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1. Introduction

Given a proper, convex and lower semicontinuous function F : H → R ∪ {+∞}
defined on a Hilbert space H, we consider the optimization problem

min
x∈H

F (x). (P)

The proximal point algorithm, as introduced by Martinet first [20] and later gen-
eralized by Rockafellar [28] is designed to cope with problem (P) and generates for
any starting point x0 a minimizing sequence for F by the rule

xk+1 = proxλkF
(xk),

where proxλkF
(xk) := argminy∈H{F (y) + 1

2λk

‖y − xk‖2}, with λk > 0. Denoting by

F∗ the optimal value of (P), the sequence of the objective function values F (xk)
converges to F∗ under minimal assumptions on the λk’s. Furthermore, the conver-
gence rate F (xk) − F∗ = O(1/k) has been shown if the minimum F∗ is attained
[15].
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Motivated by several applications in the context of image processing, inverse prob-
lems and machine learning, recently there has been an active interest in accelerations
and modifications of the classical proximal point algorithm (see e.g. [11, 4, 3]).

Resorting to the ideas contained in the seminal work of Nesterov [26, 25], Güler, in
[16], devises an elegant way to accelerate the proximal point algorithm achieving the
convergence rate F (xk)−F∗ = O(1/k2) — which is optimal for a first order method
in the sense defined in [24]. Note that, until now accelerated methods provide only
convergence of the objective function values, in general without any guarantee of
convergence on the sequence (xk)k∈N.

The computational effort of accelerated methods is comparable with that of the
standard proximal point algorithm and mainly lies in the minimization subproblem
required to calculate the proximal point at each iteration. In fact, very often in the
applications, a formula for the proximity operator is not available in closed form.
This happens for instance when applying proximal methods to image deblurring
with total variation [9, 5, 2], or to structured sparsity regularization problems in
machine learning and inverse problems [18, 14, 23]. In those cases the proximity
operator is usually computed using ad hoc algorithms, and therefore inexactly. For
this reason, it is indeed critical to study the convergence of the algorithms under
possible perturbations of proximal points. This program has been pursued in the
pioneering paper by Rockafellar [28] for what concerns the basic proximal point
algorithm, and under different notions of admissible approximations of proximal
points. Since then, there has been a growing interest in inexact implementations of
proximal methods and many works appeared, treating the problem under different
perspectives, see e.g. [1, 12, 19, 13, 29, 30, 31, 32, 8, 35].

As regards the accelerated schemes, the paper [16] by Güler is the first one deal-
ing with computational errors. The analysis of convergence is performed first in
the exact case and is then carried on, in Theorem 3.1, to handle certain types of
computational errors, preserving the 1/k2 rate of convergence. Unfortunately, we
discovered such theorem contains a subtle error and therefore the proof of conver-
gence for the inexact case remains an open issue (see Remark 4.2).

In this paper we analyze the convergence of accelerated and inexact procedures
for the proximal point algorithm. The derivation of the algorithm relies on the
machinery of estimate sequences, as first proposed by Nesterov, see [25]. Inspired
by the results in [16], we present a more flexible method to build estimate sequences,
that can be easily adapted to different notions of approximation for the proximal
point. We show two facts: first, that leveraging on a different concept of admissible
errors (named of type 2 ), it is still possible to get quadratic convergence of inexact
and accelerated schemes, and secondly, that using even a generalization of the
type of errors considered in [16] (named of type 1 ), convergence of the inexact and
accelerated proximal point algorithm is guaranteed, but only with the rate 1/k.
In both cases conditions on the asymptotic behavior of the errors’ magnitude are
needed. It is worth noting, in handling errors of type 2, that the convergence of
the inexact algorithm holds even if the sequence of errors is not summable, which
contrasts the common requirement of summability of errors in the related literature
(see e.g. [28]).
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The paper is organized as follows: in Section 2 we introduce the definition of dif-
ferent types of errors for the evaluation of the proximity operator and give several
examples for the simple but representative case of the projection operator onto a
convex set. In Section 3 we quickly review the theory of estimate sequences and
we propose a new method to construct them. Convergence analysis of the algo-
rithms is performed in Section 4, where the general scheme is applied according to
two different notions of error. Finally, in Section 5 we state the given algorithms
in equivalent forms, allowing for simpler formulations, and comparisons with other
well-known methods.

2. General setting

2.1. Assumptions

Let H be a Hilbert space and consider a proper, convex and lower semicontinuous
function F : H → (−∞,+∞]. We focus on the optimization problem

inf
x∈H

F (x).

We denote by F∗ the infimum of F and we do not require the infimum to be attained,
neither to be finite.

2.2. Inexact computations of the proximal point

The algorithms analyzed in this paper are based on the computation of the proxim-
ity operator of the function F , introduced by Moreau [22], and then made popular
in the optimization literature by Martinet [20] and Rockafellar [28, 27]. For λ > 0
and y ∈ H, the proximal point of y with respect to λF is defined by setting

proxλF (y) := argmin
x∈H

{

F (x) +
1

2λ
‖x− y‖2

}

,

and the mapping proxλF : H → H is called proximity operator of λF . If we
let Φλ(x) = F (x) + 1

2λ
‖x− y‖2, the first order optimality condition for a convex

minimum problem yields

z = proxλF (y) ⇐⇒ 0 ∈ ∂Φλ(z) ⇐⇒ y − z

λ
∈ ∂F (z), (1)

where ∂ denotes the subdifferential operator. The last equivalence shows also that
proxλF (y) = (I + λ∂F )−1(y).

From a practical point of view the computation of the proximity operator can be
as difficult as the computation of a solution of the initial problem (even though
the strong convexity of Φλ can be a key advantage), so it is essential to replace the
proximal point with an approximate version of it. We introduce here three concepts
of approximation of the proximal point. The first two are based on the notion of
ε-subdifferential. The second has already been considered in [7], while the third one
has been first proposed by Rockafellar in [28] and further investigated in [16]. For



1170 S. Salzo, S. Villa / Inexact and Accelerated Proximal Point Algorithms

other notions of approximations used in the context of proximal point algorithms
see also [7, 29, 30, 31, 32, 8, 35].

We recall that the ε-subdifferential of F at the point z ∈ domF is the set

∂εF (z) = {ξ ∈ H : F (x) ≥ F (z) + 〈x− z, ξ〉 − ε, ∀x ∈ H} . (2)

For our purposes, it is worth noting that in general it holds

0 ∈ ∂εF (z) ⇐⇒ F (z) ≤ infF + ε.

All the notions of approximation we are going to introduce are of absolute type and
are based on the relaxation of conditions characterizing the proximal point — see in
particular those given in equation (1). Since in the applications the proximal point
is often sought by applying an iterative algorithm for minimizing Φλ, the following
notion of approximate proximal point is very natural, see [28, 1, 12].

