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1. Introduction

Given a Banach space (X, ‖ · ‖) and a bounded linear operator T : X → X, the
following equality

‖I + T‖ = 1 + ‖T‖,

is called the Daugavet equation, where I is the identity operator on X. A Banach
space (X, ‖ · ‖) is said to have the Daugavet property [21] if every rank one operator
T : X → X satisfies the Daugavet equation. It is known that in a space with the
Daugavet property, every weakly compact, even every operator not fixing a copy of
ℓ1 satisfies the Daugavet equation [21, 41].

In 1963, Daugavet [16] showed that the Daugavet equation holds for every compact
operator T on C(0, 1), and in 1966, Lozanovskii [33] proved that the same equation
is satisfied for compact operators on L1(0, 1). These results were left without much
attention approximately until the beginning of 1980’s. Since then the Daugavet
equation has been studied by many authors in various contexts. The textbook [3]
and references therein provide a good source of results about this property. We also
refer to a nice survey paper of Werner [44]. Here we will point out some results
that are relevant to the studied topics.

The spaces L1(µ) and L∞(µ) on any atomless measure space have the Daugavet
property. Further such spaces as C(K) where K is a compact Hausdorff space with
no isolated points, the disk algebra, H∞, non-atomic C∗-algebras or preduals of
non-atomic von Neumann algebras have the Daugavet property [38]. A space with
the Daugavet property does not have an unconditional basis [20] and does not even
embed into a space with an unconditional basis [21]. In [20] Kadets used this result
to give an elegant proof of the well known results that neither C[0, 1] nor L1(0, 1)
have unconditional bases. It is also known that a Banach space with the Daugavet
property cannot have the Radon-Nikodým property [45] and that the Daugavet
property can be lifted from components to the entire space in a finite direct sum
of Banach spaces equipped with ℓ∞ or ℓ1 norm [2, 45, 21]. Some other examples of
spaces with the Daugavet property are presented in [22, 11, 44].

In general the Daugavet property is not inherited by subspaces, even 1-complemen-
ted [44, 21]. On the other hand it is inherited by subspaces that are M-ideals or
L-summands [21]. It should be mentioned that the Daugavet equation has found
nice applications in approximation theory. Stechkin [42] used it to find the best
constants in certain inequalities.

The main purpose of this paper is to investigate the Daugavet property in Köthe
spaces that are the Banach lattices and ideals over measure spaces. So far with
a few exceptions not much of such studies have been conducted.

The Daugavet property is quite restrictive, since it implies some severe isomorphic
and isometric restrictions. So it is not surprising that many results presented here
demonstrate that the Daugavet property in Banach lattices is rather unusual.

As we mentioned before, the Daugavet property is not generally inherited by sub-
spaces, even the complemented ones. However our first result obtained here shows
that in the case of Banach function lattices X, this property is inherited by the
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subspaces Xa of order continuous elements. This essential observation allows us
to treat considerably larger family of spaces than has been studied so far. It also
allows us to develop a special method for demonstrating that the space fails the
Daugavet property.

In fact one starts with the assumption that the space X has the Daugavet property.
It then yields that under mild assumptions its subspace Xa also has it. Hence
Xa does contain an asymptotically isomorphic copy of ℓ1 [21], which in turn is
equivalent to the fact that the dual (Xa)

∗ contains an isometric copy of L1(0, 1)
[18]. Further applying some additional assumptions on X or X ′ we get that this
copy is order isometric [46], and then that X(A) = L1(A) as sets with equivalent
norms [1], for every measurable set A with µ(A) < ∞, which in fact often reduces
X to L∞ or leads to a contradiction. This method is a base for some general results
on the Daugavet property in Banach function lattices or more specific results for
such spaces as Orlicz, Nakano, Lorentz or Marcinkiewicz.

It is well known that if a Banach space has the Daugavet property, then every
nonempty weakly open subset of its unit ball has diameter two [41, Lemma 3]. The
class of Banach spaces having the latter property is considerably larger than the one
with the Daugavet property. For instance in ℓ∞ or c0 every nonempty weakly open
subset of their unit balls has diameter two, while they have no Daugavet property.
It is also well known that every infinite-dimensional C∗-algebra satisfies that every
weak neighborhood of the unit ball has diameter two [7] and just some of them
satisfy the Daugavet property [38] (see also [8]). Analogous situation occurs in
interpolation spaces L1+L∞ and L1∩L∞ [5], and we will see similar phenomena in
the class of Orlicz or Nakano spaces. Other results on spaces having the diameter
two property can be found in [4, 9, 37]. A version of the Daugavet property for
polynomials (instead of operators) has been studied in [15].

