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We prove that for every ε > 0 and for every convex body of constant width in a normed plane
there exists a convex body of the same constant width whose boundary consists only of arcs of
circles in the sense of the norm such that the Hausdorff distance between the two bodies is at
most ε. This generalizes the Euclidean case proved by Blaschke. We also present a more general
theorem about approximation of reduced bodies.
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1. Introduction

A theorem of Blaschke says that for every convex body W of constant width in the
Euclidean plane E2 we can find a convex body of constant width whose boundary
consists only of arcs of circles and which can be as close to W as we wish (see [2]
and also §65 of [3]). The proximity here is taken in the sense of Hausdorff distance.
Our Theorem 2.1 presents a generalization of this theorem for bodies of constant
width in any real normed plane M2 (also called a two-dimensional Banach space
or a Minkowski plane), and Theorem 3.3 gives a further generalization for reduced
bodies in M2 and, in particular, in E2.

Let C ⊂ M2 be a convex body. The symbol bd(C) denotes the boundary of C. If
H1 and H2 are different parallel lines in M2, then S = conv(H1 ∪ H2) is called a
strip, where the symbol conv stands for convex hull. We call H1 and H2 bounding
lines of S. If these lines are perpendicular (in Euclidean sense) to a direction m,
then S is called a strip of direction m. If both H1 and H2 are supporting lines of
a convex body C, then we say that S is a C-strip. The C-strip of direction m is
denoted by S(C,m). If p ∈ bd(C) belongs to a bounding line of a C-strip S, we
say that S supports C at p. By the first strip supporting C at a boundary point p
we mean the first supporting strip of this body which contains p when we go on the
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boundary counterclockwise. By ab we denote the segment with endpoints a and b,
and by |ab| we denote the distance ||b−a|| of them. The set of points whose distance
from a point c equals (respectively, is at most) d is called the circle in the sense of
the norm or, for shortness, circle (respectively, ball) of radius d and center c.

2. Approximation of bodies of constant width

By theM2-width of a strip S we mean the double radius of any largest ball contained
in S. Let a and b be points of this ball in the two lines bounding S. Then we say
that ab is normal to S (in the Euclidean case, a and b are unique, but uniqueness
does not hold in general). Moreover, we say that ab is a normal to a line or to a
segment, if ab is normal to a parallel strip.

By the M2-width w(C,m) of C in direction m we mean the M2-width of S(C,m).
The number ∆(C) = minmw(C,m) is called the M2-thickness of C. If a chord
ab of C ⊂ M2 connects the two lines bounding a C-strip of M2-thickness ∆(C)
and if |ab| = ∆(C), it is called a thickness chord of C. Recall that the union of
all thickness chords of C which connect the straight lines bounding S(C,m) is a
trapezium whose bases are in these lines. We denote these bases by A(C,m) and
B(C,m), such that A(C,m) is in this line bounding S(C,m) for which the outer
normal of S(C,m) has direction m. A convex body W ⊂ M2 is said to be of
constant M2-width if w(W,m) is the same for every direction m. For basic results
on bodies of constant M2-width see [6], and for a survey of results see Part 2 of [4]
and Part 2 of [12]. For the Euclidean case see [3] and [4].

We omit the proof of the following theorem since it is a special case of Theorem 3.3
proved in Section 3 (see the short explanation after the proof of Theorem 3.3).

Theorem 2.1. For every body W ⊂ M2 of constant M2-width and for arbitrary
ε > 0 there exists a body Wε ⊂ M2 of constant M2-width ∆(Wε) = ∆(W ) whose
boundary consists only of arcs of circles (in the sense of norm) of radius ∆(W ),
such that the Hausdorff distance between W and Wε is at most ε.

3. Approximation of reduced bodies

A convex body R ⊂ M2 is reduced provided ∆(K) < ∆(R) for every convex body
K ⊂ R different from R. For Euclidean space this notion was introduced in [8],
and for finite dimensional real normed space it was extended in [11]. The class
of reduced bodies is larger than the class of bodies of constant width. For basic
properties of planar reduced bodies in E2 see [10] (a larger context is given in [9]),
and for analogues in M2 see [7] and [11]. For many extremal problems concerning
the thickness and, more generally, the M2-thickness of convex bodies it is sufficient
to consider only reduced bodies. So the subject is important.

For the proof of Theorem 3.3 we need a description of the structure of the boundary
of a reduced body R ⊂M2. From [7] we see that it looks as follows.