Definition 2.1. We say that z ∈ H is a type 1 approximation of proxλF (y) with
ε-precision and we write z ≈1 proxλF (y) if and only if

0 ∈ ∂ ε2

2λ

Φλ(z). (AT1)

It is important to note (see [28, 16]) that if z ≈1 proxλF (y) with ε-precision, then

z ∈ domF and ‖z − proxλF (y)‖ ≤ ε.

Indeed, being Φλ strongly convex with modulus 1/λ and 0 ∈ ∂Φλ(proxλF (y)), we
have

Φλ(z)− Φλ(proxλF (y)) ≥
1

2λ
‖z − proxλF (y)‖2

The statement follows from the fact that

ε2

2λ
≥ Φλ(z)− (Φλ)∗

being 0 ∈ ∂ε2/(2λ)Φλ(z).

Another notion of approximation is obtained by relaxing the last inclusion in (1) in
the way specified in the next definition.

Definition 2.2. We say that z ∈ H is a type 2 approximation of proxλF (y) with
ε-precision and we write z ≈2 proxλF (y) if and only if

y − z

λ
∈ ∂ ε2

2λ

F (z). (AT2)

The condition in equation (AT2) can be written equivalently as

y ∈ z + λ∂ ε2

2λ

F (z) ⇐⇒ z ∈
(

I + λ∂ ε2

2λ

F
)−1

(y).
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Recalling that the proximity operator of λF is defined as (I+λ∂F )−1, the admissible
approximations of type 2 can be interpreted as a kind of an ε-enlargement of the
proximity operator. A similar concept of error has been studied for non accelerated
proximal algorithms in [19, 13, 12, 7] and very recently in the preprint [21]. Finally
we recall the concept introduced in [28] and treated by Güler in [16].

Definition 2.3. We say that z ∈ H is a type 3 approximation of proxλF (y) with
ε-precision and we write z ≈3 proxλF (y) if and only if

d(0, ∂Φλ(z)) ≤
ε

λ
. (AT3)

Condition (AT3) can be written in another way. In fact

d(0, ∂Φλ(z)) ≤ ε/λ ⇐⇒ ∃ e ∈ H, ‖e‖ ≤ ε/λ, e ∈ ∂Φλ(z)

⇐⇒ ∃ e ∈ H, ‖e‖ ≤ ε, (y − z + e)/λ ∈ ∂F (z)

⇐⇒ ∃ e ∈ H, ‖e‖ ≤ ε, z = (I + λ∂F )−1(y + e).

Therefore, we find out that

z ≈3 proxλF (y) with ε-precision ⇐⇒ ∃ e ∈ H, ‖e‖ ≤ ε : z = proxλF (y + e).

This equivalence means that an approximation of type 3 of the proximal point of y
is nothing but the exact proximal point of an ε-perturbation of y.

The concepts just introduced are not independent one of each other. In order to
clarify the relationships among them, we start with some equivalent formulations
of the first concept of approximation introduced above. Theorem 2.8.7 in [34] and
formula (1.2.5) in Chap. XI of [17] ensures that the ε2/(2λ)-subdifferential of Φλ

can be written as

∂ ε2

2λ

Φλ(z) =
⋃

0≤ε1+ε2≤ ε2

2λ

∂ε1F (z) + ∂ε2
1

2λ
‖· − y‖2(z)

=
⋃

0≤ε1+ε2≤ ε2

2λ

∂ε1F (z) +

{

z − y + e

λ
:
‖e‖2
2λ

≤ ε2

}

.

From the last formula we shall derive some equivalent descriptions of the first type
of approximation, which will be proved to be useful in studying convergence of the
algorithms and that we summarize in the following lemma.

Lemma 2.4. The following statements are equivalent:

i) z ≈1 proxλF (y) with ε-precision;

ii) ∃ (ε1, ε2) ∈ R
2
+, 0 ≤ ε1 + ε2 ≤ ε2/(2λ),∃ ξ ∈ ∂ε1F (z),∃ e ∈ H, ‖e‖2/(2λ) ≤ ε2

such that λξ + (z − y + e) = 0;

iii) ∃ (ε1, ε2) ∈ R
2
+, 0 ≤ ε21 + ε22 ≤ ε2,∃ e ∈ H, ‖e‖ ≤ ε2 such that (y − z + e)/λ ∈

∂ε2
1
/(2λ)F (z).
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This lemma sheds light also on the link among the various definitions of error given
so far. In particular, one can see that, in some sense, approximations of type 2 and
3 are extreme cases of approximations of type 1, corresponding to the choices ε2 = 0
and ε1 = 0, respectively. The next proposition states this fact more formally.

Proposition 2.5. The following implications hold true

1. z ≈2 proxλF (y) with ε-precision =⇒ z ≈1 proxλF (y) with ε-precision;

2. z ≈3 proxλF (y) with ε-precision =⇒ z ≈1 proxλF (y) with ε-precision.

If in addition F is strongly convex of modulus µ > 0

3. z ≈1 proxλF (y) with ε-precision =⇒ z ≈2 proxλF (y) with ε
√

(λµ+ 1)/λµ-

precision; thus z ≈2 proxλF (y) with
√
2ε-precision, if λ ≥ 1/µ.

Proof. 1. If we take (y − z)/λ ∈ ∂ε2/(2λ)F (z), then choosing ε1 = ε, ε2 = 0 (and
e = 0), condition iii) in Lemma 2.4 is satisfied and therefore we get z ≈1 proxλF (y)
with ε-precision.

2. Since z ≈3 proxλF (y), there exists e ∈ H with ‖e‖ ≤ ε such that (y− z+ e)/λ ∈
∂F (z), then choosing ε1 = 0 and ε2 = ε makes condition iii) again fulfilled.

3. From the definition

0 ∈ ∂ ε2

2λ

Φλ(z) ⇐⇒ F (x) +
1

2λ
‖x− y‖2 ≥ F (z) +

1

2λ
‖z − y‖2 − ε2

2λ
∀x ∈ H,

and on the other hand

‖z − y‖2 = −‖z − x‖2 + ‖x− y‖2 + 2〈x− z, y − z〉.

Thus, we have

0 ∈ ∂ ε2

2λ

Φλ(z) ⇐⇒ F (x) ≥ F (z) +
1

λ
〈x− z, y − z〉 − 1

2λ
‖x− z‖2 − ε2

2λ
, ∀x ∈ H.

Since F is strongly convex of modulus µ > 0, for every θ ∈ (0, 1], writing the
previous inequality replacing x with θx+ (1− θ)z, we obtain

θF (x) + (1− θ)F (z)

≥ F (θx+ (1− θ)z) +
µ

2
θ(1− θ)‖x− z‖2

≥ F (z) +
1

λ
〈θ(x− z), y − z〉 − 1

2λ
‖θ(x− z)‖2 − ε2

2λ
+

µ

2
θ(1− θ)‖x− z‖2.

