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We investigate under what geometric conditions the best approximation problem to a nonempty
closed subset of a real Banach space is generalized well-posed, or, more generally, the problem
either has no solution or is generalized well-posed, for the majority of the points in the space.
"Majority" is understood as a set whose complement in the space is σ-porous or σ-cone supported.
Analogously to the case when uniqueness of the best approximation is considered, it turns out
that certain local uniform, or uniform, properties of the norm of the underlying space have to be
required.
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1. Introduction

LetX be a real Banach space and A be a nonempty and closed subset ofX. Starting
with the paper of Stečkin [16] interest has been paid to the study of the structure
of the set of points x ∈ X for which the best approximation problem for x to A
has no more than one solution. Stečkin proved that in the case of locally uniformly
rotund Banach spaces (for precise definitions see next sections) this set is big from
the Baire category point of view in the sense that its complement in X is of the
first Baire category in X. Subsequently, this result has been confirmed for other
classes of spaces with rotund norms by Zaj́ıček [19], Lau [12], Konyagin [9], Zhivkov
[22, 23], Fabian and Preiss [4] and generalizations can be found in [2]. It is still
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Guadeloupe, France.

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



1154 J. P. Revalski, N. V. Zhivkov / Best Approximation Problems in Compactly ...

an open question whether the original Stečkin result is true in any rotund Banach
space. Stečkin also proved in [16] that in the case of uniformly rotund spaces X
(see also the paper of Edelstein [3]) the set of those points x ∈ X for which the
best approximation to an arbitrary nonempty closed set A of X is unique has a
complement of the first Baire category in the space X.

Meanwhile, investigation from other points of view has been added to the above
problem. One of them was to study the set of points for which the best approx-
imation problem is with unique (or compact set of) solution(s) and, moreover, is
well-posed. Results in this direction from Baire category point of view as above have
been obtained by Lau [12] in reflexive Banach spaces with special norm (see also
Konyagin [9]) and by De Blasi, Myjak and Papini [1] in uniformly rotund spaces.

Another direction of research related to the above problem has been to sharpen the
notion of smallness of the set of "bad" points, by replacing the notion of the first
Baire category by stronger notions of smallness of a set. A candidate for such a
sharpening turned out to be the concept of porosity, a geometric notion introduced
in metric spaces by Zaj́ıček (see, e.g. the surveys [20, 21]): a set is porous in X
if, roughly speaking, it has wholes in any ball around a point from the set in the
shape of balls with proportional radii. Sigma porous sets are defined as countable
unions of porous sets. Every such set is of the first Baire category. The interest
to this notion lies, for example, in the following facts: in finite dimensions, it is a
stronger property than a set to be both of Lebesgue measure zero and of the first
Baire category; moreover in any Banach space there are sets which are of the first
Baire category but not sigma porous.

Results with this new notion of smallness concerning the set of points with no
more than one best approximation have been obtained by Zaj́ıček [19] (in separable
rotund spaces), De Blasi Myjak and Papini [1] (in uniformly rotund spaces) and in
our recent paper [14] in the case of locally uniformly rotund spaces, where we also
consider a further sharpening of the notion of smallness (see below the definition of
cone supported set).

The aim of this article is to investigate what kind of geometric properties of the
underlying space are needed if we want to have similar results, as the latter ones,
in the case where only the existence of a best approximation is required. It turns
out that, in order to have such results, we need to require properties which are
generalizations of the (local) uniform rotundity of the space. These are the so-called
compactly (locally) uniform rotund Banach spaces, where the classical rotundity
property is replaced by (local) compact rotundity. These notions are introduced
and studied in Section 2, where some of their basic properties are obtained as
well as a comparison with other similar ones are presented. In Section 3 we prove a
Stečkin type lens lemma in the spaces we consider. With these notions and auxiliary
results in hand, we prove in our Section 4 (Theorem 4.1) that when the space X
is compactly locally uniformly rotund, then the set of points x in X for which the
best approximation problem to a nonempty closed set A of X is either empty or
generalized well-posed has a complement which is sigma cone supported. This is a
multivalued version of a previous result of the authors [14, Theorem 3.1], concerning
the case of uniqueness of the best approximations. In the smaller class of compactly
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uniformly rotund spaces our main result from Section 5 (Theorem 5.1) asserts that
the set of points x for which the best approximation problem to a nonempty closed
set A is generalized well-posed has a complement which is sigma-porous. The latter
is a generalization of a result of De Blasi, Myjak and Papini [1], proved in the setting
of uniformly rotund spaces.