The paper consists of five sections. In the second section we investigate the Dau-
gavet property for Köthe spaces, called further Banach function lattices. They are
the ideals in the space of all measurable functions L0(µ) over the measure space
(Ω,S, µ). The first result, crucial for further studies, states that if a Banach func-
tion lattice X has the Daugavet property, then its subspace of all order continuous
elements Xa inherits this property under mild assumptions (the support ofXa is the
entire space Ω and X satisfies the weak Fatou property). It follows that for spaces
X in a large class of Banach function lattices, both X and its Köthe dual X ′ contain
an isometric copy of L1(0, 1). We show further that a large class of r.i. spaces over
atomless measure spaces fails the Daugavet property. In particular, if a r.i. space
X over an atomless finite measure space (Ω,S, µ) has the Daugavet property, with
the assumptions that the norm of X is order continuous and it satisfies the Fatou
property, then X must coincide with L1(µ) as sets and the norm of X is equivalent
to the usual norm in L1(µ). Under some additional assumptions we get that a r.i.
space X with the Daugavet property must be isometric either to L1 or to L∞. We
finish this section with the exact formulas of the norms in dual spaces of the inter-
polation spaces X + L∞ equipped with classical norms, and consequently we show
that the interpolation spaces L1∩X, L∞∩X or X+L∞ fail the Daugavet property
for a wide class of r.i. spaces X.
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In Section 3 we consider Orlicz spaces, an important class of r.i. Banach function
lattices. In the case of the atomless measure space (Ω,S, µ), we show that many
Orlicz spaces Lϕ := Lϕ(µ), equipped with either Luxemburg or Orlicz norm, fail
the Daugavet property. In fact, if ϕ grows essentially faster at infinity than a linear
function, that is, if limt→∞ ϕ(t)/t = ∞, then the Orlicz space Lϕ has no Daugavet
property. We show also that the graph of ϕ must be composed of straight segments
whenever Lϕ has the Daugavet property and µ(Ω) < ∞. We finish the section by
showing that in function and sequence Orlicz spaces equipped with the Luxemburg
norm, the diameter of any non-empty weakly open subset of the unit ball is equal to
two whenever ϕ does not satisfy the appropriate condition ∆2. Thus in the class of
Orlicz spaces there exist many examples failing the Daugavet property but having
the diameters of weak neighborhoods equal to two.

Another type of Köthe spaces, not symmetric in general, is studied in Section 4.
Here we investigate Nakano spaces Lp(t) with 1 ≤ p(t) ≤ ∞, a direct generalization
of the Lebesgue spaces Lp, 1 ≤ p ≤ ∞, and a sub-family of much larger class of
Musielak-Orlicz spaces [36]. In particular we show that whenever 1 < p(t) < ∞
then Lp(t) equipped with either of two standard norms fails the Daugavet property.
Nakano spaces Lp(t) are also called variable exponent spaces. However if p(t) takes
only two values, 1 or ∞, then the space Lp(t) enjoys the Daugavet property. We
finish the section by proving that whenever esssupΩ p(t) = ∞, then the diameter of
any weak neighborhood in the unit ball of this space is equal to two.

The last section is devoted to studies of the Daugavet property in the Lorentz and
Marcinkiewicz spaces Λψ and Mψ, respectively. We prove that for large class of
functions, both spaces fail the Daugavet property. As a consequence, we recover
the analogous result for L1 + L∞ and L1 ∩ L∞ equipped with one of the standard
norms.

2. Banach lattices

Throughout this paper, we will consider only real Banach spaces. If (X, ‖ · ‖) is a
Banach space, then by BX and SX we denote the unit ball and the unit sphere of X,
respectively. As usual by R, R+ and N we denote the set of real, non-negative real
and natural numbers, respectively. Let (Ω,S, µ) be a complete σ-finite measure
space, and L0 = L0(µ) be the space of (equivalence classes of µ-a.e. equal) real
valued measurable functions on Ω. We say that (X, ‖ · ‖X) is a Banach function

lattice Banach lattice for short) on (Ω,S, µ) if X is an ideal in L0 and whenever
x, y ∈ X and |x| ≤ |y| a.e., then ‖x‖X ≤ ‖y‖X . If Ω is the set of natural numbers
N, and µ the counting measure on subsets of N, then the elements of X are real
sequences and in this case X is called a Banach sequence lattice.

Notice here that for any Banach lattice X on (Ω,S, µ) it is possible to construct
(see [26, Corollary 1, p. 95] or [47, pp. 454–456]) a set ΩX ∈ S called the support of
X such that every element of X vanishes µ-a.e. on Ω\ΩX and every measurable set
E ⊂ ΩX with µ(E) > 0 has a measurable subset F of finite positive measure with
χF ∈ X. Furthermore ΩX is the union of an increasing sequence of measurable sets
(En) such that χEn ∈ X and µ(En) < ∞ for each n. Notice that ΩX is defined up
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to a null set. As usual the support ΩX of a Banach function lattice X is denoted
by suppX.

Let X be a Banach function lattice on (Ω,S, µ). Given a measurable set A ⊂ Ω,
X(A) denotes the space of all elements in X restricted to A, or X(A) = {xχA :
x ∈ X}. By L1 = L1(µ) and L∞ = L∞(µ) we denote the spaces of integrable
and µ-essentially bounded, real valued measurable functions on Ω, respectively. An
element x ∈ X is called order continuous if for every 0 ≤ xn ≤ |x| such that
xn ↓ 0 a.e. it holds ‖xn‖X → 0. By Xa we denote the set of all order continuous
elements of X. X is said to have the Fatou property whenever for any xn ∈ X
and x ∈ L0 such that xn → x a.e. and supn ‖xn‖X < ∞ we have that x ∈ X
and ‖x‖X ≤ lim infn ‖xn‖X . X is said to have the weak Fatou property whenever
xn, x ∈ X and xn → x a.e. we have that ‖x‖X ≤ lim infn ‖xn‖X .

The Köthe dual space X ′ of X is the subset of all elements y ∈ L0 such that

‖y‖X′ = sup
{∫

Ω

|xy| dµ : ‖x‖X ≤ 1
}
<∞.

It is well known that X ′ equipped with the norm ‖ · ‖X′ is a Banach function lattice
on suppX. Furthermore X ′′ = X with equality of norms if and only if X has the
Fatou property (see [26, Theorem 6, p. 190] or [47, Theorems 3 and 4, p. 472]).

Let X be a Banach lattice. The order in its dual space X∗ is given by F ≤ G if
and only if F (x) ≤ G(x) for all 0 ≤ x ∈ X. A functional F ∈ X∗ is called order

continuous (resp., σ-order continuous) if xα ↓ 0 (resp., xn ↓ 0) implies F (xα) →
0 (resp., F (xn) → 0). The sets of order continuous functionals (resp., σ-order
continuous) is denoted by X∗

n (resp., by X∗
c ). It is well known that both sets form

bands in X∗. The disjoint complement (X∗
n)
d of X∗

n (in X∗) is denoted by X∗
s and

is called the set of singular functionals. Thus X∗ = X∗
n ⊕X∗

s is a direct sum of X∗
n

and X∗
s .