Hence, simplifying, dividing by θ and then requiring λµ(1− θ) ≥ θ, we finally get

F (x) ≥ F (z) +
1

λ
〈x− z, y − z〉+ 1

2λ
(λµ(1− θ)− θ) ‖x− z‖2 − ε2

2λθ

≥ F (z) + 〈x− z,
y − z

λ
〉 − ε2

2λθ
,
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which implies (y − z)/λ ∈ ∂ε2/(2λθ)F (z). If we choose θ = λµ/(1 + λµ), then

(y − z)/λ ∈ ∂ε2(1+λµ)/(2λ2µ)F (z), meaning z ≈2 proxλF (z) with ε
√

(1 + λµ)/(λµ)-
precision. Moreover, if λ ≥ 1/µ, it is possible to choose θ = 1/2 obtaining (y −
z)/λ ∈ ∂√2εF (z).

Example 2.6. To clarify what kind of approximations are allowed applying the
various error criteria, we describe the case where F is the indicator function of a
closed and convex set C, and the proximal operator is consequently the projection
onto C, denoted by PC . Given y ∈ H, it holds

z ≈1 PC(y) with ε-precision ⇐⇒ z ∈ C and ‖z − y‖2 ≤ d(y, C)2 + ε2.

As noted above this is the less restrictive concept of error. If y 6∈ C, approximations
of type 1 do not necessarily belong to the boundary of C, but lie in the portion of
C belonging to a ball centered in y with a radius greater then d(y, C). An example
is shown in Figure 2.1.

C

y

ε

d(y, C)

Figure 2.1: Type 1 approximations

The second notion of approximation, when we deal with projections, can be formu-
lated in the following way:

z ≈2 PC(y) with ε-precision ⇐⇒ z ∈ C and 〈x− z, y − z〉 ≤ ε2

2
∀x ∈ C. (3)

Recalling that the projection PC(y) of a point y is the unique point z ∈ C which
satisfies 〈x − z, y − z〉 ≤ 0, approximations of type 2 are therefore the points en-
joying a relaxed formulation of this property. From a geometric point of view, the
characterization of projection ensures that the convex set C is entirely contained
in the half-space determined by the tangent hyperplane at the point PC(y), namely
C ⊆ {x ∈ X : 〈x−PC(y), y−PC(y)〉 ≤ 0}. In Figure 2.2 an admissible approxima-
tion of PC(y) is depicted. To check that z satisfies inequality (3) for all x ∈ C, it is
enough to verify that C is entirely contained in the negative half-space determined
by the (affine) hyperplane of equation

hε :

〈

x− z,
y − z

‖y − z‖

〉

=
ε2

2‖y − z‖ .

which is normal to y − z and at distance ε2/(2‖y − z‖) from z.

Approximations of type 3 are the points belonging to C that can be written as the
projection of points belonging to a ball of radius ε centered at y:

z ≈3 PC(y) with ε-precision ⇐⇒ z = PC(y + e), with ‖e‖ ≤ ε.
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C

y

z

hε

Figure 2.2: Type 2 approximations

Therefore, if y 6∈ C, those approximations belong to the boundary of C (see Figure
2.3).

C

y
ε

Figure 2.3: Type 3 approximations

We remark that if C is bounded, an approximation of type 3 can be regarded as a
type 2 approximation. More precisely:

z ≈3 PC(y) with ε-precision =⇒ z ≈2 PC(y) with
√

2diam(C)ε-precision.

To this purpose, suppose z ≈3 PC(y) with ε-precision. Then, there exists e ∈ H,
‖e‖ ≤ ε such that z = PC(y + e) and for all x ∈ C it holds

〈x− z, y − z〉 = 〈x− PC(y + e), y + e− PC(y + e)〉 − 〈x− PC(y + e), e〉
≤ ‖x− PC(y + e)‖‖e‖
≤ diam(C)ε.

3. Nesterov’s estimate sequences

In [25], Nesterov illustrates a flexible mechanism to produce minimizing sequences
for an optimization problem. The idea is to generate recursively a sequence of
simple functions that approximate F in the sense introduced below. In this section
we briefly describe this method and provide new general results for constructing
quadratic estimate sequences when F is convex.

3.1. General framework

Definition 3.1. A pair of sequences (ϕk)k∈N, ϕk : H → R and (βk)k∈N, βk ≥ 0 is
called an estimate sequence of a proper function F : H → R ∪ {+∞} iff

∀x ∈ H, ∀k ∈ N : ϕk(x)− F (x) ≤ βk(ϕ0(x)− F (x)) and βk → 0. (4)
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The next statement represents the main result about estimate sequences and ex-
plains how to use them to build minimizing sequences and get corresponding con-
vergence rates.

Theorem 3.2. Let ((ϕk)k∈N, (βk)k∈N) be an estimate sequence of F and denote by
(ϕk)∗ the infimum of ϕk. If for some sequences (xk)k∈N, xk ∈ H and (δk)k∈N, δk ≥ 0
we have

F (xk) ≤ (ϕk)∗ + δk, (5)

then for any x ∈ domF

F (xk) ≤ βk(ϕ0(x)− F (x)) + δk + F (x). (6)

Thus, if δk → 0 (being also βk → 0), (xk)k∈N is a minimizing sequence for F , that
is

lim
k→∞

F (xk) = F∗.

If in addition the infimum F∗ is attained at some point x∗ ∈ H, then the following
rate of convergence holds true

F (xk)− F∗ ≤ βk(ϕ0(x∗)− F∗) + δk.

Proof. Suppose that xk and δk satisfy (5). Then for x ∈ H, we have

F (xk) ≤ (ϕk)∗ + δk ≤ ϕk(x) + δk.

Using that ϕk is an estimate sequence of F we get

F (xk) ≤ βk(ϕ0(x)− F (x)) + F (x) + δk, ∀x ∈ domF.

Furthermore, if βk → 0 and δk → 0 we obtain

lim sup
k→+∞

F (xk) ≤ lim sup
k→+∞

βk(ϕ0(x)− F (x)) + F (x) + δk = F (x).

The previous inequality, holding for every x ∈ domF , yields lim supk→+∞ F (xk) ≤
F∗. Thus, the following chain of inequalities holds

F∗ ≤ lim inf
k→+∞

F (xk) ≤ lim sup
k→+∞

F (xk) ≤ F∗,

proving that (xk) is a minimizing sequence for F . If there exists x∗ such that
F (x∗) = F∗, inequality (6) can be specialized for x = x∗ giving

F (xk)− F∗ ≤ βk(ϕ0(x∗)− F∗) + δk.