2. Some preliminary notions and results

In the sequel (X, ‖ · ‖) will designate a real Banach space with topological dual X∗.
The norm in X∗ will be denoted again by ‖ · ‖ and the pairing between X∗ and X
by 〈·, ·〉. The symbols BX and SX will stay for the closed unit ball and unit sphere
in X respectively. More generally, B[x, r] and S(x, r) will be used for the closed
ball centered at x ∈ X and radius r > 0 and the corresponding sphere of this ball.
As usual B(x, r) is reserved for the open ball centered at x and with radius r > 0.

A Banach space X, (dimX ≥ 2), is called compactly locally uniformly rotund (in
brief CLUR) space if whenever x ∈ SX and (xn)n ⊂ SX are such that limn ‖x+xn‖ =
2 then (xn)n has a convergent subsequence. The CLUR property of a Banach space
has been employed in [17] and [13] for the study of properties of metric projections.

Let us remind that, in the particular case when each sequence (xn)n as above
converges to x, for any x ∈ SX , the space X is called locally uniformly rotund
(briefly LUR) space. The space X is called rotund (or, equivalently, strictly convex)
if the unit sphere SX does not contain line segments. It is easily seen that a space
which is compactly locally uniformly rotund and strictly convex is, in fact, locally
uniformly rotund. For further comparison of these concepts of rotundity, also with
other similar ones, see Examples 2.8 and 2.9 below. Let us also mention that, in
the above definitions, the term "rotund" is frequently substitute by the synonym
term "convex".

Our next result is a characterization of the CLUR property used in the sequel.
To this end, let us first recall that the Kuratowski index of non-compactness α(A)
for a set A ⊂ X is the infimum of all ε > 0 such that A can be covered by a
finite number of sets with diameters less than ε. The index of non-compactness is
non-decreasing, i.e. α(A1) ≤ α(A2) whenever A1 ⊂ A2. It can be easily verified
that α(A + εBX) ≤ α(A) + 2ε for A ⊂ X, ε > 0. Moreover, α(A) = 0 exactly
when A is relatively compact. Whenever a sequence of nonempty closed nested sets
(An)n in a Banach space X is given, so that α(An) → 0, then the intersection ∩nAn

is a nonempty compact set of X (the latter is the well-known generalized Cantor
lemma).

Let now x, y ∈ X, r := ‖y − x‖ > 0, and δ ∈ [0, r]. Define

Cap[x, y, δ] =
{

z ∈ S(x, r) :
∥

∥

∥

z + y

2
− x
∥

∥

∥
≥ r − δ

}

,

i.e., this is the (non empty) set of points z on the sphere S(x, r) such that the
mid-points of the segments [z, y] are not deeper inside B(x, r) than r−δ. Certainly,
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Cap[x, y, δ] is a closed subset of S(x, r). The following elementary properties of
‘caps’ are used in the sequel:

z + Cap[x, y, δ] = Cap[z + x, z + y, δ],

λCap[x, y, δ] = Cap[λx, λy, λδ],

Cap[x, y, δ1] ⊂ Cap[x, y, δ2] whenever δ1 ≤ δ2.

Lemma 2.1. Let X be a CLUR Banach space, x, y, r, and δ be as above. Then
limδ↓0 α(Cap[x, y, δ]) = 0.

Proof. Assume the contrary: There is ε0 > 0 such that limδ↓0 α(Cap[x, y, δ]) > ε0.
Find inductively a sequence (zn)n ⊂ S(x, r) such that

(i) zn ∈ Cap[x, y, r/n] for every n ∈ N;

(ii) ‖zn+1 − zj‖ > ε0/2, for every n ∈ N and every j = 1, . . . , n.

Then, by (i) and the CLUR assumption, (zn)n has a convergent subsequence, but
this contradicts (ii).

Remark 2.2. It can be seen (by using the generalized Cantor lemma) that the
converse of the above lemma is also true, and thus it is characteristic for CLUR
Banach spaces.

Remark 2.3.Obviously, in aCLUR Banach spaceX,Cap[x,y,0]=∩0<δ≤rCap[x,y,δ]
is non empty and compact for every x, y ∈ X, x 6= y, r = ‖x− y‖.

The above characterization of CLUR Banach spaces suggests the following

Definition 2.4. The Banach space X is called compactly uniformly rotund, if for
any x, y, r, and δ as above we have limδ↓0 α(Cap[x, y, δ]) = 0 uniformly on y ∈
S(x, r).

