′ ∈ Γλ, φλ(γ
′) = λφ((γ′ − z)/λ+ z)

By convexity Ωλ ⊆ Ω for every λ ∈]0, 1]. Then uKλ ∈ KK
φλ
(Ωλ). Notice that since

∇uKλ (x) = ∇uK((x − z)/λ + z) then uKλ is a quasi–solution to div a(∇u) = 0 in
KK

φλ
(Ωλ). Indeed let v ∈ KK

φλ
(ωλ); we may assume without loosing generality that

z = 0. By the change of variable x = y/λ we have
∫

Ωλ

a(∇uKλ (y)) · ∇(v − uKλ )(y) dy = λn
∫

Ω

a(∇uK(x)) · (∇v(λx)−∇uK(x)) dx

= λn
∫

Ω

a(∇uK(x)) · (∇vλ(x)−∇uK(x)) dx

(19)
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where we set vλ(x) = 1
λ
v(λx). Now if γ ∈ Γ then λγ ∈ Γλ so that

vλ(γ) =
1

λ
v(λγ) =

1

λ
λφ(γ) = φ(γ)

whence vλ ∈ KK
φ : it follows that

∫

Ω

a(∇uK(x)) · (∇vλ(x)−∇uK(x)) dx ≥ 0

and thus, from (19), we get

∫

Ωλ

a(∇uKλ (y)) · ∇(v − uKλ )(y) dy ≥ 0,

proving that uKλ is a quasi–solution to div a(∇u) = 0 in KK
φλ
(Γλ).

We wish now to compare uKλ and uK on Ωλ. Let γ
′ = λγ ∈ Γλ; then

uKλ (γ
′) = λφ(γ), uK(γ′) = uK(λγ). (20)

Since uK is the maximal quasi–solution and, by Proposition 4.3, the function hF−
γ ,γ+

φ(γ) is a quasi–solution, then by Theorem 3.9 we have

hF−
γ ,γ(x) + φ(γ) ≤ uK(x) on Ω

so that in particular, for x = γ′ = λγ, we get

φ(γ) ≤ uK(γ′)− hF−
γ ,γ(λγ). (21)

A direct computation shows that

hF−
γ ,γ(λγ) = (λ− 1) inf{ξ · γ : ξ ∈ F−

γ }

whence
|hF−

γ ,γ(λγ)| ≤ (1− λ)Q diamΩ

and thus (21) yields
uKλ (γ

′) ≤ uK(γ′) + q(1− λ), (22)

where q = Q diam(Ω) + ‖φ‖∞ is a constant that does not depend neither on a nor
on K. Now, as it was pointed out in Example 3.7, uK + q(1 − λ) restricted to Ωλ

is a maximal quasi–solution in KK(Ωλ), among the functions that share the same
boundary datum in Γλ: it follows from (22) and Theorem 3.9 that

λuK(x) = uKλ (y) ≤ uK(y) + q(1− λ) on Ωλ, x =
y

λ
.

In particular we get

uK(x)− uK(y) = uK(x)− λuK(x) + λuK(x)− uK(y)

≤ (1− λ)‖uK‖∞ + q(1− λ)

≤ (1− λ) (T + q) ,
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Now

1− λ =
|y − x|

|x− z|
≤

|y − x|

dist(x, ∂Ω)|

so that combining the two latter inequalities we obtain

uK(x)− uK(y) ≤ (T + q)
|y − x|

dist(x, ∂Ω)|
,

proving that

|∇uK(x)| ≤
C

dist(x,Γ)
, C = T + q.

Notice that if a is strictly monotonic then C = ‖φ‖∞ + q does not even depend on
a.

Assume that A) holds. For every i = 1, 2, ... let

ai(ξ) = a(ξ) +
1

i
ξ.

Then ai is strictly monotonic so that there exists a quasi–solution uKi to div ai(∇u) =
0 on KK

φ . Then

‖uKi ‖∞ ≤ ‖φ‖∞, |∇uKi | ≤
C

dist(x,Γ)
,

where C does not depend neither on i nor on K: this follows from [1] or even
from the fact that in this strictly monotonic case the (LBSC) is equivalent to the
Generalized (LBSC), thus (ai, φ) fulfills Assumption B). The Lipschitz ranks of
the uKi being bounded by K there exists a subsequence of (uKi )i which converges
to some uK ∈ KK

φ uniformly on Ω. Moreover one can further assume that (∇uKi )i
converges weakly∗ to ∇uK in L∞(Ω). For any i and for any v ∈ KK

φ we have

∫

Ω

ai(∇u
K
i ) · (∇v −∇uKi ) dx ≥ 0

so that

∫

Ω

a(∇uKi ) · (∇v −∇uKi ) dx ≥ −
1

i

∫

Ω

∇uKi · (∇v −∇uKi ) dx

implying

∫

Ω

a(∇v) · (∇v −∇uKi ) dx ≥ −
1

i

∫

Ω

∇uKi · (∇v −∇uKi ) dx.