We point out that the previous theorem provides convergence of the sequence
(F (xk))k∈N to the infimum of F without assuming any existence of a minimizer
for F , neither the boundedness from below. This result has been also stressed in
the already cited paper [16] in Theorem 4.1. However, the hypothesis of attainabil-
ity of the infimum is required if an estimate of the rate of convergence is needed.
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Remark 3.3. An estimate sequence is usually generated by checking a recursive
inequality. Indeed, if (ϕk)k∈N satisfies

ϕk+1(x)− F (x) ≤ (1− αk)(ϕk(x)− F (x)), (7)

with 0 ≤ αk < 1, then ((ϕk)k∈N, (βk)k∈N) is an estimate sequence of F with

βk =
k−1
∏

i=0

(1− αi), (8)

provided that
∑+∞

i=0 αi = +∞.

In fact, iterating the inequality (7) k times, we obtain the basic inequality of es-
timate sequences given in (4) with βk as in (8). Furthermore βk ∈ (0, 1], and the
following equivalence holds

βk → 0 ⇐⇒
∞
∑

i=0

αi = +∞. (9)

For proving (9) first note that by definition

βk → 0 ⇐⇒
k−1
∏

i=0

(1− αi) → 0 ⇐⇒
+∞
∑

i=0

log(1− αi) = −∞.

Now suppose that
∑∞

i=0 αi = +∞. Then, using the inequality log(1 − x) ≤ −x,
which holds for every x ∈ [0, 1), we get

∞
∑

i=0

log(1− αi) ≤
∞
∑

i=0

−αi = −∞,

implying that βk → 0.

For the converse, assume that βk → 0. There are two cases: either there exists a
subsequence (αil)l∈N satisfying αil ≥ 1/2, and the proof in this case is finished, or αi

definitely satisfies αi ≤ 1/2. If the latter condition holds, then using the inequality
log(1− x) ≥ −2x, which holds for x ∈ [0, 1/2), we get

−∞ =
∞
∑

i=0

log(1− αi) ≥ −2
∞
∑

i=0

αi,

and therefore the proof is concluded.

3.2. Construction of an estimate sequence

We present in this section a general procedure for generating an estimate sequence of
a proper, lower semicontinuous and convex function F : H → R∪{+∞}. Recall that
an estimate sequence of F is a pair of sequences, a sequence of (simple) functions
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ϕk and a numerical sequence βk. Besides this, we also need a third sequence of
points xk.

First of all, let us deal with the generation of the sequence of functions. Denote
by F(H,R) the space of functions from H to R. For a given F , we define an
updating rule for functions ϕ ∈ F(H,R), depending on the choice of four parameters
(z, ε, ξ, α) ∈ domF × R+ ×H× [0, 1), as

U(z, ε, ξ, α) : F(H,R) → F(H,R),

U(z, ε, ξ, α)(ϕ)(x) = (1− α)ϕ(x) + α(F (z) + 〈x− z, ξ〉 − ε).

Hereafter, we shall often denote for the sake of brevity the update of ϕ simply by
ϕ, that is we set

ϕ := U(z, ε, ξ, α)(ϕ)

hiding the dependence on the parameters. The same hat notation will be used also
for other quantities: in all cases it will stand for an update of the corresponding
variable. The iteration of the operator U(z, ε, ξ, α) will allow us to generate se-
quences (ϕk)k∈N which turn out to be estimate sequences for F . Indeed, it is easy
to see that if ξ ∈ ∂εF (z), then the following inequality holds

ϕ(x)− F (x) ≤ (1− α)(ϕ(x)− F (x))

which in fact resembles the recursive inequality of estimate sequences (7). Indeed,
recalling the definition of ε-subdifferential (2), note that

ϕ(x)− F (x) = (1− α)(ϕ(x)− F (x)) + α(F (z) + 〈x− z, ξ〉 − ε− F (x))

≤ (1− α)(ϕ(x)− F (x)).

Summarizing, given ((zk, εk, ξk, αk))k∈N, (zk, εk, ξk, αk) ∈ domF × R+ × H × [0, 1)
with ξk+1 ∈ ∂εkF (zk+1),

∑

k∈N αk = +∞, and an arbitrary function ϕ : H → R, the
sequence defined by setting

{

ϕ0 = ϕ

ϕk+1 = U(zk+1, εk, ξk+1, αk)ϕk,
(10)

satisfies the inequality (7) and βk =
∏k−1

i=0 (1−αk) → 0 thanks to Remark 3.3, being
therefore an estimate sequence of F .

We now describe in detail the update when the starting ϕ is a quadratic function
written in canonical form, namely

ϕ(x) = ϕ∗ +
A

2
‖x− ν‖2, with ϕ∗ ∈ R, A > 0, ν ∈ H,

where clearly ϕ∗ = infϕ. Then, for an arbitrary choice of the parameters, the
update ϕ of ϕ introduced above is still a quadratic function, that can be written in
canonical form as

ϕ(x) = ϕ∗ +
A

2
‖x− ν‖2
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with























ϕ∗ = (1− α)ϕ∗ + αF (z) + α〈ν − z, ξ〉 − α2

2(1− α)A
‖ξ‖2 − αε

A = (1− α)A

ν = ν − α

(1− α)A
ξ.

(11)

This means that the subset of quadratic functions is closed with respect to the
action of the operator U(z, ε, ξ, α), which therefore induces a transformation on the
relevant parameters defining their canonical form, depending of course on (z, ε, ξ, α).

Next, the problem of generating a sequence (xk)k∈N satisfying inequality (5) shall
be treated. We state a generalization of Theorem 2.1 and Lemma 3.2 in [16] and
of Lemma 2.1 in [6], that will be crucial in the whole subsequent analysis. Though
the proof follows closely the cited results, the use of the approximate subdifferential
brings about much more flexibility with respect to the original version, as will be
clear later.

Lemma 3.4. Let x, ν ∈ H, A > 0 and ϕ = ϕ∗ + A/2‖· − ν‖2 be such that F (x) ≤
ϕ∗ + δ for some δ ≥ 0. If z, ξ ∈ H, ε ≥ 0 are given with ξ ∈ ∂εF (z), defining
ϕ = U(z, ε, ξ, α)(ϕ), with α ∈ [0, 1) and setting y = (1− α)x+ αν, we get

(1− α)δ + ε+ ϕ∗ ≥ F (z) +
λ

2

(

2− α2

(1− α)Aλ

)

‖ξ‖2 + 〈y − (λξ + z), ξ〉

Proof. Consider ϕ = ϕ∗+A/2‖· − ν‖2 and (z, ξ) ∈ H2, ε ≥ 0 with ξ ∈ ∂εF (z) and
α ∈ [0, 1). Define ϕ = U(z, ε, ξ, α)ϕ and suppose x ∈ H to satisfy δ + ϕ∗ ≥ F (x)
for some δ ≥ 0. From the expression of ϕ∗ in (11) we get

ϕ∗ = (1− α)ϕ∗ + αF (z) + α〈ν − z, ξ〉 − α2

2(1− α)A
‖ξ‖2 − αε,

and, being ξ ∈ ∂εF (z), we obtain

δ + ϕ∗ ≥ F (x) ≥ F (z) + 〈x− z, ξ〉 − ε

therefore

(1− α)δ + ϕ∗

≥ F (z) + 〈(1− α)x+ αν − z, ξ〉 − α2

2(1− α)A
‖ξ‖2 − ε

= F (z) + 〈(1− α)x+ αν − (λξ + z), ξ〉+
(

λ− α2

2(1− α)A

)

‖ξ‖2 − ε.