It is clear that according to the properties of ‘caps’ mentioned above, it is enough to
give the definition only for the unit sphere in the space X (in this case we omit the
origin in the notation of the cap and write simply Cap[y, δ] instead of Cap[θ, y, δ]).
Obviously any compactly uniformly rotund Banach space is also a CLUR space.
It is clear also that any finite dimensional normed space is compactly uniformly
rotund. It can be seen that any uniformly rotund space is compactly uniformly
rotund as well: we recall that (X, ‖ · ‖) is uniformly rotund if for any ε ∈ (0, 2] there
is some δ ∈ (0, 1) so that x, y ∈ SX with ‖x− y‖ > ε implies ‖x+ y‖ > 2(1− δ).

In order to present several properties of the compactly (locally) uniformly rotund
spaces, let us recall a piece of terminology coming from optimization: given a
continuous function h : X → R and a nonempty closed set C ⊂ X, such that h
is bounded below (resp. above) on C, the problem to minimize (resp. maximize) h
on C is called generalized well-posed if any minimizing (resp. maximizing) sequence
for h in C has a convergent subsequence. In such a case, the set of minimizers
(resp. maximizers) of h in C is nonempty and compact. A well-known result of
Furi and Vignoli [6] asserts that the problem to minimize (maximize) h on C is
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generalized well-posed, if and only if, the measure of non compactness of the level
sets {x ∈ C : h(x) ≤ infC h + ε} (resp. {x ∈ C : h(x) ≥ supC h − ε}) converges to
zero as ε ↓ 0.

The following property is proved as its version when the norm is LUR. For the sake
of completeness, we sketch its proof.

Proposition 2.5. Let X be a CLUR Banach space. Then for any functional x∗ ∈
SX∗ which attains its norm on BX , the problem to maximize x∗ on BX is generalized
well-posed.

Proof. Let x∗ ∈ SX∗ and let x ∈ SX be such that 〈x∗, x〉 = 1 = ‖x∗‖. Let
(xn)n ⊂ BX be a maximizing sequence for x∗ on BX , that is 〈x

∗, xn〉 → 1 = 〈x∗, x〉.
We may think that xn 6= 0 for all n. Then the sequence zn = xn/‖xn‖, n = 1, 2 . . .
is a well defined sequence on the sphere SX and verifies 〈x∗, zn〉 ≤ 1 which entails
lim infn ‖xn‖ ≥ 1. Since, on the other hand lim supn ‖xn‖ ≤ 1 we conclude that
limn ‖xn‖ = 1 and thus (zn)n is also a maximizing sequence for x∗ on BX belonging
to the unit sphere. We have

2 ≥ ‖x+ zn‖ ≥ 〈x∗, x+ zn〉, n = 1, 2, . . . ,

which, because (zn)n is maximizing for x∗ on BX , shows that ‖x+ zn‖ → 2. Since
X is a CLUR space the latter entails that (zn)n, and therefore, also (xn)n, has a
convergent subsequence.

A Banach space which has the property from the above proposition, that is, every
x∗ ∈ SX∗ which attains its norm is generalized well-posed onBX , is called sometimes
nearly strongly convex space – see e.g. [7, 18]. It is a routine matter to check that
every nearly strongly convex Banach space satisfies also the Kadec-Klee (also called
(H)) property: every sequence (xn)n ⊂ SX which weakly converges to x ∈ SX ,
converges to x also for the norm. Thus, according to the above proposition, in
particular, every CLUR Banach space is nearly strongly convex and satisfies the
Kadec-Klee property as well.

Our list of preliminary results will be completed by showing that, as in the classi-
cal case of uniform rotundity, the compactly uniformly rotund Banach spaces are
reflexive Banach spaces. We also compare the latter notion with other similar ones.
In order to do this, we recall first some notions given by Huff in [8]:

A Banach space X is nearly uniformly convex (in brief, NUC) whenever, for every
ε > 0 there is δ ∈ (0, 1) such that for every sequence (xn)n ⊂ BX with sep(xn) ≥ ε
it follows co(xn) ∩ (1− δ)BX 6= ∅. Here, sep(xn) is defined as

sep(xn) := inf{‖xm − xl‖ : m 6= l},

and co(xn) stands for the convex hull of the elements of the sequence (xn)n.

A Banach space X is called uniformly Kadec-Klee (in brief, UKK) whenever, for
every ε > 0 there is δ ∈ (0, 1) such that for every sequence (xn)n ⊂ BX with xn → x
weakly and sep(xn) ≥ ε it follows x ∈ (1− δ)BX .
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A theorem of Huff from [8] states that a Banach space X is NUC if and only if it is
UKK and reflexive. We will show that compactly uniformly rotund Banach spaces
are a subclass of the NUC spaces:

Proposition 2.6. Any compactly uniformly rotund Banach space X is nearly uni-
formly convex.