By letting i going to +∞ we get

∫

Ω

a(∇v) · (∇v −∇uK) dx ≥ 0. (23)
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Let now w ∈ KK
φ . Fix t ∈ [0, 1[ and choose v = w + t(uK − w) in (23). We get

∫

Ω

a((1− t)∇w + t∇uK) · (∇w −∇uK) dx ≥ 0,

so that by passing to the limit for t→ 1 we obtain

∫

Ω

a(∇uK) · (∇w −∇uK) dx ≥ 0,

proving the claim.

Proof of Theorem 6.3. i) For every K > Q let uK be a quasi–solution to
div a(∇u) = 0 in KK

φ satisfying (18) for some constants T,C that do not depend
on K: such a function exists thanks to Lemma 6.5. Take an increasing sequence of
open subsets of Ω satisfying

Ωj ⊂ Ωj ⊂ Ωj+1,
⋃

j

Ωj = Ω.

It follows from (18) that, on Ωj, the functions uK are Lipschitz of rank less than
a constant Kj depending only on j. Then, up to a subsequence, the functions uK

converge uniformly on every compact subset of Ω to a function u which is Lipschitz
of rank Kj on Ωj. Moreover one may assume that for every j, ∇uK converges to ∇u
for the weak ∗ topology of L∞(Ωj). The fact that u satisfies (16) follows from [1]
by noticing that it is enough that the sequence ∇uK converges weakly ∗ to ∇u on
every compact set, instead of knowing that uK converges weakly to u in W 1,2(Ω):
we check it here for the convenience of the reader. Let η ∈ C∞

c (Ω); its support is
contained in some Ωj for some j. Let 0 ≤ θj ≤ 1 be a smooth function with

θj =

{

1 on Ωj

0 out of Ω′
j

where Ω′
j is an open set satisfying

Ωj ⊂ Ω′
j ⊂ Ωj+1, |Ω′

j \ Ωj| ≤ ε

for a prescribed ε > 0. Set ψK = uK + η + θj(u− uK): then

ψK =

{

u+ η on Ωj

uK out of Ω′
j

A Lipschitz rank for ψK on Ω′
j is Sj

.
= 3Kj+1+‖∇η‖∞+2‖u−uK‖L∞(Ωj+1)‖∇θj‖∞;

thus ψK is globally Lipschitz of rank K for K > Sj For K big enough we have

∫

Ω

a(∇uK) · ∇(ψK − uK) dx ≥ 0
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implying
∫

Ω

a(∇ψK) · ∇(ψK − uK) dx ≥ 0.

It follows that

∫

Ωj

a(∇(u+ η)) · ∇(u+ η − uK) dx ≥ −

∫

Ω′
j\Ωj

a(∇ψK) · ∇(ψK − uK) dx

≥ −cε

(24)

where c is a positive constant depending only on a and j. Indeed a(∇ψK) is bounded
by a constant depending on a and Sj, whereas the gradient of ψ

K − uK is bounded
by a constant depending on j. By passing to the limit for K → +∞ in (24) we
obtain

∫

Ωj

a(∇(u+ η)) · ∇η dx ≥ −cε

for every ε > 0 so that, by passing to the limit for ε→ 0+,

∫

Ωj

a(∇(u+ η)) · ∇η dx ≥ 0

thanks to the fact that ∇uK converges ∗-weakly to ∇u in Ωj. In the previous
inequality we can replace Ωj by Ω, the support of η being contained in Ωj. We
conclude by taking tη instead of η, and letting t→ 0.

ii) Assume now that (17) holds. Since φ is Lipschitz of rank less than Q then
φ ∈ KK

φ for every K > Q and thus

∫

Ω

a(∇uK) · (∇φ−∇uK) dx ≥ 0

whence

α

∫

Ω

|∇uK |p dx ≤ Qβ

∫

Ω

|∇uK |p−1 dx+ const.

so that Hölder’s inequality yields

∫

Ω

|∇uK |p dx ≤ Qβ

(
∫

Ω

|∇uK |p dx

)1/p′

|Ω|1/p + const.

implying that ∇uK is a bounded sequence in Lp(Ω). Thus, modulo a subsequence,
uK converges weakly to u in W 1,p(Ω); in particular u ∈ W 1,p(Ω) and therefore
|a(∇u)| ≤ β|∇u|p−1 + r ∈ Lp′(Ω).

Remark 6.6. Of course one could consider, instead of the Lower (BSC), the unilat-
eral (BSC) from above, i.e. Upper (BSC) defined in [4]. With the obvious changes
one obtains the same conclusion of Theorem 6.3 by replacing the (Generalized)
Lower (BSC) with the (Generalized) Upper (BSC).
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