The Theorem of [7] says that if w(R,m1) = ∆(R) = w(R,m2) and if w(R,m) >
∆(R) for every m strictly between m1 and m2, then the segments a1a2 and b1b2 are
non-degenerate, and that they are in bd(R). Here by a1 we denote the last point of
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Figure 3.1: A butterfly of a reduced body

Figure 3.2: Reduced body with three butterflies

A(R,m1), by a2 the first point of A(R,m2), by b1 the last point of B(R,m1) and by
b2 the first point of B(R,m2). Denote by c the intersection point of the segments
a1a2 and b1b2. The union of the triangles a1a2c and b1b2c is called a butterfly,
a1a2 and b1b2 its arms, and a1b1 and a2b2 its diagonals. An illustration is given in
Fig. 3.1; pay attention that here B(R,m1) consists of one point b1, and A(R,m2) of
one point a2, which follows from Corollary 3 of [7]. Observe that ab, where a and b
belong to the arms of a butterfly, is a thickness chord if and only if ab is a diagonal
of this butterfly.

In Fig. 3.2 we see a reduced convex body in E2 with three butterflies. Particular
reduced bodies and some of their butterflies are also shown in Fig. 3–5 of [11]. Of
course, a reduced body is a body of constant M2-width if and only if there are no
butterflies in it.

Assume that R is a reduced body which is not a body of constant M2-width.
Clearly, the endpoints of thickness chords of R form a family of pairs of “opposite�
curves. We call them pairs of opposite curves of M2-width ∆(R), or briefly pairs
of opposite curves. Here and later we mean only such curves which are maximal
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by inclusion. Moreover we never treat a pair of points as a pair of opposite curves
(e.g., endpoints of a diagonal of a butterfly do not form a pair of opposite curves).
For instance, in Fig. 3.2 of this paper we see two pairs of opposite curves, and in
Fig. 5 of [7] we see a pair of opposite curves of a reduced body R2 such that one
of them is a point and the other is a segment. Observe that the endpoints of each
curve (from any pair of opposite curves of R) is always an endpoint of an arm of a
butterfly or a limit of endpoints of butterflies. Thus the boundary of R is the union
of at most countably many pairs of arms of butterflies and of at most countably
many pairs of opposite curves (cf. Corollary 11 of [7]).

Angles in Lemmas 3.1 and 3.2 and in the proof of Theorem 3.3 are understood in
the sense of E2.

Lemma 3.1. For every normed plane there exists a constant µ|| || such that for
every non-degenerate triangle abd the distance between d and ab is at most µ|| || ·
|ab| cot(1

2
∠adb).

Lemma 3.2. For every normed plane there exists a positive number β|| || < π such
that for every strip and every normal to it both angles between them are at most
β|| ||.

Proof. Here is a sketch of the proofs of Lemmas 3.1 and 3.2. Denote by o the center
of the unit ball U of M2 and by r the ratio of the radius of the smallest Euclidean
disk centered at o which contains U to the radius of the largest Euclidean disk
centered at o which is contained in U .

Since in E2 Lemma 3.1 holds for µ|| ||E = 1

2
, we pass to M2 multiplying this value

by r. Consequently, we may take µ|| || =
1

2
r.

In order to see Lemma 3.2 take any strip S and any segment connecting opposite
straight lines bounding S. Observe that the ratio of the Euclidean length of this
segment to the Euclidean width of S is at most 1

r
. Hence the angles between this

segment and S are between arcsin 1

r
and π − arcsin 1

r
. So it is sufficient to take

β|| || = π − arcsin 1

r
in M2.

Theorem 3.3. For every reduced body R ⊂M2 and for arbitrary ε > 0 there exists
a reduced body Rε ⊂M2 such that the following hold:

(i) the boundary of Rε consists only of arms of butterflies and arcs of circles (in
the sense of norm) of radius ∆(R),

(ii) for every direction the M2-widths of R and Rε are equal,

(iii) ∆(Rε) = ∆(R),

(iv) the Hausdorff distance between ∆(Rε) and R is at most ε.

Proof. We omit the trivial case when the boundary of R consists only of arms of
butterflies.

Of course, it is sufficient to consider any ε > 0 smaller than a constant. For our
purpose, consider any ε > 0 smaller than π − β|| ||. Here and below β|| || and µ|| ||

are taken from Lemmas 3.1 and 3.2. Let ρε = εµ−1

|| || · tan
1

2
(π − β|| ||). In Part 2

of our proof we apply this ρε when constructing Rε, and in Part 6 we explain that
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such a choice of it guarantees that the Hausdorff distance between R and Rε is at
most ε.