Proof. First, let us mention that, without loss of generality, the test whether a
space X is NUC can be done only with sequences (xn)n which lie on the unit sphere
SX of the space. Having this remark, let ε > 0 be arbitrary. According to Definition
2.4, there is δ > 0 so that α(Cap[x, δ]) < ε/2 for any x ∈ SX . Let (xn)n ⊂ SX be a
sequence such that sep(xn) ≥ ε. We will prove that co(xn) ∩ (1− δ)BX 6= ∅ which
will show that X is nearly uniformly convex. Assuming, this is not true, then for
any j ∈ N we have (xn)n ⊂ Cap[xj, δ]. Thus from one side α(Cap[xj, δ]) < ε/2,
but on the other side the measure of noncompactness of an ε-separated sequence
is not less than ε/2 and then ε/2 ≤ α((xn)n) ≤ α(Cap[xj, δ]) < ε/2 which is a
contradiction.

An immediate corollary from the previous proposition and the theorem of Huff [8]
is:

Corollary 2.7. Any compactly uniformly rotund Banach space X is reflexive and
uniformly Kadec-Klee.

At the end of this section we give two examples which additionally clarify the place
of the class of compactly uniform rotund spaces. First of all, let us mention that a
compactly (locally) rotund space needs not be rotund: for instance, it is enough to
consider the sup-norm in any finite dimensional space Rn. More generally, one can
have the same phenomena in infinite dimensional Hilbert spaces as the following
example shows. Below, ‖ · ‖2 denotes the usual Hilbert norm in the sequence space
l2 and Bl2 the unit ball with respect to this norm.

Example 2.8. There is an equivalent renorming of the Hilbert space (l2, ‖ · ‖2)
which is compactly uniformly rotund but not strictly convex. Indeed, consider the
equivalent norm ‖·‖ in l2 whose unit ball is B = C∩Bl2 , where C = {x = (xn)n≥1 ∈
l2 :
∑∞

n=2 x
2
n ≤ 1/4}. That is,

‖x‖ = max







2

(

∞
∑

n=2

x2
n

)
1

2

,

(

∞
∑

n=1

x2
n

)
1

2







, x = (xn)n≥1 ∈ l2.

This norm is not strictly convex: for example, consider x = (1/2, 1/2, . . .) and
y = (−1/2, 1/2, . . .) for which we have ‖x‖ = ‖y‖ = ‖(x+y)/2‖ = 1. Further, using
the definition, it can be seen that the space X = (l2, ‖ · ‖) is a CLUR space. Let
us mention that (this is true in any CLUR space) the convergence of α(Cap[x, δ])
as δ → 0 is uniform on the compact subsets of the unit sphere SX of the space
X. Finally, to pass from the latter to the uniform convergence of the caps on the
sphere, one has to use two things: to consider an arbitrary two-dimensional section
S of SX through the points e1 = (1, 0, . . .) and −e1; and second, to check that
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α(Cap[x, δ]) = α(Cap[y, δ]), whenever x = (xn)n ⊂ S, y = (yn)n ⊂ SX are so that
|x1| = |y1|.

The next example shows that a nearly uniformly convex norm need not be CLUR.
In particular, it follows that the class of compactly uniform rotund Banach spaces
is a proper subclass of the nearly uniform convex spaces.

Example 2.9. There is a nearly uniformly convex renorming of the Hilbert spaces
(l2, ‖ ·‖2) which is not CLUR: For x = (xn)n≥1 ∈ l2 define ‖x‖ := |x1|+(

∑∞
n=2 x

2
n)

1

2 .
This is an equivalent norm which is known to be a non CLUR norm. To see the
latter, take as a reference point x = e1 and consider the sequence (ek)k≥2, where e

k

are the usual unit vectors in l2. It is seen that ‖e1+ ek‖ = 2 for all k ≥ 2, while the
sequence (ek)k≥2 has no convergent subsequence.