If X is a Banach function lattice over (Ω,S, µ), then X∗
n = X∗

c and F ∈ X∗
c if and

only if there exists a unique y ∈ X ′ such that F (x) =
∫
Ω
xy dµ for all x ∈ X, with

‖F‖X∗ = ‖y‖X′ , and this gives the isometric equality X∗
c ≃ X ′. Thanks to this

representation, X∗
c is called the space of regular functionals and is denoted by X∗

r .
Note that suppXa = Ω implies X∗

s = (Xa)
⊥, so every Fs ∈ X∗

s is identically zero
on the subspace Xa. Thus in this case X∗ ≃ X ′ ⊕ (Xa)

⊥. For details and more
information on Banach lattices we refer to [6, 26, 31, 35].

We say that a Banach lattice X is strictly monotone if for any x, y ∈ X, we have
‖x‖ < ‖y‖ whenever 0 ≤ x ≤ y and x 6= y.

Given x ∈ L0(µ), its distribution function is defined by dx(λ) = µ ({t ∈ Ω : |x|(t) >
λ}), λ ≥ 0, and its decreasing rearrangement by x∗(t) = inf{s > 0 : dx(s) ≤ t},
t > 0. A Banach lattice X is called a rearrangement invariant space (in short r.i.
space) if ‖x‖ = ‖y‖ whenever dx = dy and x ∈ X. It is well known that for any
r.i. space X we have L1 ∩ L∞ ⊂ X ⊂ L1 + L∞. If µ is an atomless measure,
let φX(t) = ‖χA‖X , where µ(A) = t and 0 ≤ t ≤ µ(Ω), be the fundamental

function of a r.i. space X. The fundamental function of the Köthe dual X ′ is given
by φX′(t) = t/φX(t) for any 0 ≤ t ≤ µ(Ω). The function φX(t)/t is decreasing
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on (0, µ(Ω)). Let further φX(0+) = limt→0+ φX(t). For r.i. spaces we refer to
[10, 27, 31].

Given two Banach lattices X, Y we will write X = Y whenever the sets coincide
and the norms are equivalent. Two expressions U, V are said to be equivalent if for
some constants a, b > 0 we have aU ≤ V ≤ bU . In this case we write U ≈ V . The
symbol X ≃ Y means that X and Y are isometrically isomorphic.

Let (X0, ‖ · ‖0) and (X1, ‖ · ‖1) be Banach lattices over the measure space (Ω,S, µ).
Then X = (X0, X1) denotes a Banach couple in the sense of interpolation [10, 27].
The spaces Σ(X) = X0 + X1 and ∆(X) = X0 ∩ X1 are often equipped with the
following norms:

‖x‖Σ = ‖x‖Σ(X) = inf{‖x0‖0 + ‖x1‖1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1},

‖x‖∆ = ‖x‖∆(X) = max{‖x‖0, ‖x‖1},

|||x|||Σ = |||x|||Σ(X) = inf{max{‖x0‖0, ‖x1‖1} : x = x0 + x1, x0 ∈ X0, x1 ∈ X1},

|||x|||∆ = |||x|||∆(X) = ‖x‖0 + ‖x‖1.

It is well known that for any couple X of Banach lattices and the couple X ′ =
(X ′

0, X
′
1) the following Köthe duality formulas hold with equality of norms:

(∆(X), ‖ · ‖∆)
′ = (Σ(X ′), ‖ · ‖Σ), (Σ(X), ‖ · ‖Σ)

′ = (∆(X ′), ‖ · ‖∆),

(∆(X), |||·|||∆)
′ = (Σ(X ′), |||·|||Σ), (Σ(X), |||·|||Σ)

′ = (∆(X ′), |||·|||∆).

If X0 = L1 and X1 = L∞ are equipped with their usual norms (‖ · ‖1 and ‖ · ‖∞
respectively), then we denote briefly by Σ = L1 + L∞ and ∆ = L1 ∩ L∞, and their
appropriate norms by ‖ · ‖Σ, |||·|||Σ and ‖ · ‖∆, |||·|||∆. It is clear that if (Ω,S, µ) is
a finite measure space, then ∆ = L∞ and Σ = L1 up to equivalent norms.

We start with a first important observation that the Daugavet property is inher-
ited by the subspace of order continuous elements. This basic fact is an essential
ingredient in the proofs of several further results.

Theorem 2.1. Let X be a Banach lattice on (Ω,S, µ) with the Daugavet property.

If X has the weak Fatou property and suppXa = Ω then the Daugavet property is

inherited by Xa.

Proof. Notice first that if E is a Banach function lattice on (Ω,S, µ) with suppX =
Ω then E is an order dense ideal in L0, i.e. for every 0 ≤ x ∈ L0 there exists a non-
negative sequence (xn) in E such that xn ↑ x a.e. [26, Lemma 1, p. 95]. Thus
our hypothesis suppXa = Ω implies that Xa is an order dense ideal in X. Then
using Lebesgue’s Monotone Convergence Theorem it is easily seen that the following
formula holds with equality of norms

(Xa)
′ = X ′.

Let T = F⊗x0 be a rank-one operator onXa, that is Tx = F (x)x0 for x ∈ Xa. Since
the Banach lattice Xa has an order continuous norm, (Xa)

∗ is order isometrically
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isomorphic to (Xa)
′. Thus by the above equality, there exists y ∈ X ′ such that

‖F‖X∗ = ‖y‖X′ and

F (u) =

∫

Ω

uy dµ, u ∈ Xa.