Consider any pair of opposite curves F and G in the boundary of R. Exceptionally
when R is a body of constant M2-width, we divide bd(R) into a pair of curves F
and G by an arbitrary thickness chord. Denote the endpoints of F by f ′ and f ′′,
and the endpoints of G by g′ and g′′, in both cases according to positive orientation.

1. We show that the distance between any points f ∈ F and g ∈ G is at most
∆(R).

Assume the opposite, i.e., that the distance of some f ∈ F and g ∈ G is larger than
∆(R). Support R by a strip such that fg is normal to the lines bounding it. This
strip is of M2-width larger than ∆(R).

On the other hand, since fg intersects f ′g′ and f ′′g′′, the strip supports R at a
point of F and a point of G, a contradiction to the fact that F and G are opposite
curves.

2. The aim of this part is to construct the set Rε.

For each pair F,G of opposite curves in bd(R) we provide a number of different
thickness chords f1g1, . . . , fngn of R such that f1, . . . , fn ∈ F (with f1 = f ′ and
fn = f ′′), and g1, . . . , gn ∈ G (with g1 = g′ and gn = g′′), taking care that |fifi+1| ≤
ρε and |gigi+1| ≤ ρε, where i = 1, . . . , n− 1, and that the positively oriented angle
between every two successive of these chords is at most π−β|| ||. Observe that some
of points f1, . . . , fn (some of g1, . . . , gn) may coincide.

Denote by oi the intersection point of figi and fi+1gi+1 for i = 1, . . . , n− 1 (see Fig.
3.3). Moreover, denote by Φi (respectively, Γi) the angle between the rays from oi
through fi and fi+1 (respectively, through gi and gi+1) for i = 1, . . . , n − 1. Let
ci ∈ Γi be a point of intersection of circles of radius ∆(R) with centers fi and fi+1

(so ci is in equal distances from fi and fi+1). Such ci exists since, thanks to Part 1,
we have |figi+1| ≤ ∆(R) and |fi+1gi| ≤ ∆(R). Moreover, by c0 we mean g′, and by
cn we mean g′′.

For every i ∈ {1, . . . , n − 1} take the arc Fi of the circle F ◦
i of radius ∆(R) with

center ci and endpoints fi and fi+1 which is in Φi. Moreover, for i ∈ {1, . . . , n} take
the arc Gi of the circle G◦

i of radius ∆(R) with center fi which begins at ci−1 and
ends at ci. Created arcs are marked by broken lines in Fig. 3.3. Clearly, G1 ⊂ Γ1,
Gi ⊂ Γi−1 ∪ Γi for i = 2, . . . , n− 1, and Gn ⊂ Γn−1.

We constructed the pair of curves F ∗ = F1 ∪ · · · ∪ Fn−1 and G∗ = G1 ∪ · · · ∪Gn.

Denote by Uε the closure of the union of all arms of the butterflies of R and of all
pairs of curves of the form F ∗ and G∗. We see that Uε is obtained from bd(R) by
exchanging all pairs of opposite curves F and G by the constructed pairs of curves
F ∗ and G∗.

We define Rε as the set bounded by Uε.

3. We intend to show that Rε is a convex body and to conclude that ∆(Rε) = ∆(R).

Since we have at most countably many pairs of opposite curves in bd(R), imagine
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Figure 3.3: Illustration of the proof of Theorem 3.3

that we provide the exchange which gives Uε step by step, each time exchanging
exactly one more pair of opposite curves. Put R0 = R, and the sets bounded by
the successively obtained curves are denoted by R1, R2, . . . .

If we obtain Rε, we stop creating successive sets. In the opposite case we have
Rε = limj→∞R

j.

In order to show that each of the sets R0, R1, . . . is a convex body, we proceed by
induction. Of course, R0 is a convex body. We assume that Rj−1 is a convex body,
and our aim is to show that Rj is a convex body

We intend to apply Theorem 9 of [5], p. 21, which says that if at every boundary
point of a set X ⊂ E2 with nonempty interior there is a straight line which supports
X, then X is a convex body. Recall that we say that a line supports a set X ⊂ E2

if it intersects X but does not cut X (see again [5]). So we consider now Rj in the
part of X. Our aim is to show that for every boundary point p of Rj there is a line
Lp through p which supports Rj.

The boundary of Rj consists of those two pieces of bd(Rj−1) which remain after we
remove F and G (in particular, when we create R1 for a body R of constant width,
those two pieces are empty) together with the pair F ∗ and G∗ of curves added when
constructing Rj. Observe that these four pieces are disjoint. The reason is that
they are in four parts of the plane dissected by the lines containing f ′g′ and f ′′g′′.