On the other hand, the space X = (l2, ‖ · ‖) is nearly uniformly convex. This can
be derived, for example, from some more general results due to Huff [8]. A sketch
of a possible direct verification is the following: Let ε > 0 and consider a sequence
(xk)k ⊂ BX with xk = (xk

n)n≥1, k ≥ 1, and such that sep(xk) ≥ ε. It is seen
that the set {x ∈ X : |x1| > 1 − ε/3} contains no more than two elements of the
sequence (xk)k. Thus, without loss of generality after passing to a subsequence, we
may suppose that |xk

1| ≤ 1− ε/3 for any k ≥ 1, and limk x
k
1 = x̄1. There is no loss

of generality to assume also that (
∑

n≥2(x
k
n−xl

n)
2)1/2 ≥ ε/3 for k 6= l, since (xk

1)k is

convergent. In this case, the sequence (x̄k)k of the projections x̄k = (x̄1, x
k
2, . . .) of

xk, k = 1, 2 . . ., is (ε/3)-separated in the hyperplane κ orthogonal to e1 and passing
through the point x̄1 e

1. Also, (x̄k)k is contained in an l2-ball of radius not less than
ε/3 in κ. Finally, one has to make use of this and the nearly uniform convexity of
the Hilbert norm ‖ · ‖2 to conclude that ‖ · ‖ is NUC.

3. Best approximation problems and Stečkin type lens lemma

In the beginning of this section, we recall some notions related to best approximation
problems. Let be given a nonempty closed set A ⊂ X of a real Banach space X.
The standard notation for the metric projection and the distance function generated
by A is as follows

PA(x) = {y ∈ A : ‖x− y‖ = d(x,A)}, d(x,A) := inf{‖x− z‖ : z ∈ A}, x ∈ X.

The metric projection PA(x) contains all solutions to the best approximation prob-
lem generated by x and A (the latter problem will be denoted sometimes by the
couple (x,A)).

Given a point x ∈ X, the set A is called approximatively compact for x ∈ X
whenever every minimizing sequence (yn)n ⊂ A for the best approximation problem
(x,A), i.e. limn ‖x − yn‖ = d(x,A), has a convergent subsequence. Equivalently,
A is approximatively compact for x ∈ X if the problem to minimize the function
‖x− ·‖ on A is generalized well-posed. The set A is called approximatively compact
whenever it is so for every x ∈ X. We say also (with some abuse on terminology)
that PA is approximatively compact for x whenever A is approximatively compact
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for x. An approximatively compact set is obviously closed. Denote

KA = {x ∈ X : A is approximatively compact for x}.

Certainly, PA(x) is nonempty and compact, whenever x ∈ KA. Finally, a set A
is called proximinal if for any x ∈ X there is at least one best approximation for
x in A. As it is shown in [7] in Banach spaces which are nearly strongly convex
proximinal sets turn out also to be approximatively compact (in fact the latter is a
characterization of the property of being nearly strongly convex).

For A ⊂ X, x ∈ X and ε > 0, the ε-level set in A of the distance function is

Lev(A, x, ε) = {z ∈ A : ‖x− z‖ ≤ d(x,A) + ε}.

The following fact is a consequence of the theorem of Furi and Vignoli [6] mentioned
in the previous section:

Fact 3.1. Let X be a Banach space and A ⊂ X be a nonempty closed set. Then A
is approximatively compact for x ∈ X if and only if, limε↓0 α(Lev(A, x, ε)) = 0.

Given x ∈ X, r > 0, y ∈ B(x, r/2) with y 6= x and σ ∈ (0, 2‖y − x‖) consider the
lens determined by x, r, y and σ

Lens(x, y, r, σ) = B[y, r − ‖y − x‖+ σ]\B(x, r).

The following is easy to verify (below ]x, z[ means the open segment generated by
x, z ∈ X).

Fact 3.2. If x 6∈ A, z ∈ PA(x), y ∈]x, z[∩B(x, d(x,A)/2), then for σ ∈ (0, 2‖y−x‖)

Lev(A, v, σ/3) ⊂ Lens(x, y, d(x,A), σ), whenever v ∈ B(y, σ/3).

Stečkin [16, Lemma 2] proved that in a LUR space the diameters of the lenses above
go to zero as σ goes to zero. De Blasi, Myjak and Papini [1, Lemma 2.1] proved
an explicit estimation of the diameters of the lenses in the case of uniformly convex
spaces (see also, the LUR case in [14, Lemma 2.1]). Here we give the analogous
estimate in the terms of the non-compactness indexes.

Lemma 3.3. Let X be an arbitrary Banach space, dimX ≥ 2, and let x ∈ X,
r > 0, y ∈ B(x, r/2) with y 6= x and σ ∈ (0, 2‖y − x‖). Then

(i) Lens(x, y, r, σ) ⊂ y + (r − ‖y − x‖) Cap
[

y−x
‖y−x‖

, σ
2||y−x‖

]

+ σB

(ii) α(Lens(x, y, r, σ)) ≤ (r − ‖y − x‖)α
(

Cap
[

y−x
‖y−x‖

, σ
2‖y−x‖

])

+ 2σ.