We define a rank-one operator S : X → X by S = F̃ ⊗ x0, where

F̃ (x) =

∫

Ω

xy dµ, x ∈ X.

Since F̃ |Xa = F and ‖F̃‖X∗ = ‖y‖X′ = ‖F‖(Xa)∗ , we have ‖S‖X→X = ‖T‖Xa→Xa .

We fix x ∈ BX . By order density of Xa in X, it follows that there exists a sequence
(un) in Xa such that un → x a.e. and |un| ≤ |x| for all n ∈ N. Since |uny| ≤ |xy|
for all n ∈ N and xy ∈ L1(µ), Lebesgue’s Dominated Convergence Theorem reveals
that F̃ (un) → F̃ (x). Consequently,

|un + F̃ (un)x0| −→ |x+ F̃ (x)x0| = |x+ S(x)| a.e.

Combining now the weak Fatou property of X with F̃ |Xa = F and un ∈ BX , we
obtain

‖x+ S(x)‖X ≤ lim infn→∞‖un + F̃ (un)x0‖X

≤ sup
‖u‖Xa≤1

‖u+ F (u)x0‖Xa = ‖I + T‖Xa→Xa .

Hence ‖I + S‖X→X ≤ ‖I + T‖Xa→Xa . Since ‖S‖X→X = ‖T‖Xa→Xa , the Daugavet
property of X yields the required inequality

1 + ‖T‖Xa→Xa ≤ ‖I + T‖Xa→Xa ,

and this completes the proof.

The next two results state conditions under which the Daugavet property of X
implies that X or X ′ contains an (lattice) isomorphic or isometric copy of L1(0, 1).

Corollary 2.2. Let X be a Banach lattice on (Ω,S, µ) with the weak Fatou property

and let suppXa = Ω. Suppose X has the Daugavet property. Then we have:

(i) The Köthe dual space X ′ contains an isometric copy of L1(0, 1).

(ii) If X ′ is strictly monotone, then it contains a lattice isometric copy of L1(0, 1).

(iii) If X ′ is order continuous, then X ′ contains a lattice isomorphic copy of

L1(0, 1).

Proof. (i) It was shown in [18] that a Banach space contains asymptotically iso-
metric copy of ℓ1 if and only if its dual space contains an isometric copy of L1(0, 1).
It is also known that if a Banach space has the Daugavet property, then it contains
asymptotically isometric copy of ℓ1 (see the proof of [21, Theorem 2.9]).

If X is a Banach lattice which satisfies our conditions, it follows by Theorem 2.1
that Xa has the Daugavet property. Since (Xa)

∗ is isometrically isomorphic to X ′,
the proof is complete by the above mentioned results.
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(ii) Since by (i), X ′ contains an isometric copy of L1(0, 1), it follows by [46] that
X ′ contains also a lattice isometric copy of L1(0, 1).

(iii) It was shown in [23, Theorem 3.1] that if a Banach lattice Z contains no
isomorphic copy of c0 and has a subspace isomorphic to L1(0, 1), then Z also has
a sublattice which is order isomorphic to L1(0, 1). Since X

′ has the Fatou property,
thus our hypothesis implies that X ′ does not contain a copy of c0. Combining the
above mentioned result we obtain similarly as in (i) the required assertion.

Proposition 2.3. Let X be a Banach lattice on a measure space (Ω,S, µ) with the

Fatou property. If X has the Daugavet property, then we have:

(i) If supp(X ′)a = Ω, then X contains an isometric copy of L1(0, 1).

(ii) If suppXa = supp(X ′)a = Ω, then both X and X ′ contain isometric copies of

L1(0, 1).

Proof. (i) It is obvious that a Banach space Y has the Daugavet property once its
dual Y ∗ has it. Our hypotheses imply

((X ′)a)
∗ ≃ ((X ′)a)

′ ≃ X ′′ ≃ X.

This yields that (X ′)a has the Daugavet property. Combining the above formulas
with the proof of Corollary 2.2(i), we conclude the result.

(ii) The statement follows by (i) and Corollary 2.2.

In the remaining part of this section we shall investigate the Daugavet property of
r.i. spaces and its relationship to the behavior of the fundamental functions of these
spaces. We start with a result which will be applied to Lorentz and Marcinkiewicz
spaces in the last section (see Theorem 5.3).

Proposition 2.4. Let X be a r.i. space with the Fatou property on an atomless

measure space (Ω,S, µ) and let µ be separable in case of infinite measure. If

φX′(0+) > 0, Xa 6= {0} and X ′ is strictly monotone or L1(0, 1) is order isometri-

cally embedded into X ′, then X does not possess the Daugavet property.

Proof. Notice that the assumption Xa 6= {0} for r.i. space X is equivalent to
suppXa = Ω. Without loss of generality we can assume that µ(Ω) = 1 or µ(Ω) = ∞.
Assume also that X ′ is strictly monotone. If instead we assume that X ′ contains
an order isometric copy of L1(0, 1) then the proof goes in a similar mode.

Assume that X has the Daugavet property. Then by Theorem 2.1 the space Xa

inherits this property. We also have that the dual space (Xa)
∗ ≃ X ′, and then in

view of the assumption that X ′ is strictly monotone and by Corollary 2.2(ii), X ′

contains an order isometric copy of L1(0, 1).

