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The smallest enclosing circle problem asks for the circle of smallest radius enclosing a given set
of finite points on the plane. This problem was introduced in the 19th century by Sylvester [17].
After more than a century, the problem remains very active. This paper is the continuation of
our effort in shedding new light on classical geometry problems using advanced tools of convex
analysis and optimization. We propose and study the following generalized version of the smallest
enclosing circle problem: given a finite number of nonempty closed convex sets in a reflexive
Banach space, find a ball with the smallest radius that intersects all of the sets.
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1. Introduction and Problem Formulation

A more general form of the smallest enclosing circle problem is called the smallest
enclosing ball problem. Given a set P = {p1, . . . , pn}, n > 1, on a Banach space X,
it is always possible to find a ball IB(a; r) such that

P ⊂ IB(a; r).

The smallest enclosing ball problem asks for such a ball with the smallest radius.

Consider the following optimization problem

minimize f(x), x ∈ X, (1)

where the function f therein is defined by

f(x) = max{||x− pi|| : i = 1, . . . , n}.
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Figure 1.1: A smallest intersecting ball problem

The smallest enclosing ball can be found by solving (1).

Numerous articles have been written to study the smallest enclosing ball problem
as well as its generalizations from both numerical and theoretical viewpoints. The
reader are referred to [6, 7, 16, 18] and the reference therein for recent developments
as well as the history of the problem.

In this paper we propose and study a new problem called the smallest intersecting
ball problem as follows: given a finite number of nonempty closed convex sets in a
Banach space, find a ball with the smallest radius that intersects all of the sets. It is
obvious that when the sets under consideration are singletons, the problem reduces
to the smallest enclosing ball problem. This is a continuation of our previous work
from [15, 14] in an effort to shed new light to classical geometry problems using
new tools of nonsmooth analysis.

Let Ωi, i = 1, . . . , n, n > 1, be nonempty closed convex sets in a Banach space X.
Let x be any point in X. Then there always exists r > 0 such that

IB(x; r) ∩ Ωi 6= ∅ for all i = 1, . . . , n. (2)

We are looking for a ball with the smallest radius r > 0 (if exists) such that property
(2) holds. Define the function

D(x) = max{d(x; Ωi) : i = 1, . . . , n}, (3)

where the distance function generated by a set Ω is given by

d(x; Ω) = inf{||x− ω|| : ω ∈ Ω}. (4)

It is not hard to see that the function D is convex since each function d(x; Ωi),
i = 1, . . . , n, is convex. Consider the problem of minimizing the function D on X
below

minimize D(x) subject to x ∈ X. (5)
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As we will see in Section 3, ifX is a reflexive space and Ωi, i = 1, . . . , n, have no point
in common, such a smallest intersecting ball can be found by solving problem (5).
For this reason, we are going to use the following standing assumptions throughout
the paper unless otherwise specified:

X is a reflexive Banach space and Ωi, i = 1, . . . , n, n > 1, are nonempty closed
convex sets in X with

∩n
i=1Ωi = ∅.

Notice that if the Ωi, i = 1, . . . , n, have a common point, then the smallest inter-
secting ball problem has no solution (unless balls of radius 0 are allowed).

The smallest intersecting ball problem is an example of facility location problems.
In contrast to most of the existing facility location problems which deal with lo-
cations of negligible sizes (points), this new problem deals with those that involve
locations of non-negligible sizes (sets). The problem is mathematically interesting
with promising applications to location models in which it is possible to access the
entire of each location from a point in it. The difficulty when dealing with the
smallest intersecting ball problem comes from the nonsmooth nature of the cost
function D in (5), especially when the norm in X is Non-Euclidean. Our approach
in this paper is to study the problem from both theoretical and numerical view-
points using new tools from convex analysis and optimization. The results we are
going to present in this paper provide improvements and generalizations of many
results in [6, 7].

We organize the paper as follows. Section 2 provides necessary tools from convex
analysis and optimization for solving the smallest intersecting ball problem. In
Section 3, we study the problem from theoretical aspects. Section 4 is devoted
to developing an algorithm of subgradient type to solve the smallest intersecting
problem in finite dimensions. The MATLAB implementations of the algorithm are
also presented.

2. Tools of Convex Analysis

This section provides important constructions and results from convex analysis that
will be used in the next sections. Most of the material presented here can be found
in [2, 9, 19].

Let X be a normed space with the dual space X∗. A function f : X → IR is called
convex if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) for all x, y ∈ X and λ ∈ (0, 1). (6)

If the inequality in (6) becomes strict for x 6= y, the function f is called strictly
convex.

A subset Ω of X is called convex if

λx+ (1− λ)y ∈ Ω for all x, y ∈ Ω and λ ∈ (0, 1).

It is not hard to prove that a nonempty closed subset Ω of X is convex if and only if
the corresponding distance function (4) is convex. Note that the distance function
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f(x) = d(x; Ω) is Lipschitz continuous on X with modulus one, i.e.,

|f(x)− f(y)| ≤ ||x− y|| for all x, y ∈ X.

Let 〈·, ·〉 be the dual pair between X and X∗. An element x∗ ∈ X∗ is called a
subgradient of a convex function f at x̄ if the following holds

〈x∗, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ X.

The set of all subgradients of f at x̄ is called the subdifferential of f at x̄ denoted
by ∂f(x̄).

Convex functions and subdifferentials have several important properties as far as
optimization is concerned. For instance, a convex function f has a local minimum
at x̄ if and only if it has an absolute minimum at x̄. Furthermore, the following
generalized version of the Fermat rule holds:

x̄ is a minimizer of f if and only if 0 ∈ ∂f(x̄). (7)

It is well known that the subdifferential of the distance function (4) has a close
connection to the normal cone of the generating set Ω. Recall that the normal cone
of a convex set Ω at x̄ ∈ Ω is defined by

N(x̄; Ω) =
{
v ∈ X∗ : 〈v, x− x̄〉 ≤ 0 for all x ∈ Ω

}
. (8)

The projection from a point x̄ ∈ X to a set Ω is

Π(x̄; Ω) =
{
ω ∈ Ω : ||x̄− ω|| = d(x̄; Ω)

}
. (9)

The following representation of the subdifferential for the distance function (4) will
play an important role in the subsequent sections of the paper. The proof of the
formulas can be found in [5], while their various extensions are presented in [13].