Proof. Take z ∈ Lens(x, y, r, σ) and put for brevity s := ‖y − x‖. Further, put

ȳ = y + (r − s)
y − x

s
,

z̄ = y + (r − s)
z − y

‖z − y‖
.
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Obviously, ‖z − z̄‖ ≤ σ. We have

z − x = (z − z̄) + (z̄ − y) + (y − x)

= (z − z̄) +

(

1−
s

r − s

)

(z̄ − y) +
s

r − s
(z̄ − y + ȳ − y).

Then

r ≤ ‖z − x‖ ≤ σ + r − 2s+
s

r − s
‖z̄ − y + ȳ − y‖ ,

whence

1−
σ

2s
≤

1

2

∥

∥

∥

∥

z̄ − y

r − s
+

ȳ − y

r − s

∥

∥

∥

∥

which implies

z̄ − y

r − s
∈ Cap

[

ȳ − y

r − s
,
σ

2s

]

Therefore,

z̄ ∈ y + (r − s) Cap

[

ȳ − y

r − s
,
σ

2s

]

and (i) is proved. The assertion (ii) follows immediately from (i).

Remark 3.4. One can put another assertion in the previous lemma, viz.

(iii) diam(Lens(x, y, r, σ)) ≤ (r − ‖y − x‖) diam
(

Cap
[

y−x
‖y−x‖

, σ
2‖y−x‖

])

+ 2σ,

corresponding to the statements of the analogous lemmas in [1] and [14].

4. Best approximations in CLUR spaces

In this (and the next) section we will study the structure of some sets related to
best approximation problems. More precisely, given a nonempty closed subset A of
a Banach space X, we will be interested in the structure of the complements of the
following sets: the set QA of points x ∈ X so that the metric projection PA(x) is no
more than a singleton; the set KA of points x at which the set A is approximatively
compact (or, equivalently, the best approximation problem to A for x is generalized
well-posed). Putting, ΦA = {x ∈ X : PA(x) = ∅} a further question will be to study
the complement of the set ΦA ∪KA. In all cases, the main idea is to prove that the
complements of the above sets are small (in appropriate sense) in the space X.

As we mentioned in the introduction, Stečkin [16] proved that in a LUR Banach
space X, the complement of QA is of the first Baire category in X (a refinement of
this result is in [22], where the set ΦA ∪KA is considered). The conclusion in the
Stečkin result has been confirmed in other settings e.g., by [19] (separable rotund
spaces), Zhivkov [22, 23] (for example, for Asplund rotund spaces) and for another
large class of spaces by Fabian and Preiss [4]. We will be interested in the sequel how
we can substantially sharpen the notion of smallness of the above complements. For
this we need to recall some notions of smallness of sets which have been introduced
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by Zaj́ıček (for the definitions and the properties mentioned below the reader can
consult the papers of Zaj́ıček [19, 20, 21]):

Given an element h ∈ SX and λ ∈ (0, 1), denote by C(h, λ) the cone ∪s>0sB(h, λ).
A set A is called cone supported at x ∈ A if there is r0 > 0, h ∈ SX and λ ∈ (0, 1)
so that A∩B(x, r0)∩{x+C(h, λ)} = ∅. A is cone supported if it is cone supported
at any x ∈ A. The set A is σ-cone supported if A is a countable union of cone
supported sets.

A less restrictive (but still rather strong) notion of smallness is the notion of poros-
ity: a set A ⊂ X is porous at x ∈ A if there is some λ(x) > 0 and r0(x) > 0 so that
for any r ∈ (0, r0(x)] there is y ∈ X with the property B(y, λ(x)r) ⊂ B(x, r) \ A.
The set A is called porous in X if it is porous at any point of x ∈ A and it is said
to be σ-porous in X if A is a countable union of porous sets in X.