If µ(Ω) = 1 then X ′ = L∞. Indeed, since the inclusion L∞ →֒ X ′ holds, we need to
show that X ′ →֒ L∞. Assuming on the contrary that there exists x ∈ X ′ which is
not bounded, we can find a sequence (An) ⊂ Ω such that µ(An) > 0, |x(t)| ≥ n for
t ∈ An and n ∈ N. Hence

‖x‖X′ ≥ ‖xχAn‖X′ ≥ nφX′(0+) → ∞,



M. D. Acosta, A. Kamińska, M. Mastyło / The Daugavet Property 883

a contradiction. Let T : L1(0, 1) → X ′ = L∞ be an order isometry. Letting xk ∈
L1(0, 1), ‖xk‖1 = 1, k = 1, . . . , n, and |xk| ∧ |xj| = 0 for k 6= j, we have that
‖
∑n

k=1 xk‖1 =
∑n

k=1 ‖xk‖1 = n. Hence

n =
∥∥∥

n∑

k=1

xk

∥∥∥
1
=

∥∥∥T
( n∑

k=1

xk

)∥∥∥
X′

≈
∥∥∥T

( n∑

k=1

xk

)∥∥∥
∞

= max
1≤k≤n

‖Txk‖∞ ≈ max
1≤k≤n

‖Txk‖X′ = max
1≤k≤n

‖xk‖1 = 1,

and we get a contradiction.

Assume now that µ(Ω) = ∞. Applying the same reasoning as above we get that
X ′(A) = L∞(A) for any measurable set A with µ(A) <∞.

By the assumption that µ is separable and the Caratheodory Theorem (see, e.g.
Corollary on p. 128 in [29]), L1(µ) is isometrically isomorphic to L1(0, 1) which in
turn is order isometrically embedded into X ′. Hence L1 = L1(µ) is order isometri-
cally embedded into X ′ = X ′(Ω). Now by Corollary 9 in [1] and its proof, we have
that L1(A) ⊂ X ′(A) as sets for every A with µ(A) <∞, which contradicts the fact
that X ′(A) = L∞(A).

Before the proof of the next result let us recall that a Banach space X is said to
be a weakly compactly generated Banach space, or a WCG-space, if X contains
a linearly dense weakly compact subset K, i.e., X = span(K). Separable Banach
spaces and reflexive Banach spaces are trivial examples of WCG-spaces. It is well
known that in every Banach lattice with order continuous norm, order intervals are
weakly compact [6, Theorem 12.9]. This implies that if X is a Banach lattice with
a weak unit e, then X = span[−e, e] (by [34, Theorems 40.2 and 40.3]) and so X is
a WCG-space.

We will use the following result [17, Corollary 7, p. 83]: If X is a Banach space

whose dual X∗ is a subspace of a weakly compactly generated Banach space Y , then

X∗ has the Radon-Nikodým property.

Proposition 2.5. Let X be a r.i. space with the Fatou property on an atomless

measure space (Ω,S, µ). If X is order continuous and has the Daugavet property

then L1 →֒ X. In particular, if µ(Ω) <∞ then X = L1.

Proof. Let X be order continuous and have the Daugavet property. We claim that
φX′(0+) > 0. Assuming on the contrary that φX′(0+) = 0. Then (X ′)a 6= {0}, and
so supp(X ′)a = Ω. Since

((X ′)a)
∗ ≃ ((X ′)a)

′ ≃ X ′′ ≃ X

and X is order continuous with a weak unit (by suppX = Ω), we conclude by
the above mentioned result that X has the Radon-Nikodým property. However it
contradicts the Daugavet property of X by [45], in view of the well known fact that
the unit ball of a space with the Radon-Nikodým property has a strongly exposed
point. This proves the claim. We can now proceed analogously to the proof of
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Proposition 2.3 and show that X ′ →֒ L∞. As a consequence L1 →֒ X by the Köthe
duality and X = X ′′ isometrically.

We conclude recalling that any r.i. space over a finite atomless measure space is
embedded into L1 [10, 27] and so X →֒ L1. By the previous opposite embedding
we get that X = L1.

Proposition 2.6. Let X be a r.i. space with the Fatou property on a finite separable

atomless measure space (Ω,S, µ). Assume that X has the Daugavet property. If X ′

is strictly monotone or X ′ is order continuous, then X = L∞(µ).

Proof. Let X ′ be strictly monotone and let X have the Daugavet property. Sup-
pose that φX(0+) = 0. It follows that suppXa = Ω, and thus by Corollary 2.2(ii),
X ′ contains a lattice isometric copy of L1(0, 1). Now by the assumption that µ is
separable, L1(0, 1) is isometric to L1(µ).

Applying in turn [1], we get that L1(µ) ⊂ X ′. However X ′ ⊂ L1(µ), so X ′ =
L1(µ). Thus X = L∞(µ), which contradicts φX(0+) = 0. Hence φX(0+) > 0, and
consequently in view of finiteness of µ, X = L∞(µ).

If X ′ is order continuous, then by Corollary 2.2(iii) and the similar arguments as
above, we obtain that X = L∞(µ).

The following geometrical characterization of the Daugavet property will be used
later.

Lemma 2.7 ([21, Lemma 2.2]). For a Banach space X, the following conditions

are equivalent:

(i) X has the Daugavet property.

(ii) For every x ∈ SX and y∗ ∈ SX∗ and every ε > 0 there is x∗ ∈ SX∗ such that

x∗(x) > 1− ε and ‖x∗ + y∗‖ > 2− ε.

(iii) For every x ∈ SX and x∗ ∈ SX∗ and every ε > 0 there is y ∈ SX such that

x∗(y) > 1− ε and ‖x+ y‖ > 2− ε.

In what follows we also need the following technical result.

Lemma 2.8. Assume that f, g ∈ L1(µ) and D is a measurable set such that for

a.e. t ∈ D,

0 ≤ f(t) and g(t) = −c,

where c > 0. Let A = {t ∈ D : f(t) ≤ c} and B = {t ∈ D : f(t) > c}. Then

‖(f + g)χD‖1 ≤ ‖fχD‖1 + ‖gχD‖1 − 2cµ(B).