Proposition 2.1. Let Ω be a nonempty closed convex set of a Banach space X and
let x̄ ∈ X. Suppose that Π(x̄; Ω) 6= ∅ (which is always the case when X is reflexive).
Then

∂d(x̄; Ω) =

{
∂p(x̄− ω̄) ∩N(ω̄; Ω) if x̄ /∈ Ω,

N(x̄; Ω) ∩ IB∗ if x̄ ∈ Ω,

where IB∗ is the closed unit ball of X∗ and ω̄ is any element of Π(x̄; Ω).

In particular, if X is a Hilbert space, then Π(x̄; Ω) is singleton and

∂d(x̄; Ω) =






{
x̄− Π(x̄; Ω)

d(x̄; Ω)

}
if x̄ /∈ Ω,

N(x̄; Ω) ∩ IB if x̄ ∈ Ω,

In this proposition we also observe that when x̄ ∈ Ω, one has Π(x̄; Ω) = {x̄}. Since
∂p(0) = IB∗, the formula

∂d(x̄; Ω) = ∂p(x̄− ω̄) ∩N(ω̄; Ω)

holds for any x̄ ∈ X.

Finally, we present the following well-known subdifferential rule that involves “max"
functions.
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Theorem 2.2. Let X be a Banach space and let fi : X → IR, i = 1, . . . , n, be
continuous convex functions. Define

f(x) = max{fi(x) : i = 1, . . . , n}.

Then
∂f(x̄) = co {∂fi(x̄) : i ∈ I(x̄)},

where I(x̄) = {i = 1, . . . , n : f(x̄) = fi(x̄)}.

3. The Smallest Intersecting Ball Problem: Theoretical Aspects

This section is devoted to theoretical analysis of the smallest intersecting ball prob-
lem. We are able to provide improvements and generalizations of many results in
[6, 7]. Our approach is based mostly on tools of convex analysis and optimization.

The following proposition allows us to reduce the smallest intersecting ball problem
to a nonsmooth convex optimization problem in the reflexive space setting. For this
reason, we will identify the smallest intersecting ball problem with problem (5).

Proposition 3.1. Consider the minimization problem (5). Then x̄ ∈ X is an
optimal solution of this problem with r = D(x̄) if and only if IB(x̄; r) is a smallest
ball that satisfies (2).

Proof. Suppose that x̄ is an optimal solution of (5) with r = D(x̄). Since Ωi,
i = 1, . . . , n, have no point in common as in the standing assumptions, one has

D(x̄) = inf{D(x) : x ∈ X} = r > 0.

This implies
d(x̄; Ωi) ≤ r for all i = 1, . . . , n.

Since X is reflexive, there exist ω̄i ∈ Ωi, i = 1, . . . , n, satisfying

||x̄− ω̄i|| ≤ r.

It follows that ω̄i ∈ IB(x̄; r) ∩ Ωi, and hence

IB(x̄; r) ∩ Ωi 6= ∅ for all i = 1, . . . , n.

Suppose there exists r′ < r and x̄′ ∈ X with

IB(x̄′; r′) ∩ Ωi 6= ∅ for all i = 1, . . . , n.

Then
d(x̄′; Ωi) ≤ r′ < r for all i = 1, . . . , n.

This implies D(x̄′) ≤ r′ < r = D(x̄), which is a contradiction. Thus IB(x̄; r) is a
smallest ball we are looking for.

We are now going to justify the converse. Let us first prove that r = D(x̄). Since
IB(x̄; r) ∩ Ωi 6= ∅, one has

d(x̄; Ωi) ≤ r for all i = 1, . . . , n.
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This implies D(x̄) ≤ r. Assume by contradiction that D(x̄) < r. Let r′ satisfy
D(x̄) < r′ < r. Then

IB(x̄; r′) ∩ Ωi 6= ∅ for all i = 1, . . . , n.

This contradicts the minimal property of r. Thus r = D(x̄). Let x be any point in
X and let r′ = D(x). Then

IB(x; r′) ∩ Ωi 6= ∅ for all i = 1, . . . , n.

This implies r ≤ r′ or D(x̄) ≤ D(x′). Therefore, x̄ is an optimal solution of (5).

In what follows, we will prove that under natural assumptions on the sets Ωi,
i = 1, . . . , n, such a smallest intersecting ball does exist. We are going to use the
fact that on a Banach space, any convex lower semicontinuous function is weakly
lower semicontinuous.

Proposition 3.2. Suppose that there exists i = 1, . . . , n, such that Ωi is bounded.
Then the smallest intersecting ball problem (5) has a solution.

Proof. Without loss of generality, suppose that Ω1 is bounded. Define

r = inf{D(x) : x ∈ X}.

Let (xn) be a minimizing sequence for problem (5). That means

D(xn) → r as n → ∞.

Let N ∈ IN with

d(xn; Ω1) ≤ D(xn) < r + 1 for all n ≥ N.

Then there exists a sequence (ωn) in Ω1 such that

||xn − ωn|| < r + 1 for all n ≥ N.

Since (ωn) is a bounded sequence, (xn) is also bounded. As X is reflexive, there
exists a subsequence (xnk

) that converges weakly to x̄. This implies

D(x̄) ≤ lim infD(xnk
) ≤ r

because D is weakly lower semicontinuous. Therefore, x̄ is a solution of problem
(5).

Proposition 3.2 implies that the smallest enclosing ball problem (1) always has a
solution because each Ωi = {ωi}, i = 1, . . . , n, is obviously bounded. However, in
general, the smallest intersecting ball problem (5) may not have any solution.

Example 3.3. Let X = IR2 with the Euclidean norm. Consider Ω1 = {0}×IR and

Ω2 =

{
(x, y) ∈ IR2 : y ≥

1

x
, x > 0

}
.

Then the smallest intersecting ball problem (5) generated by Ω1 and Ω2 does not
have any solution.
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In the case where the smallest intersecting ball (5) has a solution, the solution may
not be unique as shown in the example below.

Example 3.4. Let X = IR2 with the Euclidean norm. Consider Ω1 = {(x, y) ∈
IR2 : y ≥ 1} and Ω2 = {(x, y) ∈ IR2 : y ≤ −1}. Then any x ∈ IR× {0} is a solution
of the smallest intersecting ball problem (5) generated by Ω1 and Ω2.