First consider any point p ∈ F ∗ ∪G∗. Look for the first supporting conv(G◦
i )-strip

at every point g of every Gi (respectively, conv(F
◦
i )-strip at every point f ∈ Fi).

Take the strip being the “half� of this strip with bounding lines passing through g
and fi (respectively, through f and ci). Since the centers f1, . . . , fn (respectively,
c1, . . . , cn−1) of the arcs of circles are in the counterclockwise order on F ∗ (respec-
tively, on G∗), we conclude that through every p ∈ F ∗ ∪G∗ passes a line Lp which
does not cut F ∗ ∪G∗.

If p ∈ bd(Rj) does not belong to the curves F ∗ and G∗, then in the part of Lp we
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take any supporting line of Rj−1 at p. Clearly, Lp does not cut the two fragments
of the boundary of Rj taken from the boundary of Rj−1.

Take into account that for every point p ∈ bd(Rj) the straight line Lp through p
taken in the two preceding paragraphs does not cut Rj (hint: first observe that
this is true for points f ′, f ′′, g′, g′′ in the part of p, and next that this remains true
if p moves on the boundary of Rj). Moreover, since conv(F ∗ ∪ G∗) has nonempty
interior, Rj also has nonempty interior. Consequently, Rj is a convex body (comp.
Theorem 9 of [5], p. 21).

If after a finite number of steps we obtain Rε, we are done. In the opposite case,
Rε = limj→∞R

j. So it is also a convex body (see [14], p. 94).

From the construction of Rε we conclude that for every direction the M2-widths of
R and Rε are equal and thus that ∆(Rε) = ∆(R).

4. Now we prove that Rε is a reduced body.

We must show that for any convex body K ⊂ Rε different from Rε the inequality
∆(K) < ∆(Rε) holds true. The body K does not contain an extreme point e of Rε

(see §18 of [13]). So K is disjoint with an open disk D centered at e.

By the definition of Rε in Part 2, every point of bd(Rε) belongs to the closure of
the union of all arms of the butterflies of R, or to the union of all curves of the form
F ∗ and G∗.

If D has nonempty intersection with a curve of the form F ∗ or G∗, then from
the construction of these curves we deduce that ∆(conv(Rε \D)) < ∆(Rε). Since
K ⊂ conv(Rε \D), we obtain ∆(K) < ∆(Rε).

In the opposite case, the construction of Rε implies that there is an open disk
D′ ⊂ D centered at e such that D′ ∩ bd(Rε) = D′ ∩ bd(R) and that this set has
empty intersection with all curves of the form F ∗ and G∗ in bd(Rε), and with
all curves of the form F and G in bd(R). Thus from the construction of Rε and
∆(Rε) = ∆(R) we see that ∆(conv(Rε\D

′)) = ∆(conv(R\D′)). Thus the inequality
∆(conv(R \D′)) < ∆(R) (resulting by the reducedness of R), and ∆(Rε) = ∆(R)
imply that ∆(conv(Rε \D

′)) < ∆(Rε). So from K ⊂ conv(Rε \D
′) we get ∆(K) <

∆(Rε).

Since ∆(K) < ∆(Rε) in both cases, we see that Rε is a reduced body.

5. Consider any pair of curves F ∗ and G∗ constructed in Part 3. Let Ni be the first
Rε-strip supporting Rε at fi and gi. Its bounding line through fi is denoted by Ki,
and that through gi by Li (again see Fig. 3.3). For i ∈ {1, . . . , n − 1}, by ki we
mean the point of intersection of Ki with Ki+1 (if these lines coincide, then take ki
as the midpoint of fifi+1). By li we mean the point of intersection of Li with Li+1

(if these lines coincide, take li as the midpoint of gigi+1).

For every c ∈ Gi take the first Rε-strip such that cfi is normal to it, and denote
by T (c) its bounding line through fi. In particular, T (gi) = Ki. When we move
c ∈ Gi counterclockwise from gi to ci, the strip “rotates� counterclockwise (with
some possible breaks in the movement). Thus T (c) also rotates counterclockwise.
This and the fact that the distance between ci and any point of T (ci) is at least
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∆(R) imply that the distance from ci to every point of the ray from fi through ki is
at least ∆(R). Analogously, the distance between ci and any point of the ray from
fi+1 through ki is at least ∆(R). So since every point of Fi is at distance ∆(R)
from ci, we see that Fi ⊂ fikifi+1. Thus F ∗ is contained in the union of triangles
fikifi+1, where i = 1, . . . , n. Similarly one can show that G∗ is in the union of
triangles giligi+1, where i = 1, . . . , n.