Proof. In view of A ∪B = D and A ∩B = ∅, we have that

‖fχD‖1 + ‖gχD‖1 = ‖fχA‖1 + ‖fχB‖1 + c(µ(A) + µ(B)),

and

‖(f + g)χD‖1 =

∫

A

|f − c| dµ+

∫

B

|f − c| dµ =

∫

A

(c− f) dµ+

∫

B

(f − c) dµ

= c(µ(A)− µ(B))− ‖fχA‖1 + ‖fχB‖1.



M. D. Acosta, A. Kamińska, M. Mastyło / The Daugavet Property 885

Hence

‖fχD‖1 + ‖gχD‖1 − ‖(f + g)χD‖1 = 2‖fχA‖1 + 2cµ(B) ≥ 2cµ(B),

and the proof is done.

The next statement extends [5, Proposition 4.3, c] from L∞ to a wider class of r.i.
spaces.

Theorem 2.9. Let X be a r.i. space on an atomless infinite measure space (Ω,S, µ).
Assume that one of the following two conditions is satisfied:

(i) The fundamental function φX of X satisfies that φX(T ) > T for some 0 <
T < 1, φX(1) = 1 and φX(t0) < t0 for some real number t0 > 1 .

(ii) X ⊂ L∞(µ) and the fundamental function φX satisfies that φX(1) = 1 and

φX(t0) < t0 for some t0 > 1.

Then the space (L1(µ) ∩X, ‖ · ‖∆) does not have the Daugavet property.

Proof. Let (E, ‖ · ‖E) = (L1(µ) ∩X, ‖ · ‖∆).

(i) By the assumptions we can choose a real number a such that a>max{ φX(T )
φX(T )−T

, t0}.

Now we choose measurable subsets Ω1 and Ωa of Ω such that Ω1 ⊂ Ωa, µ(Ω1) = 1
and µ(Ωa) = a. Take x0 = 1

a
χΩa and the functional F0 ∈ E∗ generated by −χΩ1 .

Since the function t 7→ φX(t)
t

is non-increasing, by the choice of a we have

‖x0‖E = max{‖x0‖1, ‖x0‖X} = max

{
1,
φX(a)

a

}
= 1.

Since BE ⊂ BL1 , ‖F0‖E′ ≤ ‖χΩ1‖∞ = 1 and so F0 ∈ SE′ by ‖χΩ1‖E = 1 and
F0(χΩ1) = −1.

We shall show that for every 0 < ε < min
{
1− T

φX(T )
− 1

a
, 2T
a
, 1− φX(a)

a

}
, if y ∈ SE

satisfies F0(y) > 1 − ε, then ‖x0 + y‖E < 2 − ε, which will prove that E lacks the
Daugavet property by Lemma 2.7.

So assume that y ∈ SE and F0(y) > 1− ε. Let us write

C = {t ∈ Ω1 : −y(t) ≥ 0},

and

A = {t ∈ C : −y(t) ≤ a−1}, B = {t ∈ C : a−1 < −y(t)}.
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We clearly have

1− ε < F0(y) =

∫

Ω1

(−y) dµ ≤

∫

C

(−y) dµ

=

∫

A

(−y) dµ+

∫

B

(−y) dµ

≤
1

a
µ(A) + ‖χB‖X′‖yχB‖X

≤
1

a
µ(A) +

µ(B)

φX(µ(B))
‖y‖X (since A ⊂ Ω1)

≤
1

a
+

µ(B)

φX(µ(B))
.

The function t 7→ t
φX(t)

is non-decreasing and by the choice of ε we know that
1
a
+ T

φX(T )
< 1− ε, hence we deduce from the above inequality that µ(B) ≥ T .

On the other hand, from the definitions of the subsets C,A and B, by applying
Lemma 2.8 we obtain

‖(x0 + y)χC‖1 ≤ ‖(x0 + y)χC‖1 + ‖(x0 + y)χC‖1 − 2µ(B)/a

≤ ‖(x0 + y)χC‖1 + ‖(x0 + y)χC‖1 − 2T/a.

Combining the above inequality with ‖x0‖E = ‖y‖E = 1 and ε < 2T/a we obtain

‖x0 + y‖1 = ‖(x0 + y)χC‖1 + ‖(x0 + y)χΩ\C‖1

≤ ‖x0χC‖1 + ‖yχC‖1 − 2T/a+ ‖x0χΩ\C‖1 + ‖yχΩ\C‖1

= ‖x0‖1 + ‖y‖1 − 2T/a

≤ 2− 2T/a < 2− ε.

As a consequence, we obtain

‖x0 + y‖E = max
{
‖x0 + y‖1, ‖x0 + y‖X

}
≤ max{‖x0 + y‖1, ‖x0‖X + ‖y‖X

}

≤ max

{
‖x0 + y‖1,

φX(a)

a
+ 1

}
< 2− ε

and so E does not have the Daugavet property.

(ii) By the assumptions we can choose measurable subsets Ω1 and Ω0 of Ω such that
Ω1 ⊂ Ω0, µ(Ω1) = 1 and µ(Ω0) = t0. Take x0 = aχΩ0 , where a = 1/t0 and the regu-
lar functional F0 ∈ E∗ generated by −χΩ1 . We have ‖x0‖E = max{‖x0‖1, ‖x0‖X} =

max{1, φX(t0)
t0

} = 1. Since BE ⊂ BL1 one has that ‖F0‖E′ ≤ ‖χΩ1‖∞ = 1. Indeed
F0 ∈ SE′ since ‖χΩ1‖E = 1 and F0(χΩ1) = −1.