Example 3.5. ConsiderX = IR2 with the “max" norm ||(x1, x2)||=max{|x1|, |x2|}.
Then the ball IB(x; r) in X, where x = (x1, x2) and r > 0, is the square

S(x; r) = [x1 − r, x1 + r]× [x2 − r, x2 + r].

Problem (5) can be equivalently interpreted as follows: find a smallest square S(x; r)
that intersects Ωi for all i = 1, . . . , n. Using different norms on X, we obtain
different intersecting ball problems.

Lemma 3.6. Let X be a Hilbert space and let ωi ∈ X, i = 1, . . . , n. Then the
function

s(x) = max{||x− ωi||
2 : i = 1, . . . , n}, n ≥ 1,

is strictly convex.

Proof. We are going to prove that for x 6= y and t ∈ (0, 1), one has

s(tx+ (1− t)y) < ts(x) + (1− t)s(y).

By induction, we only need to show that the function p(x) = ||x||2 is strictly convex
and the function g(x) = max{g1(x), g2(x)} is strictly convex if both g1 and g2 are
strictly convex functions. Indeed, for t ∈ (0, 1) and x, y ∈ X, one has

p(tx+ (1− t)y) = ||tx+ (1− t)y||2

= t2||x||2 + 2t(1− t)〈x, y〉+ (1− t)2||y||2

≤ t2||x||2 + 2t(1− t)||x||.||y||+ (1− t)2||y||2

≤ t2||x||2 + t(1− t)(||x||2 + |y||2) + (1− t)2||y||2

= t||x||2 + (1− t)||y||2 = tp(x) + (1− t)p(y).

Notice that the equality holds if and only if ||x|| = ||y|| and 〈x, y〉 = ||x||||y||. This
implies ||x− y||2 = 0, and hence x = y. Therefore, p is strictly convex.

Now let t ∈ (0, 1) and x 6= y. Then

gi(tx+ (1− t)y) < tgi(x) + (1− t)gi(y) ≤ tg(x) + (1− t)g(y) for i = 1, 2.

This implies
g(tx+ (1− t)y) < tg(x) + (1− t)g(y).

The proof is now complete.

The following proposition gives an example of a smallest intersecting ball problem
which has a unique solution. We will use a natural convention that IB(c; 0) = {c}
for any c ∈ X.
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Proposition 3.7. Let X be a Hilbert space and let r ≥ 0. Suppose that Ωi =
IB(ωi; r), i = 1, . . . , n, are closed balls in a Hilbert space X. Then the smallest
intersecting ball problem (5) generated by Ωi, i = 1, . . . , n, has a unique solution.
Moreover, this unique solution coincides with the unique solution of the smallest
enclosing ball problem (1) generated by the centers of the balls {ωi}, i = 1, . . . , n.

Proof. Let us first show that in this case the function D in (3) has the following
representation

D(x) = max{||x− ωi|| : i = 1, . . . , n} − r. (10)

Indeed, let

J(x) = {i ∈ 1, . . . , n : x /∈ Ωi}.

Since Ωi, i = 1, . . . , n, have no point in common by the standing assumptions,
J(x) 6= ∅. For any i ∈ {1, . . . , n} \ J(x) and for any j ∈ J(x), one has

||x− ωi|| ≤ r ≤ ||x− ωj||.

It follows that

D(x) = max{d(x; Ωi) : i = 1, . . . , n}

= max{d(x; Ωi) : i ∈ J(x)}

= max{||x− ωi|| : i ∈ J(x)} − r

= max{||x− ωi|| : i = 1, . . . , n} − r.

Thus (10) has been justified. Using representation (10), we see that x̄ is a solution
of problem (5) if and only if it is a solution of the minimization problem

minimize s(x) = max{||x− ωi||
2 : i = 1, . . . , n}, x ∈ X. (11)

Since s is strictly convex by Lemma 3.6, problem (11) has a unique solution. There-
fore, problem (5) also has a unique solution. Notice that x̄ is a solution of problem
(11) if and only if it is the solution of the smallest enclosing ball problem (1) gen-
erated by {ωi}, i = 1, . . . , n. The proof is now complete.

Example 3.8. In IR2 with the Euclidean norm, consider the balls Ω1 = IB((0, 3); 3),
Ω2 = IB((−2, 0); 1), and Ω3 = {B((2, 0); 1)}. Then x̄ = (0, 0) is the solution
of problem (5) generated by these balls, but this solution is the solution of the
smallest enclosing ball problem (1) generated by the centers of the balls.

In what follows we are going to prove that in the Hilbert space setting, the smallest
intersecting ball problem (5) generated by closed balls with different radii also has
a unique solution although the solution may not coincide with the solution of the
smallest enclosing ball problem generated by their centers.

Proposition 3.9. Let X be a Hilbert space and let Ωi = IB(ωi; ri), ri ≥ 0, i =
1, . . . , n, be closed balls in a Hilbert space X. Then the smallest intersecting ball
problem (5) generated by Ωi, i = 1, . . . , n, has a unique solution.
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Proof. Similar to the proof of Proposition 3.7, one has

D(x) = max{||x− ωi|| − ri : i = 1, . . . , n} for all x ∈ X.

Define
pi(x) = ||x− ωi|| − ri, i = 1, . . . , n.

Let
ℓ = −max{ri : i = 1, . . . , n}.

Then pi(x) ≥ ℓ for all i = 1, . . . , n and for all x ∈ X. Consider the optimization
problem

minimize h(x) = max{(pi(x)− ℓ)2 : i = 1, . . . , n}. (12)

Notice that pi(x) − ℓ ≥ 0 for all i = 1, . . . , n and for all x ∈ X. Then it is not
hard to see that x̄ is a solution of the smallest intersecting ball problem (5) if and
only if it is also a solution of problem (12). Similar to the proof of Proposition 3.7,
one sees that the function h in (12) is strictly convex and hence problem (12) has
a unique solution. The proof is complete.

For each x ∈ X, the set of active indices for D at x is defined by

I(x) = {i ∈ {1, . . . , n} : D(x) = d(x; Ωi)},

and let
Ai(x) = ∂p(x− ωi) ∩N(ωi; Ωi).

where ωi ∈ Π(x; Ωi). Notice that the definition of Ai(x) does not depend on the
choice of ωi by Proposition 2.1. It is also clear from the definition that I(x) 6= ∅
for any x ∈ X. Moreover, if i ∈ I(x), then D(x) > 0 because ∩n

i=1Ωi = ∅ as in the
standing assumptions, and hence

d(x; Ωi) = D(x) > 0.