6. It remains to show that the Hausdorff distance between R and Rε is at most ε.

Denote by P the closure of the convex hull of all points fi and gi taken from all
curves of the form F and G and of endpoints of all arms of butterflies of R. Denote
by Q the intersection of all strips Ni (defined in Part 5) for all pieces of curves
F , G and of all half-planes containing R whose bounding lines contain the arms
of butterflies of R. Part 5 implies inclusions P ⊂ R ⊂ Q and P ⊂ Rε ⊂ Q. So
in order to estimate the Hausdorff distance between R and Rε it is sufficient to
estimate the Hausdorff distance between P and Q. Taking into account the fact
that the closure of Q \ P is the union of all triangles of the form fikifi+1 and of
the form giligi+1, it is sufficient to show that all (i.e., for all pairs F , G and all i)
distances between ki and fifi+1, and also between li and gigi+1, are at most ε.

ByLemma 3.1thedistancebetweenki andfifi+1 is atmostµ|| ||·|fifi+1|cot(
1

2
∠fikifi+1),

and the distance between li and gigi+1 is at most µ|| || · |gigi+1| cot(
1

2
∠giligi+1).

Look at the quadrangle oifikifi+1. Since the sum of its angles is 2π, applying Lemma
3.2 for angles ∠oifiki and ∠oifi+1ki, and the fact that ∠fioifi+1 ≤ π−β|| || (see the
second paragraph of Part 2) we conclude that ∠fikifi+1 ≥ 2π−2β|| ||− (π−β|| ||) =
π − β|| ||. Similarly, always ∠giligi+1 ≥ π − β|| ||.

From the above two paragraphs and having in mind that |fifi+1| ≤ ρε and |gigi+1| ≤
ρε (see Part 2) we get that all distances between ki and fifi+1, and between li and
gigi+1 (for all F , G) are at most ρε ·µ|| || ·cot

1

2
(π−β|| ||). Since ρε = εµ−1

|| || ·tan
1

2
(π−

β|| ||), we conclude that the Hausdorff distance between P and Q, and thus between
R and Rε, is at most ε.

If R is a body of constant M2-width, from Parts 2 and 3 of this proof we see that
Rε (which is R1 there) is also a body of constant M2-width. So Theorem 2.1 is a
special case of Theorem 3.3.

4. Corollaries

From the paper [15], in particular we know that for every two convex bodies in M2

the Hausdorff distance of them is equal to the Hausdorff distance of their boundaries.
This and our Theorems 2.1 and 3.3 lead to the following corollary.

Corollary 4.1. Every curve of constant M2-width ∆(W ) may be approximated by
a curve of constant M2-width ∆(W ) whose boundary consists only of arcs of circles
(in the sense of norm) of radius ∆(W ), such that the Hausdorff distance between
them is at most any given ε > 0.

A more general corollary holds true for curves bounding reduced bodies in M2.



M. Lassak / Approximation of Reduced Bodies in a Normed Plane 873

Here are two corollaries which generalize the well-known theorem of Barbier [1] (see
also [5], p. 127) that the perimeter of every convex bodyW ⊂ E2 of constant width
is 2π ·∆(W ). The statements of these corollaries can also be obtained by applying
central symmetrization.

Corollary 4.2. All bodies of constant M2-width of a normed plane have the same
perimeter in the sense of the norm.

Corollary 4.3. For every planar reduced body R we have perim(R) ≥ 2π · ∆(R)
with equality if and only if R is a body of constant width. For every planar reduced
polygon R we have perim(R) > 2π ·∆(R), and in general this inequality cannot be
improved.

These two corollaries result from the construction of Rε in the proof of Theorem 3.3,
by Corollary 4.1 (with its generalization for reduced bodies), and by the limit ap-
proach. Additionally, in order to obtain Corollary 4.3, we apply the fact that the
sum of lengths of arms of butterflies in a butterfly is 2 tan ψ

2
·∆(R), where ψ denotes

the angle between its diagonal (see Theorem 3 of [10]). Of course, this is more than
the length ψ ·∆(R) of the usual circular arc of radius ∆(R) and angle ψ. The fact
that the second inequality in Corollary 4.3 cannot be improved follows by taking
into account the sequence of regular n-gons, where n is odd and tends to infinity.
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