We shall show that for every ε > 0 small enough, if y ∈ SE satisfies F0(y) > 1− ε,
then ‖x0+y‖E < 2−ε, which will prove that E does not have the Daugavet property
by Lemma 2.7.
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Our hypothesis X ⊂ L∞ implies by the closed graph theorem that BX ⊂ cBL∞
for

some c > 0. Without loss of generality we can assume that c > a = 1/t0.

We choose 0 < ε < min{1− φX(t0)
t0

, 2(a−a
2)

c+a
}. Let us notice that φX is increasing and

so ε < 1− 1
t0
= 1− a. For every y ∈ SX we clearly have that

‖x0 + y‖X ≤ ‖x0‖X + ‖y‖X ≤
φX(t0)

t0
+ 1 < 2− ε.

We fix y ∈ SE satisfying F0(y) > 1− ε. In order to prove the desired inequality we
will use the measurable sets given by

A = {t ∈ Ω1 : −y(t) ≤ a}, B = {t ∈ Ω1 : −y(t) > a}.

We clearly have

1− ε < F0(y) =

∫

Ω1

(−y) dµ =

∫

A

(−y) dµ+

∫

B

(−y) dµ (since ‖y‖∞ ≤ c)

≤ aµ(A) + cµ(B) (since A,B ⊂ Ω1, A ∩B = ∅)

≤ a(1− µ(B)) + cµ(B) = a+ (c− a)µ(B),

and hence

µ(B) >
1− ε− a

c− a
.

We write D = Ω\Ω1. Then we have
∫

D

|x0| dµ =

∫

Ω0\Ω1

|x0| dµ =
1

t0

(
µ(Ω0)− µ(Ω1)

)
= 1− a.

Since A, B and D are pairwise disjoint sets, we know that
∫

A

y dµ−

∫

B

y dµ+ ‖yχD‖1 ≤

∫

A

|y| dµ+

∫

B

|y| dµ+ ‖yχD‖1 ≤ ‖y‖1.

Combining this estimate with ‖x0‖E = ‖y‖E = 1 and the choice of ε we get

‖x0 + y‖1 = ‖(x0 + y)χΩ1‖1 + ‖(x0 + y)χD‖1

≤

∫

A

|x0 + y| dµ+

∫

B

|x0 + y| dµ+

∫

D

|x0| dµ+ ‖yχD‖1

≤

∫

A

(a+ y) dµ−

∫

B

(a+ y) dµ+

∫

D

|x0| dµ+ ‖yχD‖1

= a
(
µ(A)− µ(B)

)
+

∫

A

y dµ−

∫

B

y dµ+ 1− a+ ‖yχD‖1

≤ a(1− 2µ(B)) + ‖y‖1 + 1− a

< a
(
1 +

2ε+ 2a− 2

c− a

)
+2− a

= 2 + a
2ε+ 2a− 2

c− a
< 2− ε.
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As a consequence we obtain

‖x0 + y‖E = max
{
‖x+ y‖1, ‖x+ y‖X

}
< 2− ε,

and so E does not have the Daugavet property.

Corollary 2.10. Let X be a r.i. space on (0,∞). If the fundamental function

φX of X is concave and non-constant on (T, t0) and constant on [t0,∞) for some

0 < T < t0 and φX′(t) = t/φX(t) is concave and non-constant on (T, t0), then the

space (L1 ∩X, ‖ · ‖∆) does not have the Daugavet property.

Proof. To see this take s > 0 such that φ(s) = s/φX(s) = 1 and define a r.i. space
X0 = (X, ‖ · ‖0) equipped with the norm ‖x‖0 = 1

φX(s)
‖Dsx‖X for x ∈ L1 ∩ ∆.

Then we have φX0(t) = φX(st)/φX(s) for every t > 0 and so φX0(1) = 1. Since
T = 1

φX(s)
Ds is an isometrical isomorphism between the spaces L1∩X and L1∩X0,

Theorem 2.9 can be applied.

It was proved in [5] that (L∞ ∩ L1, ‖ · ‖∆) does not have the Daugavet property.
The following result is a far-reaching extension of the mentioned result to a large
class of r.i. spaces (L∞ ∩X, ‖ · ‖∆).

Theorem 2.11. LetX be a r.i. space on an atomless infinite measure space (Ω,S,µ).
Assume that the fundamental function φX is concave, continuous at 1, satisfies

φX(1) = 1, and it is non-constant on [1,∞[. Assume also that there are 0 < u0 < 1
and ε0 > 0 such that the following condition is satisfied

(
G ∈ S, x ∈ BX , ‖x‖∞ ≤ 1, ‖xχG‖X > 1− ε0

)
⇒ ‖xχΩ\G‖X < u0.

Then the space (L∞ ∩X, ‖ · ‖∆) does not have the Daugavet property.

Proof. We will prove that Y = (L∞∩X, ‖·‖∆) does not satisfy the third condition
of Lemma 2.7.

Let us choose a measurable set Ω1 ⊂ Ω such that µ(Ω1) = 1 and let F0 be the element
of Y ′ represented by χΩ1 . Since BY ⊂ BL∞

it is clear that ‖F0‖Y ′ ≤ ‖χΩ1‖1 = 1.
By assumption φX(1) = 1, so the element y0 = χΩ1 ∈ SY and F ∗

0 (y0) = 1. Hence
F0 ∈ SY ∗ . Since φX is concave and non-constant on [1,+∞), φX(t) > φX(1) = 1
for every t > 1. We choose now a measurable set Ω2 ⊂ Ω\Ω1 with µ(Ω2) = 1/2.

Let s = 3
2
. Consider the element x0 =

−1
φX(s)

(χΩ1 + χΩ2) ∈ Y . It is clear that

‖x0‖∞ =
1

φX(s)
< 1, ‖x0‖X =

1

φX(s)
φX(µ(Ω1 ∪ Ω2)) = 1,

and so x0 ∈ SY .