It is straightforward to see that every (σ-) cone supported set is (σ-) porous (the
converse is not true). On the other hand, every porous set is nowhere dense in
X. Thus every σ-cone supported set is both σ-porous and a set of the first Baire
category. In finite dimensions the class of σ-porous sets is strictly smaller than the
class of sets which are simultaneously of the first Baire category and of Lebesgue
measure zero. Another fact that distinguish porosity from first Baire category is
that in any Banach space there is a set which is of the first Baire category but not
σ-porous. In separable Banach spaces the class of σ-cone supported sets coincides
with the class of sets which can be covered by countable many Lipschitz surfaces of
codimension 1 ([19, 21]): a set A ⊂ X is called Lipschitz surface of codimension 1
(or Lipschitz hypersurface) if there are a hyperspace H of X, an element v ∈ X \H
and a Lipschitz function ϕ : H → R so that A = {x+ϕ(x)v : x ∈ H}. In conclusion,
both σ-porosity, and even more, the notion of σ-cone supported set, are substantial
strengthenings of the notion of smallness of a set in Banach spaces.

The main result to be proved in this section is that for a nonempty closed subset A
of a compactly locally uniformly rotund Banach space X, the set of points x ∈ X
at which the metric projection PA is empty or the best approximation problem for
x to A is generalized well-posed, complements a σ-cone supported set in X. This
enhances a similar theorem of Konyagin [9] in which the Baire category is involved.

Namely, putting VA = ΦA ∪KA we have,

Theorem 4.1. Let X be a CLUR Banach space with dimX ≥ 2 and A be a
nonempty closed subset of X. Then X\VA is σ-cone supported.

Proof. Consider, for n = 1, 2, . . ., the sets

Kn =

{

x ∈ X : lim
ε↓0

α(Lev(A, x, ε)) <
1

n

}

.

Due to Fact 3.1
KA = ∩∞

n=1Kn.

Thus

X\VA = X\(ΦA ∪ (∩∞
n=1Kn)) = X\(∩∞

n=1(ΦA ∪Kn)) = ∪∞
n=1X\(ΦA ∪Kn).



J. P. Revalski, N. V. Zhivkov / Best Approximation Problems in Compactly ... 1163

The theorem will be proved if we show that for every n = 1, 2, . . ., the setX\(Φ∪Kn)
is cone supported.

Suppose x ∈ X\(Φ ∪Kn), n is fixed. Since x 6∈ ΦA there is ȳ ∈ PA(x). Certainly,
d(x,A) = ‖ȳ − x‖ > 0 as limε↓0 α(Lev(A, x, ε)) > 0. Put h = (ȳ − x)/‖ȳ − x‖ and
choose λ ∈ (0, 1) such that

α

(

Cap

[

h,
3

2
λ

])

<
1

2nd(x,A)
.

Such a choice of λ is possible due to Lemma 2.1. Denote

s̄ = min

{

d(x,A)

2
,

1

12λn

}

,

(s̄ depends on λ but both are fixed.)

Take arbitrary y ∈]x, ȳ[ satisfying s := ‖y − x‖ < s̄ and consider the ball B(x +
sh, λs). For z ∈ B(x+ sh, λs), by Fact 3.2, one has

Lev(A, z, λs) ⊂ Lens(x, y, d(x,A), 3λs).

It follows from Lemma 3.3 and the choices of λ and s̄ that

α(Lev(A, z, λs)) ≤ (d(x,A)− s)α(Cap[h, 3λ/2]) + 6λs

< d(x,A)
1

2nd(x,A)
+

1

2n
=

1

n
,

i.e., z ∈ Kn as limε↓0 α(Lev(A, z, ε)) ≤ α(Lev(A, z, λs)) < 1/n. Therefore,

∪s∈(0,s̄)B(x+ sh, λs) ⊂ Kn ⊂ ΦA ∪Kn.

One easily verifies for the cone C(h, λ) = ∪s>0sB(h, λ) that

[x+ C(h, λ)] ∩B(x, s̄(1− λ)) ⊂ ∪s∈(0,s̄)B(x+ sh, λs)

whence X\(ΦA ∪ Kn) is cone supported at x. And thus, the latter set is cone
supported.

The following corollaries are immediate. Their counterparts (for locally uniformly
rotund Banach spaces) when uniqueness of the best approximation is considered,
can be found in [14] .

Corollary 4.2. Let A be a proximinal subset of a CLUR Banach space X. Then
the set KA of all points for which the corresponding best approximation problem is
approximatively compact has a σ-cone supported complement in X.

Corollary 4.3. In a separable CLUR Banach space, for every closed nonempty set
A, the set X\VA can be covered by countably many Lipschitz surfaces of codimen-
sion 1.
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5. Best approximations in compactly uniformly rotund Banach spaces

In this section we will investigate to what extent the main result from the previous
section can be improved if we restrict ourselves to the class of compactly uniformly
rotund Banach spaces. As it is the case when the classical rotundity is considered
(cf. [1] and [14]) we will see that if we want the set KA to have a small complement
in X, then the smallness can be obtained with respect to the notion of σ-porosity,
not with respect to the notion of σ-cone supported set.