Defining y = (1− α)x+ αν and substituting it in the previous equation we get the
statement.
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Given x ∈ H satisfying F (x) ≤ ϕ∗ + δ for some δ ≥ 0, the inequality stated in the
previous lemma suggests different possibilities to choose an update of x, denoted
x, which satisfies the analogous condition F (x) ≤ ϕ∗ + δ for a suitable choice of δ.
This will be clarified in the following sections.

The last ingredient for completing the framework of estimate sequences is the nu-
merical sequence (βk)k∈N which should be constructed in such a way that βk → 0.
To this purpose and motivated also by the previous lemma we give a further result
that is a slight generalization of Lemma 2.2 in [16]. The proof is omitted because
it follows the same line of the original one.

Lemma 3.5. Given the numerical sequence (λk)k∈N, λk > 0 and A > 0, a, b >
0, a ≤ b, define (Ak)k∈N and (αk)k∈N such that A0 = A and for k ∈ N

αk ∈ [0, 1), with a ≤ α2
k

(1− αk)Akλk

≤ b

Ak+1 = (1− αk)Ak.

Then βk :=
∏k−1

i=0 (1− αi) satisfies

1

(1 +
√
bA
∑k−1

j=0

√

λj)2
≤ βk ≤

1

(1 + (
√
aA/2)

∑k−1
j=0

√

λj)2
(12)

In particular, βk ∼ 1/(
∑k−1

j=0

√

λj)
2 and βk → 0 if and only if

∑∞
k=0

√
λk = +∞.

Moreover, if λk ≥ λ > 0 for every k ∈ N, then βk = O(1/k2).

4. Convergence analysis of the algorithms

In this section we show how to employ the general framework of estimate sequences
introduced in Section 3 for constructing inexact proximal point algorithms of various
types according to the different definitions of error given above. Convergence of the
algorithms shall be analyzed and the rate of convergence shall be provided as well.
In case of errors of type 1, the main result states that the generated sequence is
minimizing for F and if a minimizer exists, it shares the convergence rate

F (xk)− F∗ = O(1/k).

This result corrects the one given in [16]. Indeed, as we shall explain in the following
Remark 4.2, a subtle error is present in Güler’s proof that makes vain the conclusion
about the quadratic convergence of the algorithm under inexact computation of the
proximal points. We were able to fix the problem and recover the convergence of the
algorithm even under slightly more general errors, but we could obtain only linear
rate of convergence, no matter how fast the error goes to zero. This suggests that
the use of an accelerated algorithm under the presence of errors of type 1 could have
no effect in practice because potentially equivalent to the non accelerated version.
We refer the reader to [10, 2] for some considerations on this fact.
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Then, we study the algorithm under errors of type 2 (more demanding than 1) and
here the situation changes. Indeed, we were able to get again quadratic convergence

F (xk)− F∗ = O(1/k2)

if the errors go to zero fast enough. One further result is that, if only errors of type
2 are allowed, the algorithm converges even if errors go to zero more slowly then
usually required, with the sum of total errors that can be possibly infinite. This is
a remarkable fact that does not occur in the classical (non accelerated) proximal
point algorithm where summability of the errors is required, see [28].

4.1. The algorithm with errors of type 1

The first result of this section is an application of Lemma 3.4. It is essentially the
core of Theorem 3.1 given in Güler’s paper [16].

Theorem 4.1. Fix λ > 0 and ε ≥ 0. Let x, ν ∈ X, A > 0 and ϕ = ϕ∗ +
A/2‖· − ν‖2 such that F (x) ≤ ϕ∗ + δ for some δ ≥ 0. If α2/((1 − α)Aλ) = 1,
choosing

t = (1− α)x+ αν

x ≈1 proxλF (t) with ε-precision

ϕ = U(z, 0, ξ, α)ϕ with z = proxλF (t), ξ =
t− z

λ
∈ ∂F (x)

A = (1− α)A

ν = ν − λ

α
ξ

δ = (1− α)δ + ε2/2λ

we have δ + ϕ∗ ≥ F (x) +
1

2λ
‖t− x‖2.

Proof. Let Φλ denote here the function F + 1/(2λ)‖· − t‖2. Applying Lemma 3.4
with ε = 0, y = t and ξ = (t− z)/λ we get

(1− α)δ + ϕ∗ ≥ F (z) +
1

2λ
‖t− z‖2 = Φλ(z) ≥ (Φλ)∗ ≥ Φλ(x)−

ε2

2λ

the last inequality following from the definition of x itself.

Remark 4.2. We are now going to discuss a fundamental issue. It is quite natural
to think to employ the previous theorem to generate a sequence (xk)k∈N satisfying
δk + ϕk ≥ F (xk) and then conclude relying on Theorem 3.2 – and actually this is
what Güler did in his paper [16] in Theorem 3.1. But, unfortunately this is not
a correct reasoning. Indeed, if we look carefully at the statement of the previous
theorem, we recognize that the full iteration process should rely on updating the
four quantities x, ν, A, α. The point is that the second one is updated by the rule
ν = ν − (t− z)/α which does depend on the exact proximal point we are assuming
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not to know. Thus, the inductive construction of the sequences cannot be set up
by no means. This is exactly where Güler’s proof fails, leading to a wrong result.
Rather, we would like to update the variable ν using the rule ν = ν − (t − x)/α
(because x is what we actually know) and indeed the author suggests to use it in the
statement of Theorem 3.1, even though the proof addresses the other rule, missing
the link between them.

To overcome the difficulty discussed in the previous remark, it is necessary to study
the case in which ν is known only up to a certain precision. We are therefore going
to describe what the effects of a perturbation of ν on the previous results are. Using
the notations introduced in Theorem 4.1, define u ∈ H by setting

u = ν +∆, with ‖∆‖ ≤ η.

If we set

y = (1− α)x+ αu

x ≈1 proxλF (y) with ε-precision

it follows that y = (1−α)x+αν+α∆ = t+α∆. Moreover, from Lemma 2.4 there
exist ε1, ε2 ≥ 0 such that 0 ≤ ε21 + ε22 ≤ ε2 and

y − x+ e

λ
∈ ∂ ε2

1

2λ

F (x), with ‖e‖ ≤ ε2.

Recalling the definition of y, we can rewrite the last equation as

t− x+ e+ α∆

λ
∈ ∂ ε2

1

2λ

F (x), with ‖e+ α∆‖ ≤ ε2 + αη, (13)

implying that

x ≈1 proxλF (t) with (ε+ αη)-precision. (14)

This allows for stating a new version of Theorem 4.1 that can be finally used to
build an iterative algorithm.