This implies x /∈ Ωi.

Proposition 3.10. Consider the smallest intersecting ball problem (5). Then x̄ ∈
X is an optimal solution of the problem if and only if

0 ∈ co {Ai(x̄) : i ∈ I(x̄)}.

Proof. It follows from Theorem 2.2 that

∂D(x̄) = co {∂d(x̄; Ωi) : i ∈ I(x̄)}

= co {Ai(x̄) : i ∈ I(x̄)}.

The result then follows from the subdifferential Fermat rule (7).

Corollary 3.11. Let X be a Hilbert space. Consider the smallest intersecting ball
problem (5). Then x̄ is a solution of the problem if and only if

x̄ ∈ co {ω̄i : i ∈ I(x̄)}, (13)
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where ω̄i = Π(x̄; Ωi).

In particular, if Ωi = {ai}, i = 1, . . . , n, then x̄ is the solution of the smallest
enclosing ball problem (1) generated by ai, i = 1, . . . , n, if and only if

x̄ ∈ co {ai : i ∈ I(x̄)}. (14)

Proof. According to Proposition 3.10, the element x̄ is a solution of the smallest
intersecting ball problem (5) if and only if

0 ∈ co {Ai(x̄) : i ∈ I(x̄)}.

For each i ∈ I(x̄), one has x̄ /∈ Ωi, and hence

Ai(x̄) =

{
x̄− ω̄i

d(x̄; Ωi)

}
=

{
x̄− ω̄i

D(x̄)

}
.

It follows that
0 ∈ co {Ai(x̄) : i ∈ I(x̄)}

if and only if there exists λi ≥ 0, i ∈ I(x̄), such that
∑

i∈I(x̄) λi = 1 and

0 =
∑

i∈I(x̄)

λi

x̄− ω̄i

D(x̄)
.

This equation is equivalent to

0 =
∑

i∈I(x̄)

λi(x̄− ω̄i) or x̄ =
∑

i∈I(x̄)

λiω̄i,

which is equivalent to (13).

Notice that (13) is equivalent to (14) when Ωi = {ai}, i = 1, . . . , n. The proof is
now complete.

We say that the smallest ball IB(x̄; r) touches a target set Ωi, i = 1, . . . , n, if
Ωi ∩ IB(x̄; r) is singleton.

Corollary 3.12. Let X be a Hilbert space. Consider the smallest intersecting ball
problem (5). Then any smallest intersecting ball touches at least two sets among
Ωi, i = 1, . . . , n.

Proof. Let us first prove that |I(x̄)| ≥ 2 if x̄ is a solution of problem (5). Suppose
by contradiction that I(x̄) = {i0}. Then by (13),

x̄ ∈ Ωi0 and d(x̄; Ωi0) = D(x̄) > 0.

This is a contradiction. Let us now show if i ∈ I(x̄), then IB(x̄; r) touches Ωi, where
r = D(x̄). Indeed, in this case d(x̄; Ωi) = r. If there are u, v ∈ Ωi such that

u, v ∈ IB(x̄; r) ∩ Ωi, u 6= v.
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Then

||u− x̄|| ≤ r = d(x̄; Ωi) and ||v − x̄|| ≤ r = d(x̄; Ωi).

It follows that u, v ∈ Π(x̄; Ωi). This is a contradiction because Π(x̄; Ωi) is singleton.
Thus IB(x̄; r) touches Ωi. The proof is now complete.

It is obvious that co {ai : i ∈ I(x̄)} ⊂ co {ai : i = 1, . . . , n}. Thus our result in
Corollary 3.11 covers [7, Theorem 3.6]. It is also possible to prove that the solution
of the smallest intersecting ball problem (5) generated by closed balls in a Hilbert
space belongs to the convex hull of their centers as in the next proposition.

Proposition 3.13. Let X be a Hilbert space. Suppose that Ωi = IB(ωi; ri), ri ≥ 0,
i = 1, . . . , n, are closed balls in X. Let x̄ be the unique solution of problem (5).
Then

x̄ ∈ co {ωi : i ∈ I(x̄)}.

Proof. Let x̄ be the solution of the smallest intersecting ball problem (5) generated
by Ωi, i = 1, . . . , n. Since x̄ /∈ Ωi for all i ∈ I(x̄), by (13) from Corollary 3.11, there
exist λi ≥ 0, i ∈ I(x̄), such that

∑
i∈I(x̄) λi = 1 and

x̄ =
∑

i∈I(x̄)

λi

(
ωi + ri

x̄− ωi

||x̄− ωi||

)
.

For any i ∈ I(x̄), one has ||x̄ − ωi|| = r + ri, where r is the radius of the smallest
intersecting ball. It follows that

x̄ =
∑

i∈I(x̄)

λix̄ =
∑

i∈I(x̄)

λi

(
1−

ri
r + ri

)
ωi +

∑

i∈I(x̄)

λiri
r + ri

x̄.

This implies

x̄ =
1

∑
i∈I(x̄)

λi

r + ri

∑

i∈I(x̄)

λi

r + ri
ωi ∈ co {ωi : i ∈ I(x̄)}.

The proof is now complete.

Example 3.14. Let ai, i = 1, 2, 3, be three points in IR2 with the Euclidean norm
and let x̄ be the solution of problem (1) generated by ai, i = 1, 2, 3. By Corollary
3.12, one has |I(x̄)| = 2 or |I(x̄)| = 3. If |I(x̄)| = 2, say I(x̄) = {2, 3}, then
x̄ ∈ co {a2, a3} and ||x̄− a2|| = ||x̄− a3|| by Corollary 3.11. In this case

x̄ =
a2 + a3

2
.

This also implies 〈a2 − a1, a3 − a1〉 < 0. Conversely, if 〈a2 − a1, a3 − a2〉 < 0,
then the angle of the triangle formed by a1, a2, and a3 at vertex a1 is obtuse (we
allow the case where ai, i = 1, 2, 3, are on a straight line). One can easily see
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Figure 3.1: Smallest intersecting ball problems for three disks in IR2

that I(a2+a3
2

) = {2, 3}, and a2+a3
2

satisfies the assumption of Corollary 3.11. Then
x̄ = a2+a3

2
because of the uniqueness of the solution. In this case we have |I(x̄)| = 2.