Before giving the main result in this section, let us recall some results. Stečkin [16]
was the first to prove that in a uniformly rotund Banach space X the set of points
for which the best approximation exists and is unique contains a dense Gδ-subset of
X (thus its complement is of the first Baire category in X). Later, Lau [12] proved
that in a reflexive Banach space with norm which satisfies the Kadec-Klee property
the set KA of the points x at which A is approximatively compact contains a dense
Gδ-subset of X. Konyagin [9] showed that, in fact, the reflexivity and Kadec-Klee
property are also necessary, namely: if for any closed nonempty set A ⊂ X the set
of points Dom(PA) = {x ∈ X : PA(x) 6= ∅} for which the best approximation to A
exists is dense in X, then X must be reflexive with Kadec-Klee norm. According
to the facts that we saw in the first section, namely, that a compactly uniformly
rotund Banach space is reflexive and satisfies the Kadec-Klee property, it follows
that the result of Lau holds in this class of spaces.

We have the following strengthening of the Lau’s theorem in the case of compactly
uniformly rotund spaces. An analogous result, in which also uniqueness of the best
approximation is considered, is due to De Blasi, Myjak and Papini [1, Theorem 2.2].

Theorem 5.1. Let X be a compactly uniformly rotund Banach space and A be its
nonempty closed subset. Then the set X \KA of best approximation problems, which
are not well-posed, is σ-porous.

Proof. As we mentioned in the previous section, KA = ∩nKn where for every
natural integer n = 1, 2, . . .

Kn :=

{

x ∈ X : lim
ε↓0

α(Lev(A, x, ε)) <
1

n

}

,

and thus X \KA = ∪n(X \Kn). Therefore, it is enough to show that each X \Kn

is porous.

To this end, fix any integer n ≥ 1 and x ∈ X \ Kn. Let λn ∈ (0, 1/(8n)] be such
that

α (Cap[h, λn]) <
1

8nd(x,A)
for any h ∈ SX .

Such a choice of λn is possible because of Definition 2.4 and the obvious fact that
d(x,A) > 0. Put further rn = 1/(6n). With the so chosen λn and rn we will check
the porosity of X \Kn at x.

Let r ∈ (0, rn]. Since x 6∈ Kn it is easily seen that d(x,A) > 1/(3n). On the other
hand, according to the above cited result of Lau, Dom(PA) = {x ∈ X : PA(x) 6= ∅}
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is dense in X. Therefore, there exists x′ ∈ Dom(PA) so that ‖x′ − x‖ < r/4 and
1/(3n) < d(x′, A) < 2d(x,A). Fix some z ∈ PA(x

′) and let us consider the point

y := x′ +
1

2
r

z − x′

‖z − x′‖
.

We will show that B(y, λnr) ⊂ B(x, r) ∩Kn and this will complete the proof.

The inclusion B(y, λnr) ⊂ B(x, r) is clear because of the choice of y and since
λnr < r/4. Further, take an arbitrary y′ ∈ B(y, λnr) and observe that ‖y − x′‖ =
r/2 < rn ≤ 1/(6n) < (1/2)d(x′, A). We have also λnr < r = 2‖y − x′‖. Hence, by
Fact 3.2 we have

Lev

(

A, y′,
1

3
λnr

)

⊂ Lens(x′, y, d(x′, A), λnr). (1)

But on the other hand, by Lemma 3.3 and the choice of λn and x′ we obtain that

α(Lens(x′, y, d(x′, A), λnr) ≤ 2λnr + 2d(x′, A)α

(

Cap

[

y − x′

‖y − x′‖
,

λnr

2‖y − x′‖

])

< 2
1

8n
+ 4d(x,A)α

(

Cap

[

y − x′

‖y − x′‖
, λn

])

≤
1

4n
+

1

2n
=

3

4n
.

This together with (1) implies that α(Lev(A, y′, (1/3)λnr)) ≤ 3/(4n) and conse-
quently y′ ∈ Kn. This completes the proof.

Let us mention once again, that a counter example from [14, Example 4.2] shows
that the conclusion of the above theorem cannot be strengthened to obtain that the
complement of KA in X is σ-cone supported in X.

Note Added in Proof. When the article has been submitted for publication we
were notified by Denka Kutzarova [11] that the compact uniform rotund property
that we consider in our article seems equivalent to the so-called β-property intro-
duced by Rolewicz [15] (see also [10]). The proof and further discussions will appear
elsewhere.
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