Theorem 4.3. Fix λ > 0, ε > 0, x, u ∈ H, A > 0, and δ, η ≥ 0. Suppose that there
exist ϕ∗ ∈ R and ν ∈ H with ‖ν − u‖ ≤ η such that if we set ϕ = ϕ∗+A/2‖· − ν‖2,
we get δ + ϕ∗ ≥ F (x). Let α ∈ [0, 1[ be such that α2 = (1− α)Aλ and define

y = (1− α)x+ αu

x ≈1 proxλF (y) with ε-precision

u = u− (1/α)(y − x)

A = (1− α)A

η = η + ε/α

δ = (1− α)δ +
(αη)2

2λ
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Then there exists ν ∈ H, ‖ν − u‖ ≤ η and ϕ∗ ∈ R such that, if ϕ = ϕ∗ +
A/2‖· − ν‖2, it holds

ϕ− F ≤ (1− α)(ϕ− F )

δ + ϕ∗ ≥ F (x).

More precisely, the function ϕ is obtained by ϕ = U(t, 0, ξ, α)ϕ with t = (1−α)x+αν
and ξ = (t− proxλF (t))/λ.

Proof. Recalling equation (14) it is possible to apply Theorem 4.1 with ε = ε+αη.
In particular, if t, ξ, ν, ϕ are as in Theorem 4.1, we have

δ + ϕ∗ ≥ F (x), with δ = (1− α)δ +
1

2λ
(αη + ε)2 .

Now, being x an approximation of type 1 of z = proxλF (t) with (ε+αη) -precision,
we have ‖x− z‖ ≤ ε+ αη and moreover

u = u− 1

α
(y − x) = ν +∆− 1

α
(y − z)− 1

α
(z − x)

= ν +∆− 1

α
(t+ α∆− z)− 1

α
(z − x)

= ν − 1

α
(t− z)− 1

α
(z − x)

= ν − 1

α
(z − x)

Thus ‖u− ν‖ ≤ α−1‖z − x‖ ≤ η + ε/α.

In contrast to what happens in Theorem 4.1, all the updating rules in Theorem
4.3 no longer depend on unknown quantities, and therefore allow for the definition
of an iterative process. More precisely, given two sequences of positive numbers
(λk)k∈N, (εk)k∈N, A > 0 and x0 ∈ dom(F ), u0 = x0, η0 = 0 we can iteratively build
sequences as follows













































αk =

√

(Akλk)2 + 4Akλk − Akλk

2

yk = (1− αk)xk + αkuk

xk+1 ≈1 proxλkF
(yk) with εk-precision

Ak+1 = (1− αk)Ak

uk+1 = uk −
1

αk

(yk − xk+1)

ηk+1 = ηk +
εk
αk

δk+1 = (1− αk)δk +
(αkηk+1)

2

2λk

.

(IAPPA1)
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We note that the αk in algorithm (IAPPA1) is obtained as the only positive solution
of the equation α2

k = (1− αk)Akλk.

Remark 4.4. Theorem 4.3 ensures the existence of a parallel sequence of points
(νk)k∈N, νk ∈ H such that ‖uk − νk‖ ≤ ηk and of a corresponding estimate sequence
(ϕk)k∈N, ϕk = (ϕk)∗ +Ak‖· − νk‖2 satisfying (7) and such that F (xk) ≤ (ϕk)∗ + δk.
The same theorem also shows that the sequence of the ϕk’s can be defined recursively
by means of ϕk+1 = U(tk, 0, ξk+1, αk)(ϕk) with tk = (1 − αk)xk + αkνk, ξk+1 =
(tk − proxλkF

(tk))/λk. Of course all the sequences of parameters νk and ξk are
unknown and consequently the estimate sequence itself is unknown. However, as
the algorithm above shows, the explicit expression of the ϕk’s is not essential in
constructing the full iterative process. In conclusion, the estimate sequence (ϕk)k∈N,
even though unknown, is indeed underlying the iterative process and make things
work.

While we are not interested in the expression of ϕk, we need an explicit formula
for the asymptotic behavior of βk. From Lemma 3.5 in the previous section with
a = b = 1, we know the asymptotic behavior of the sequence of the βk’s and
sufficient conditions to make it convergent and even an O(1/k2).

The aim of the rest of this section is to explicitly compute the cumulative errors δk
and ηk, for which we have only a recursive definition, and to determine a rate of
convergence to zero. From the definition ηk = ηk−1 + εk−1/αk−1, we get

ηk =
k−1
∑

i=0

εi
αi

taking into account that η0 = 0. As concerns δk, mimicking the reasoning followed
in Lemma 3.3 in [16], being δ0/β0 = 0, one can get

δk
βk

=
1

2

k−1
∑

i=0

(αiηi+1)
2

λiβi+1

.

Exploiting the condition α2
i /(Ai+1λi) = 1 and formula Ai+1 = βi+1A, we get

α2
i /(λiβi+1) = A and hence

δk =
Aβk

2

k−1
∑

i=0

η2i+1, ηi+1 =
i
∑

j=0

εj
αj

(15)

From the latter formula, it is possible to derive a rate of convergence for algorithm
(IAPPA1).

Theorem 4.5. Consider the proximal point algorithm described in (IAPPA1) for
a sequence λk > 0 satisfying

λj ≤ Mλi whenever j ≤ i for some M > 0. (16)
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Then, if εk = O(1/kq) with q > 3/2, the sequence (xk)k∈N is minimizing for F and
if in addition F has a minimizer the following rate of convergence holds

F (xk)− F∗ =











O(1/k2q−3) if q < 2

O(log2 k/k) if q = 2

O(1/k) if q > 2

Proof. Convergence, as well as relative rate declared in the statement, will be
deduced from corresponding convergence properties and rate of the sequences δk
and βk, using the key results about estimate sequences stated in Theorem 3.2.

Concerning the sequence (1/αj)j∈N, from the equation α2
j = βj+1Aλj and Lemma

3.5 (with a = b = 1), we have

√

Aλj

1 +
√
A
∑j

k=0

√
λk

≤ αj ≤
√

Aλj

1 +
√
A/2

∑j
k=0

√
λk

Taking into account condition (16) we obtain

1

αj

≤ 1√
A

+

j
∑

k=0

√

λk/λj ≤
1√
A

+
√
M(j + 1),

and hence 1/αj = O(j). Thanks to the assumption on εj we thus have

εj
αj

≤ c

(j + 1)p
with p = q − 1 > 1/2, for some c > 0.

This implies that

ηi+1 =
i
∑

j=0

εj
αj

≤ c
i+1
∑

j=1

1

jp
= c

(

1 +
i+1
∑

j=2

1

jp

)

≤ c

(

1 +

∫ i+1

1

t−pdt

)

=























c

(1− p)
((i+ 1)1−p − p) if 1/2 < p < 1

c (1 + log(i+ 1)) if p = 1

c

(p− 1)

(

p− 1

(i+ 1)p−1

)

if p > 1.