Thus |I(x̄)| = 2 if and only if one of the angles of the triangle formed by a1, a2, and
a3 is obtuse. In this case the solution of problem (5) is the midpoint of the side
opposite to the obtuse vertex.

If none of the angles of the triangle formed by a1, a2, a3 is obtuse, then |I(x̄)| = 3.
In this case, x̄ is the unique point that satisfies

x̄ ∈ co {a1, a2, a3}, ||x̄− a1|| = ||x̄− a2|| = ||x̄− a3||,

or x̄ is the center of the circumscribing circle of the triangle.

Let us now consider the solution of problem (5) with the target sets being three
disjoint disks in IR2.

Example 3.15. Let Ωi = IB(ωi, ri), ri > 0, i = 1, 2, 3, be disjoint disks in IR2 with
the Euclidean norm. We use bd(Ωi) to denote the boundary of Ωi, which is the
circle of center ωi and radius ri, i = 1, 2, 3. Let x̄ be the unique solution of the
problem.

Let us consider the first case where one of the line segments connecting two of the
centers intersects the other disks. For instance, the line segment connecting ω2 and
ω3 intersects Ω1. Let u2 = ω2ω3 ∩ bd(Ω2) and u3 = ω2ω3 ∩ bd(Ω3). Let x̄ be the
midpoint of u2u3. Then I(x̄) = {2, 3} and we can apply Corollary 3.11 to see that
x̄ is the solution of the problem.

Now we only need to consider the case where any line segment connecting two
centers of the disks does not intersect the remaining disk. Let

u1 = ω1ω2 ∩ bd(Ω1), v1 = ω1ω3 ∩ bd(Ω1),

u2 = ω2ω3 ∩ bd(Ω2), v2 = ω2ω1 ∩ bd(Ω2),

u3 = ω3ω1 ∩ bd(Ω3), v3 = ω3ω2 ∩ bd(Ω3)

a1 = ω1m1 ∩ bd(Ω1), a2 = ω2m2 ∩ bd(Ω2), a3 = ω3m3 ∩ bd(Ω3),

wherem1 is the midpoint of u2v3, m2 is the midpoint of u3v1, andm3 is the midpoint
of u1v2. If one of the angles: \u2a1v3, \u3a2v1, \u1a3v2 is greater than 90◦. For instance,
if \u2a1v3 is greater than 90◦. Then I(m1) = {2, 3}, and x̄ = m1 is the unique solution
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of the problem by Corollary 3.11. Now if all of the afore-mentioned angles are less
than or equal to 90◦, then |I(x̄)| = 3 and the smallest disk we are looking for is
the unique disk that touches three other disks. The construction of this disk is the
celebrated problem of Apollonius ; see, e.g., [8].

We are going to prove that a smallest intersecting ball generated by n convex sets,
n > 1, in IRm can be determined by at most m + 1 sets among them; see Figure
1.1 for the visualization of this property. The proof is based on a known result for
points (see [18, Lemma 1 (iii)]), which can be easily proved by Corollary 14 and the
Caratheodory theorem [10, Corollary 1, Sec. 3.5].

Lemma 3.16. Let P = {p1, . . . , pn}, n > 1, be a set of finite points in IRm with
the Euclidean norm and let IB(x̄; r) be the smallest enclosing ball for problem (1)
generated by points in P . Then there exists a subset Q ⊂ P and 2 ≤ |Q| ≤ m + 1
such that IB(x̄; r) is also the smallest enclosing ball of problem (1) generated by
points in Q.

Proof. By Corollary 3.11, one has

x̄ ∈ co {pi : i ∈ I(x̄)}.

By the Caratheodory theorem, there exists an index set J ⊂ I(x̄) with |J | ≤ m+1
and

x̄ ∈ co {pj : j ∈ J}. (15)

It is clear that |J | ≥ 2 because n > 1. Let Q = {pj : j ∈ J}. Then 2 ≤ |Q| ≤ m+1
and ||x̄− q|| = r for all q ∈ Q. By converse of Corollary 3.11, one has that IB(x̄; r)
is the smallest enclosing ball of problem (1) generated by points in Q. The proof is
complete.

Proposition 3.17. Let X = IRm with the Euclidean norm. Consider problem
(5) in which Ωi, i = 1, . . . , n, are disjoint. Suppose that IB(x̄; r) is a smallest
intersecting ball of the problem. Then there exists an index set J with 2 ≤ |J | ≤
m+ 1 such that IB(x̄; r) is also a smallest intersecting ball of problem (5) in which
the target sets are Ωj, j ∈ J .

Proof. Let IB(x̄; r) be a smallest intersecting ball of problem (5) with target sets
Ωi, i = 1, . . . , n. By Corollary 3.11 and Corollary 3.12, one has

x̄ ∈ co {ωi : i ∈ I(x̄)},

where |I(x̄)| ≥ 2 and ωi ∈ Π(x̄; Ωi). Again, by Corollary 3.11, IB(x̄; r) is the
solution of the smallest enclosing ball (1) generated by {ωi : i ∈ I(x̄)}.

Applying Lemma 3.16, one finds a subset J ⊂ I(x̄), 2 ≤ |J | ≤ m + 1 such that
IB(x̄; r) is the solution of the smallest enclosing ball generated by {ωj : j ∈ J}.
Then

x̄ ∈ co {ωi : i ∈ J}
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and ||x̄−ωj|| = r for all j ∈ J . Now consider problem (5) generated by {Ωj : j ∈ J}.
Applying Corollary 3.11, we also see that x̄ is a solution of this problem because

x̄ ∈ co {ωj : j ∈ J},

where ωj ∈ Π(x̄; Ωj) and d(x̄; Ωj) = r for each j ∈ J . Moreover, IB(x̄; r) is a
smallest intersecting ball for the problem. The proof is now complete.

Now we are going to give a generalization of [7, Theorem 4.4]. Our approach, which
is based on the proof of [10, Proposition 1, Sec. 10.2], allows us to give an estimate
of the radius of the smallest intersecting ball for problem (5) generated by closed
balls in IRm. Notice that [7, Theorem 4.4] holds in IR2 for the classical smallest
enclosing circle problem.