Let us suppose p 6= 1. Taking into account that the function t 7→ (t1−p − p)2 is
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increasing for t ≥ 1, we get

k−1
∑

i=0

η2i+1 ≤
c2

(1− p)2

k
∑

i=1

(i(1−p) − p)2

≤ c2

(1− p)2

∫ k+1

1

(t(1−p) − p)2dt

=
c2

(1− p)2

(

(k + 1)3−2p

3− 2p
− 2p

(k + 1)2−p

2− p
+ p2k − 4p2 − 7p+ 2

(3− 2p)(2− p)

)

. (17)

On the other hand, if p = 1 we have

k−1
∑

i=0

η2i+1 ≤ c2
k
∑

i=1

(1 + log i)2

≤ c2
(

1 +

∫ k+1

2

(1 + log t)2dt

)

= c2
(

k + (k + 1) log2(k + 1)− 2 log2 2
)

. (18)

Putting together (17) and (18) we get

k−1
∑

i=0

η2i+1 =











O(k3−2p) if 1/2 < p < 1

O(k log2 k) if p = 1

O(k) if p > 1.

Combining this result with the convergence rate O(1/k2) of βk mentioned in Lemma
3.5, and recalling that p = q − 1, we finally get

δk =











O(k3−2q) if 3/2 < q < 2

O(log2 k/k) if q = 1

O(1/k) if q > 2.

4.2. The algorithm with errors of type 2

The aim of this section is to prove that considering a different type of approxima-
tions, namely approximations of type 2, the rate of convergence of the exact version
of the accelerated proximal point algorithm can be recovered. While the structure
of the section is essentially the same of the previous one, what makes the difference
is the recursive update of the quantity δk.

Theorem 4.6. Fix λ > 0 and ε ≥ 0. Let x, ν ∈ X, A > 0 and ϕ = ϕ∗ +
A/2‖· − ν‖2 be such that F (x) ≤ ϕ∗ + δ for some δ ≥ 0. If α2/((1 − α)Aλ) ≤ 2,
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choosing

y = (1− α)x+ αν

x ≈2 proxλF (y), with ε-precision

ϕ = U(x, ε, ξ, α)ϕ, with ξ =
y − x

λ
∈ ∂ ε2

2λ

F (x)

A = (1− α)A

ν = ν − α

A
ξ

δ = (1− α)δ +
ε2

2λ

we have δ + ϕ∗ ≥ F (x) +
c

2λ
‖y − x‖2 ≥ F (x) with c =

(

2− α2/( Aλ)
)

≥ 0.

Proof. By Lemma 3.4, if we take x ∈ H such that (y− x)/λ ∈ ∂ ε2

2λ

F (x) and define

ξ = (y − x)/λ, we get ξ ∈ ∂ ε2

2λ

F (x) and y − (λξ + x) = 0, hence

(1− α)δ +
ε2

2λ
ϕ∗ ≥ F (x) +

λ

2

(

2− α2

(1− α)Aλ

)

‖ξ‖2.

which gives the required result, after substituting ξ with (y − x)/λ.

Theorem 4.6 allows for defining an iterative procedure as follows. For fixed se-
quences (λk)k∈N, (εk)k∈N with λk > 0, εk ≥ 0 and A > 0, a ∈ (0, 2], we set
A0 = A, δ0 = 0 and x0 = ν0 ∈ dom(F ) and for each k ∈ N we define



































αk ∈ [0, 1) such that a ≤ α2
k

(1− αk)Akλk

≤ 2

yk = (1− αk)xk + αkνk

xk+1 ≈2 proxλkF
(yk) with εk-precision

Ak+1 = (1− αk)Ak

νk+1 = νk −
αk

(1− αk)Akλk

(yk − xk+1)

δk+1 = (1− αk)δk +
ε2k
2λk

(IAPPA2)

Then by setting ξk+1 = (yk−xk+1)/λk, we get two sequences (xk)k∈N e (ξk)k∈N such
that ξk+1 ∈ ∂ε2

k
/(2λk)F (xk+1). With this hypothesis, we have already noted that the

construction of a sequence (ϕk)k∈N as in (10) gives an estimate sequence provided
that βk =

∏k−1
i=0 (1− αi) → 0, and the last condition is true due to Lemma 3.5 with

b = 2 if λk ≥ λ > 0 — actually in this case (βk)k∈N = O(1/k2).

Starting from ϕ0 = F (x0) + A0/2‖· − ν0‖2, we have δ0 + (ϕ0)∗ ≥ F (x0) and, by
induction, applying Theorem 4.6, also δk + (ϕk)∗ ≥ F (xk). If δk → 0, the sequence
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(xk)k∈N is a minimizing sequence for F . The previous bounds obtained on βk allow
us to impose explicit conditions on the error sequence εk in order to get a convergent
proximal point algorithm.

Remark 4.7. To be more precise, Theorem 4.6 tell us more, that is

δk+1 + (ϕk+1)∗ ≥ F (xk+1) +
ck
2λk

‖yk − xk+1‖2 with ck = 2− α2
k

(1− αk)Akλk

From this inequality, as done in the proof of Theorem 3.2, it follows that

ck−1

2λk−1

‖yk−1 − xk‖2 + F (xk) ≤ βk(ϕ0(x)− F (x)) + F (x) + δk

for any x ∈ domF . Again, if x∗ is a minimizer of F

ck−1

2λk−1

‖yk−1 − xk‖2 + (F (xk)− F∗) ≤ βk(ϕ0(x∗)− F∗) + δk

The last result first shows that, if ck ≥ 2 − a > 0 and λk is kept bounded from
above, then ‖yk−1 − xk‖ → 0. Secondly, it suggests that choosing αk such that ck
is as great as possible could improve the practical speed of convergence.

Concerning the structure of the error term δk, it is easy to prove (see again Lemma
3.3 in [16]) that the solution of the last difference equation in (IAPPA2) is given by

δk =
βk

2

k−1
∑

i=0

ε2i
λiβi+1

. (19)

Combining equation (19) with the bounds on βk in Lemma 3.5, we get

δk ≤
βk

2

k−1
∑

i=0

ε2i
(1 +

√
2A
∑i

j=0

√

λj)
2

λi

. (20)

This implies that if the series
∑k−1

i=0 ε
2
i (1 +

√
2A
∑i

j=0

√

λj)
2/λi is convergent, then

δk converges to zero at the same rate of βk. This holds if we impose the error εk to
satisfy at each step

εk ≤
c
√
λk

(k + 1)p(1 +
√
2A
∑k

j=0

√

λj)
, (21)

for some positive constant c and for p > 1/2. If we do not ask for the same
convergence rate of βk, but only for convergence, obviously it is enough to impose
less stringent conditions on εk. The theorem below, specializing the results outlined
above to the case when λk satisfies condition (22), is the analogous of Theorem 3.3
in [16] and gives the convergence rate estimates for the proximal point algorithm
where errors of type 2 in the computation of the proximity operator are admitted.



1188 S. Salzo, S. Villa / Inexact and Accelerated Proximal Point Algorithms

Theorem 4.8. Consider the proximal point algorithm described in (IAPPA2) for
a sequence λk satisfying

λj ≤ Mλi whenever j ≤ i for some M > 0. (22)

Then, if εk = O(1/kq) with q > 1/2, the sequence (xk)k∈N is minimizing for F and
if in addition F has a minimizer the following rate of convergence holds

F (xk)− F∗ =











O (1/k2) if q > 3/2

O (1/k2) +O (log k/k2) if q = 3/2

O (1/k2) +O (1/k2q−1) if q < 3/2.

Proof. If (22) is true, then Lemma 3.5 implies βk = O(1/k2). Indeed, by (22) it
follows k

√

λ0/M ≤∑k−1
i=0

√
λi, and thus βk ≤ 1/(1 + (

√
aA/2)k

√

λ0/M)2.

On the other hand, again from Lemma 3.5 with b = 2, we get

1

λiβi+1

≤
(

1√
λi

+
√
2A

i
∑

j=0

√

λj/λi

)2

≤
(

√

M/λ0 +
√
2(i+ 1)

√
AM

)2

≤ c(i+ 1)2

for a properly chosen constant c > 0, thus the error δk can be majorized as follows

δk =
βk

2

k−1
∑

i=0

ε2i
λiβi+1

≤ c

2(k + 1)2

k−1
∑

i=0

ε2i (i+ 1)2.

If εk = O(1/(k + 1)q), the last inequality implies

δk ≤
c̃

(k + 1)2

k−1
∑

i=0

1

(i+ 1)2(q−1)
.

The series
∑∞

i=0 1/(i+ 1)2(q−1) is convergent if q > 3/2, it is an O(log k) if q = 3/2
and an O((k + 1)1−2q) if q < 3/2.

5. Equivalent forms of the algorithms

We finish by rewriting the two algorithms (IAPPA1/2) given in the previous section
in equivalent but simpler forms. We discuss the second algorithm because the
scheme is more general, providing for the first algorithm just the final result.
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We prove that the sequence νk in the recursive process (IAPPA2) can be replaced
with yk, achieving a first alternative form of the algorithm. To this purpose, let us
define

ak =
α2
k

(1− αk)Akλk

∈ [a, 2] (23)

The updating rule for ν can be written as

νk+1 = νk −
ak
αk

(yk − xk+1)

Now from yk = (1 − αk)xk + αkνk, we get νk = α−1
k (yk − (1 − αk)xk) and we can

substitute it into the formula for νk+1 obtaining νk+1 = νk − akα
−1
k (yk − xk+1) =

α−1
k ((1 − ak)yk + akxk+1 − (1 − αk)xk). If we substitute νk+1 back again into the

formula for yk+1 we finally obtain

yk+1 = (1− αk+1)xk+1 + αk+1νk+1

= (1− αk+1)xk+1 +
αk+1

αk

((1− ak)yk + akxk+1 − (1− αk)xk)

= xk+1 + αk+1

(

ak
αk

− 1

)

xk+1 − αk+1

(

1

αk

− 1

)

xk + (1− ak)yk

= xk+1 + αk+1

(

1

αk

− 1

)

(xk+1 − xk) + (1− ak)
αk+1

αk

(yk − xk+1)

Thus, the algorithm shows the following final form





















αk =

√

(Akakλk)2 + 4Akakλk − Akakλk

2

xk+1 ≈2 proxλkF
(yk)

yk+1 = xk+1 + αk+1

(

1

αk

− 1

)

(xk+1 − xk) + (1− ak)
αk+1

αk

(yk − xk+1)

Ak+1 = (1− αk)Ak

which depends on an extra arbitrary numerical sequence (ak)k∈N with 0 < a ≤ ak ≤
2.

We can give the algorithm still another form, even simpler, replacing the two nu-
merical sequences (αk)k∈N and (Ak)k∈N with a new one. Just by defining tk = 1/αk

the update of yk becomes

yk+1 = xk+1 +
tk − 1

tk+1

(xk+1 − xk) + (1− ak)
tk
tk+1

(yk − xk+1)

and tk+1 can be computed recursively. Indeed, being α2
k = akAk+1λk and taking

into account (23) for k + 1, we have

α2
k+1 = ak+1(1− αk+1)Ak+1λk+1

= (1− αk+1)α
2
k

ak+1

ak

λk+1

λk

.
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Making the substitution tk = 1/αk in the last equation, we get the equation

t2k+1 − tk −
λk

λk+1

ak
ak+1

t2k = 0

which can be solved in the unknown tk+1. Therefore, a second form of the algorithm
reads as follows















tk+1 =
1 +

√

1 + 4(akλk)t2k/(ak+1λk+1)

2

xk+1 ≈2 proxλkF
(yk)

yk+1 = xk+1 +
tk − 1

tk+1

(xk+1 − xk) + (1− ak)
tk
tk+1

(yk − xk+1)

This last implementation of the algorithm shows that we can recover the second
algorithm given by Güler in the appendix of [16] for the case λk be constant, by
choosing ak = 2. As a final remark about the choice of the parameters ak, one
can recognize that they are linked with the ck’s introduced in Remark 4.7, indeed
ck = 2 − ak. Thus, as already noted, the empirical speed of convergence could be
improved by making the ak’s smaller then one and close to zero.

The same rearrangement can be done for the first algorithm (IAPPA1). In this case
ak = 1 for every k ∈ N and the convergent scheme is















tk+1 =
1 +

√

1 + 4λkt2k/λk+1

2

xk+1 ≈1 proxλkF
(yk)

yk+1 = xk+1 +
tk − 1

tk+1

(xk+1 − xk)

This form, if λk is constant, resembles popular accelerating schemes designed in
general for forward-backward splitting methods, like FISTA [3, 33]. Those algo-
rithms aim at minimizing composite functions of type F = f + g, with f convex
smooth and g convex possibly nonsmooth. In case f = 0 we recover exactly the
FISTA procedure.
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[13] R. Correa, C. Lemaréchal: Convergence of some algorithms for convex minimization,
Math. Program., Ser. B 62(2) (1993) 261–275.

[14] M. Fornasier (ed.): Theoretical Foundations and Numerical Methods for Sparse Re-
covery (Vienna, 2009), Radon Series on Computational and Applied Mathematics 9,
De Gruyter, Berlin (2010).
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[34] C. Zălinescu: Convex Analysis in General Vector Spaces, World Scientific, River Edge
(2002).

[35] A. Zaslavski: Convergence of a proximal point method in the presence of computa-
tional errors in Hilbert spaces, SIAM J. Optim. 20(5) (2010) 2413–2421.