Theorem 3.18. Let X = IRm with the Euclidean norm. Consider the smallest in-
tersecting ball problem (5) generated by the closed balls Ωi = IB(ωi; ri), i = 1, . . . , n.
Let

rmin = min{ri : i = 1, . . . , n}, rmax := max{ri : i = 1, . . . , n},

ℓ = min{m+ 1, n}, P = {ωi : i = 1, . . . , n},

and let B∗ = IB(x̄; r) be the smallest enclosing ball. Then

1

2
diamP − rmax ≤ r ≤

√
ℓ− 1

2ℓ
diamP − rmin. (16)

In particular,

diamP −max{diamΩi : i = 1, . . . , n}

≤ diamB∗ ≤

√
2(ℓ− 1)

ℓ
diamP −min{diamΩi : i = 1, . . . , n}.

Proof. For any i, j = 1, . . . , n, one has

||ωi − ωj|| ≤ ||x̄− ωi||+ ||x̄− ωj|| ≤ 2r + ri + rj ≤ 2r + 2rmax.

Thus

diamP ≤ 2r + 2rmax

and the first inequality in (16) holds true.

Let us prove the second inequality of (16). By the Caratheodory theorem [10,
Corollary 1, Sec. 3.5] and the proof of Proposition 3.13, there exist k ≤ min{m +
1, I(x̄)} ≤ min{m + 1, n} and λi ≥ 0, i = 1, . . . , k,

∑k

i=1 λi = 1 (we reorder the
indices if necessary) such that

x̄ =
k∑

i=1

µiωi, where µi =
1

µ

λi

ri + r
, µ =

k∑

i=1

λi

r + ri
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and

||x̄− ωi|| = r + ri, i = 1, . . . , k.

One has

||ωi − ωj||
2 = ||ωi − x̄||2 + ||ωj − x̄||2 − 2〈ωi − x̄, ωj − x̄〉

= (r + ri)
2 + (r + rj)

2 − 2〈ωi − x̄, ωj − x̄〉.

Thus

k∑

i=1

µi||ωi − ωj||
2 = (r + rj)

2 +
k∑

i=1

µi(r + ri)
2 − 2

〈
k∑

i=1

µiωi − x̄, ωj − x̄

〉

= (r + rj)
2 +

k∑

i=1

µi(r + ri)
2.

It follows that
k∑

i,j=1

µiµj||ωi − ωj||
2 = 2

k∑

i=1

µi(r + ri)
2.

We also have

k∑

i,j=1,i 6=j

µiµj =

(
k∑

i=1

µi

)2

−
k∑

i=1

µ2
i ≤ 1−

1

k
=

k − 1

k
≤

ℓ− 1

ℓ
.

This implies

k∑

i,j=1

µiµj||ωi − ωj||
2 = 2

k∑

i=1

µi(r + ri)
2 ≤ (diam P )2

ℓ− 1

ℓ
.

Since

µi(r + ri)
2 =

1

µ

λi

ri + r
(r + ri)

2 =
λi

µ
(r + ri),

one has

k∑

i=1

λi

µ
(r + ri) ≤

1

2

ℓ− 1

ℓ
(diam P )2

Using the formula for µ, we arrive at

(r + rmin)
2 ≤

1

2

ℓ− 1

ℓ
(diam P )2.

This implies (16). The second estimates follow from (16). The proof is complete.
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4. Subgradient Algorithm and Its Implementation

In this section let (X, || · ||) be a normed space where X = IRm and let p(x) = ||x||
be the norm function on X. We are going to present and justify an algorithm of
subgradient type to solve problem (5) numerically and illustrate its implementations
using MATLAB.

Theorem 4.1. Let Ωi, i = 1, . . . , n, be nonempty closed convex subsets of X such
that at least one of them is bounded. Picking a sequence {αk} of positive numbers
and a starting point x1 ∈ X, consider the iterative algorithm:

xk+1 = xk − αkx
∗
k, k ∈ IN. (17)

Let the vectors x∗
k in (17) be given by

x∗
k ∈ ∂p(xk − ωk) ∩N(ωk; Ωi), (18)

where ωk ∈ Π(xk; Ωi) and i is any index chosen from the following index set

I(xk) = {i = 1, . . . , n : D(xk) = d(xk; Ωi)}.

Assume that the given sequence {αk} in (17) satisfies the conditions

∞∑

k=1

αk = ∞ and
∞∑

k=1

α2
k < ∞. (19)

Then the iterative sequence {xk} in (18) converges to an optimal solution of the
smallest intersecting ball problem (5) and the value sequence

Vk = min
{
D(xj) : j = 1, . . . , k

}
(20)

converges to the optimal value V̂ in this problem.

Proof. By Proposition 3.2 the smallest intersecting ball problem under considera-
tion has a solution. Observe that the functionD in (5) satisfies a Lipschitz condition
with Lipschitz constant κ = 1. We have

∂D(xk) = co {∂d(xk; Ωi) : i ∈ I(xk)}

= co {∂p(xk − ωk) ∩N(ωk; Ωi) : i ∈ I(xk)},

where ωk ∈ Π(xk; Ωi). Notice that under the standing assumptions, xk /∈ Ωi for
i ∈ I(xk). It follows that for any i ∈ I(xk) one has

∂p(xk − ωk) ∩N(ωk; Ωi) ⊂ ∂D(xk).

We also have that ∂d(xk; Ωi) = ∂p(xk − ωk) ∩ N(ωk; Ωi) is nonempty. Since all
norms in X are equivalent, it suffices to show that

||xk − x̄||2 → 0 and Vk → V̂ ,

where || · ||2 is the Euclidean norm in X and x̄ is a solution of problem (5). However,
these follow directly from the well-known results on the subgradient method for
convex functions in the so-called “square summable but not summable case"; see,
e.g., [1, 4].
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12 MATLAB RESULT
k xk Vk

1 (2,2) 10.29563
1,000 (-1.05477,3.05560) 7.13408
10,000 (-1.05562,3.05553) 7.13408
100,000 (-1.05555,3.05555) 7.13408
400,000 (-1.05556,3.05556) 7.13408
800,000 (-1.05556,3.05556) 7.13408
1,000,000 (-1.05556,3.05556) 7.13408

Figure 4.1: A smallest intersecting ball with Euclidean norm to square targets

One important feature of the subgradient method is that the subgradient x∗
k for

each k is not uniquely defined. This also reflects in the following direct consequence
of Theorem 4.1.

Corollary 4.2. Let X = IRm with the Euclidean norm. Consider the smallest
intersecting ball problem (5). For each k ∈ IN , the subgradient x∗

k in Theorem 4.1
is computed by

x∗
k =

xk − ωk

||xk − ωk||
,

where ωk = Π(xk; Ωi) and i is an index chosen from I(xk).

In particular, if Ωi = IB(ci; ri), i = 1, . . . , n, are closed balls in X. Then the
subgradient x∗

k has the following explicit representation

x∗
k =

xk − ci
||xk − ci||

for an index i ∈ I(xk).

Example 4.3. Consider X = IR2 with the Euclidean norm. The target sets are
the squares Ωi = S(ωi; ri), ωi = (ω1i, ω2i), i = 1, . . . , n, where

S(ωi; ri) = [ω1i − ri, ω1i + ri]× [ω2i − ri, ω2i + ri].

Let the vertices of the ith square be denoted by v1i = (ω1i+ri, ω2i+ri), v2i = (ω1i−
ri, ω2i+ ri), v3i = (ω1i− ri, ω2i− ri), v4i = (ω1i+ ri, ω2i− ri) and let xk = (x1k, x2k).
Fix an index i ∈ I(xk). Then the vectors x∗

k in Theorem 4.1 are given by
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x∗
k =






xk − v1i
‖xk − v1i‖

if x1k − ω1i > ri and x2k − ω2i > ri,

xk − v2i
‖xk − v2i‖

if x1k − ω1i < −ri and x2k − ω2i > ri,

xk − v3i
‖xk − v3i‖

if x1k − ω1i < −ri and x2k − ω2i < −ri,

xk − v4i
‖xk − v4i‖

if x1k − ω1i > ri and x2k − ω2i < −ri,

(0, 1) if |x1k − ω1i| ≤ ri and x2k − ω2i > ri,

(0,−1) if |x1k − ω1i| ≤ ri and x2k − ω2i < −ri,

(1, 0) if x1k − ω1i > ri and |x2k − ω2i| ≤ ri,

(−1, 0) if x1k − ω1i < −ri and |x2k − ω2i| ≤ ri.

It is also not hard to determine the index set I(xk) sequence and Vk for each k ∈ IN .
Thus the algorithm is explicit.

Consider the target sets Ωi, i = 1, . . . , 7, to be the squares with centers (−8, 8),
(−7, 0), (−4,−1), (2, 0), (2,−6), (7, 1), and (6, 5) and the radii ri = {1,2,3,0.5,2,1,1}
for i = 1, . . . , 7, respectively. A MATLAB program is performed for the sequence
αk = 1/k satisfying (19) and the starting point x1 = (2,2); see Figure 4.1.

Observe that the numerical results computed up to five decimal places yield an
optimal solution x̄ ≈ (−1.05556, 3.05556) and the optimal value V̂ ≈ 7.13408.

When working with a norm in X that is different from the Euclidean norm, it may
be difficult to find the distance functions, the projections to sets, as well as the
subdifferential of the norm. The following remark allows us to have an intuitive
way to find a subgradient x∗

k, k ∈ IN , in Theorem 4.1 in the case X = IR2 with the
“sum" norm.

Remark 4.4. Let X = IR2 with the “sum" norm p(x) = |x1| + |x2|, x = (x1, x2).
The ball IB(x̄; t), x̄ = (x̄1, x̄2), t > 0, is the following diamond shape

IB(x̄; t) = {(x1, x2) ∈ X : |x1 − x̄1|+ |x2 − x̄2| ≤ t}.

The distance from x̄ to a nonempty closed set Ω and the corresponding projection
are given by

d(x̄; Ω) = min{t ≥ 0 : IB(x̄; t) ∩ Ω 6= ∅} (21)

and

Π(x̄; Ω) = IB(x̄; t) ∩ Ω, where t = d(x̄; Ω).
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Moreover, the subdifferential ∂p(x̄), x̄ ∈ X, has the following explicit representation

∂p(x̄1, x̄2) =






[−1, 1]× [−1, 1], if (x̄1, x̄2) = (0, 0),

[−1, 1]× {1}, if x̄1 = 0, x̄2 > 0,

[−1, 1]× {−1}, if x̄1 = 0, x̄2 < 0,

{1} × [−1, 1], if x̄1 > 0, x̄2 = 0,

{−1} × [−1, 1], if x̄1 < 0, x̄2 = 0,

{1} × {1}, if x̄1 > 0, x̄2 > 0,

{1} × {−1}, if x̄1 > 0, x̄2 < 0,

{−1} × {1}, if x̄1 < 0, x̄2 > 0,

{−1} × {−1}, if x̄1 < 0, x̄2 < 0.

By considering the “sum" norm in X, we are able to introduce a new smallest
intersecting ball problem in which a “ball" has a diamond shape. The algorithm is
going to be implemented in the following example.

Example 4.5. Let us consider an example when X = IR2 with the “sum" norm.
Let Ωi be the squares S(ωi; ri), i = 1, . . . , n, given in Example 4.3. Notice that a
ball IB(x̄; r), x̄ = (x̄1, x̄2), in X is the diamond shape

IB(x̄; r) = {(x1, x2) ∈ IR2 : |x1 − x̄1|+ |x2 − x̄2| ≤ r}.

Therefore, the smallest intersecting ball problem (5) can be interpreted as follows:
find a diamond shape of the smallest radius IR2 that intersects all n given squares.
Using the same notation for the vertices of the target set Ωi as in Example 4.3, one
can see that the vectors x∗

k in Theorem 4.1 are given by

x∗
k =






(1, 1), if x1k − ω1i > ri and x2k − ω2i > ri,

(−1, 1), if x1k − ω1i < −ri and x2k − ω2i > ri,

(−1,−1), if x1k − ω1i < −ri and x2k − ω2i < −ri,

(1,−1), if x1k − ω1i > ri and x2k − ω2i < −ri,

(0, 1), if |x1k − ω1i| ≤ ri and x2k − ω2i > ri,

(0,−1), if |x1k − ω1i| ≤ ri and x2k − ω2i < −ri,

(1, 0), if x1k − ω1i > ri and |x2k − ω2i| ≤ ri,

(−1, 0), if x1k − ω1i < −ri and |x2k − ω2i| ≤ ri.

Consider the target sets Ωi, i = 1, . . . , 7, to be the squares with centers (−5, 3),
(−3, 0), (−2,−3), (0,−8), (4,−3), (3, 0), and (5, 4) and the radii ri = 1 for i =
1, . . . , 7, respectively. A MATLAB program is performed for the sequence αk = 1/k
satisfying (19) and the starting point x1 = (2,0); see Figure 4.2.

Observe that the numerical results computed up to five decimal places yield optimal
solution x̄ ≈ (0.50000,−0.25000) and the optimal value V̂ ≈ 6.75000.

Similar observations for X = IR2 with the “max" norm can be easily seen:
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MATLAB RESULT
k xk Vk

1 (2,0) 8
10 (0.67500,-0.17897) 6.85397
100 (0.49999,-0.25853) 6.75040
1,000 (0.50000,-0.25049) 6.75040
10,000 (0.50000,-0.25004) 6.75004
100,000 (0.50000,-0.25000) 6.75000
200,000 (0.50000,-0.25000) 6.75000

Figure 4.2: A smallest intersecting ball with sum norm to square targets

Remark 4.6. Let X = IR2 with the “max" norm p(x) = max{|x1|, |x2|}, x =
(x1, x2). The ball IB(x̄; t), x̄ = (x̄1, x̄2), t > 0, is the following square

IB(x̄; t) = [x̄1 − t, x̄1 + t]× [x̄2 − t, x̄2 + t].

The distance from x̄ to a nonempty closed set Ω and the corresponding projection
are given by

d(x̄; Ω) = min{t ≥ 0 : IB(x̄; t) ∩ Ω 6= ∅}

and

Π(x̄; Ω) = IB(x̄; t) ∩ Ω, where t = d(x̄; Ω).

Moreover, the subdifferential ∂p(x̄), x̄ ∈ X, has the following explicit representation

∂p(x̄1, x̄2)=






{
(v1, v2) ∈ IR2

∣∣ |v1|+ |v2| ≤ 1
}

if (x̄1, x̄2) = (0, 0),

{(0, 1)} if |x̄1| < x̄2,

{(0,−1)} if x̄2 < −|x̄1|,

{(1, 0)} if x1 > |x̄2|,

{(−1, 0)} if x̄1 < −|x̄2|,{
(v1, v2) ∈ IR2

∣∣ |v1|+ |v2| = 1, v1 ≥ 0, v2 ≥ 0
}

if x̄1 = x̄2 > 0,{
(v1, v2) ∈ IR2

∣∣ |v1|+ |v2| = 1, v1 ≥ 0, v2 ≤ 0
}

if x̄1 = −x̄2 > 0,{
(v1, v2) ∈ IR2

∣∣ |v1|+ |v2| = 1, v1 ≤ 0, v2 ≤ 0
}

if x̄1 = x̄2 < 0,{
(v1, v2) ∈ IR2

∣∣ |v1|+ |v2| = 1, v1 ≤ 0, v2 ≥ 0
}

if x̄1 = −x̄2 < 0.

Example 4.7. Let us consider an example when X = IR2 with the “max" norm.
Let Ωi be the squares given in Example 4.3. Notice that a ball IB(x̄; r), x̄ = (x̄1, x̄2),
in X is the square

IB(x̄; r) = [x̄1 − r, x̄1 + r]× [x̄2 − r, x̄2 + r].

Therefore, the smallest intersecting ball problem (5) can be interpreted as follows:
find a smallest square in IR2 that intersects all n given squares. Using the same
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MATLAB RESULT
k xk Vk

1 (-2,3) 8.50000
10 (-0.62500,1.54603) 7.12500
100 (0.02973,0.99990) 6.50000
1,000 (0.02973,1.00000) 6.50000
10,000 (0.02973,1.00000) 6.50000
100,000 (0.02973,1.00000) 6.50000
200,000 (0.02973,1.00000) 6.50000

Figure 4.3: A smallest intersecting ball with max norm to square targets

notation for the vertices of the target set Ωi as Example 4.3, one can see that the
vectors x∗

k in Theorem 4.1 are given by

x∗
k =






(1, 0), if |x2k − ω2i| ≤ x1k − ω1i and x1k > ω1i + ri,

(−1, 0), if |x2k − ω2i| ≤ ω1i − x1k and x1k < ω1i − ri,

(0, 1), if |x1k − ω1i| ≤ x2k − ω2i and x2k > ω2i + ri,

(0,−1), if |x1k − ω1i| ≤ ω2i − x2k and x2k < ω2i − ri,

where i ∈ I(xk). The sequence (Vk) is determined based on D(xk). Fix any i ∈
I(xk). Then

D(x1k, x2k) =






x1k − (ω1i + ri), if |x2k − ω2i| ≤ x1i − ω1i, x1k > ω1i + ri,

(ω1i − ri)− x1k, if |x2k − ω2i| ≤ ω1i − x1k, x1k < ω1i − ri,

x2k − (ω2i + ri), if |x1k − ω1i| ≤ x2k − ω2i, x2k > ω2i + ri,

(ω2i − ri)− x2k, if |x1k − ω1i| ≤ ω2i − x2k, x2k < ω2i− ri.

Consider the target sets Ωi, i = 1, . . . , 6, to be the squares with centers (−5, 7),
(−2, 0), (2,−6), (7,−2), (3, 2), and (7, 8) and the radii ri = {1, 1, 0.5, 1, 2, 0.5}
for i = 1, . . . , 6, respectively. A MATLAB program is performed for the sequence
αk = 1/k satisfying (19) and the starting point x1 = (-2,3); see Figure 4.3. Observe
that the numerical results computed up to five decimal places yield an optimal
solution x̄ ≈ (0.02973, 1.00000) and the optimal value V̂ ≈ 6.50000.

The advantage of the algorithm comes from the fact that we are able to deal with
the smallest intersecting ball problem generated by target sets of different types
and different norms. Although a faster subgradient algorithm may be applied to
this problem, we have chosen the simplest one for demonstrations.
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