We shall show that for every ε > 0 small enough, if x ∈ SY satisfies F0(x) > 1− ε,
then ‖x0 + x‖Y < 2 − ε, which will prove that Y does not have the Daugavet
property by Lemma 2.7.
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Since φX is continuous at 1 and φX(1) = 1, there is 0 < t0 < 1 such that t0φX(t0) >
1− ε0. So we choose

0 < ε < min

{
1

4
, 1− u0,

(φX(s)− 1)2

(φX(s))
2 , (1− t0)

2

}
.

Assume that x ∈ SY satisfies that F0(x) > 1− ε.

In view of ‖x0‖∞ = 1
φX(s)

< ‖x‖X = 1 and the choice of ε we obtain

‖x0 + x‖∞ ≤ ‖x0‖∞ + ‖x‖∞ ≤
1

φX(s)
+ 1 < 2− ε.

Let 0 < r < 1 be such that ε = (1− r)2 and let

G = {t ∈ Ω1 : x(t) > r} .

Since x ∈ SY ⊂ BL∞
we have

1− ε < F0(x) =

∫

Ω1

x dµ =

∫

G

x dµ+

∫

Ω1\G

x dµ

≤ µ(G) + rµ(Ω1\G) = µ(G) + r(1− µ(G)) = µ(G)(1− r) + r.

That is,

µ(G) ≥ 1−
ε

1− r
= 1− (1− r) = r.

Hence by the choice of ε (and r), since φX is non-decreasing we have

‖xχG‖X ≥ ‖rχG‖X = rφX(µ(G)) ≥ rφX(r) ≥ t0φX(t0) > 1− ε0,

and so, by the assumption on X, we obtain

‖xχΩ\G‖X ≤ u0.

Observe that for every t ∈ G we have

0 < r −
1

φX(s)
< x(t) + x0(t) ≤ 1−

1

φX(s)

and hence

‖(x0 + x)χG‖X ≤
(
1−

1

φX(s)

)
φX(µ(G))

≤
(
1−

1

φX(s)

)
φX(1)

=
(
1−

1

φX(s)

)
.
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Combining the shown above inequalities we obtain

‖x0 + x‖X ≤ ‖(x0 + x)χG‖X + ‖(x0 + x)χΩ\G‖X

≤
(
1−

1

φX(s)

)
+ ‖x0χΩ\G‖X + ‖xχΩ\G‖X

≤
(
1−

1

φX(s)

)
+

1

φX(s)
φX(µ((Ω1 ∪ Ω2)\G)) + u0

=
(
1−

1

φX(s)

)
+

1

φX(s)
φX(s− µ(G)) + u0

≤
(
1−

1

φX(s)

)
+

1

φX(s)
φX(s− r) + u0

(
since r ≥

1

2

)

≤
(
1−

1

φX(s)

)
+

1

φX(s)
φX(1) + u0

≤
(
1−

1

φX(s)

)
+

1

φX(s)
+ u0

= 1 + u0 < 2− ε.

We have already shown that ‖x0 + x‖∞ < 2− ε and so the above estimate yields

‖x0 + x‖Y = max{‖x0 + x‖∞, ‖x0 + x‖X} < 2− ε.

This shows that Y does not satisfy the Daugavet property and the proof is complete.

The next two theorems below provide formulas of the norms in the dual spaces to
(X + L∞, |||·|||Σ) and to (X + L∞, ‖ · ‖Σ).

Theorem 2.12. Let X be a Banach lattice on (Ω,S, µ). If X ⊂ (X + L∞)a, in
particular if X is order continuous, then

(X + L∞, ‖ · ‖Σ)
∗ ≃ (X ′ ∩ L1)⊕ (X + L∞)⊥a ,

and for every F ∈ (X +L∞, ‖ · ‖Σ)
∗ we have F = Fr + Fs, where Fs ∈ (X +L∞)⊥a ,

and for some y ∈ X ′ ∩ L1,

Fr(x) =

∫

Ω

xy dµ, x ∈ X + L∞,

and ‖Fr‖ = ‖y‖X′∩L1 = max{‖y‖X′ , ‖y‖1}. Moreover,

‖F‖ = max{‖y‖X′ , ‖y‖1 + ‖Fs‖}.

Proof. By the assumption X ⊂ (X + L∞)a we have that supp(X + L∞)a = Ω.
Moreover by the Köthe duality formula we have (X+L∞)′ = X ′∩L1 with equality
of norms. Combining with the general representation of the dual space of a Banach
lattice described in the introduction we obtain the first statement of the theorem.
In order to finish we need to show that the formula for the norm of the functional
holds true.
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Fix x = u+ v ∈ X +L∞ with u ∈ X, v ∈ L∞. Then by Hölder’s inequality and the
fact that Fs(u) = 0 since u is order continuous, we get

|F (u+ v)| ≤ |Fr(u)|+ |Fr(v)|+ |Fs(v)|

≤

∫

Ω

|uy| dµ+

∫

Ω

|vy| dµ+ ‖Fs‖‖v‖X+L∞

≤ ‖u‖X‖y‖X′ + ‖y‖1‖v‖∞ + ‖Fs‖‖v‖∞

≤ max{‖y‖X′ , ‖y‖1 + ‖Fs‖}(‖u‖X + ‖v‖∞).

Taking the infimum over all decompositions of x, we obtain

‖F‖ ≤ max{‖y‖X′ , ‖y‖1 + ‖Fs‖}.

Notice that for every 0 ≤ x = u + v ∈ X + L∞ with 0 ≤ u ∈ X, 0 ≤ v ∈ L∞ we
have |Fs|(x) = |Fs|(u) + |Fs|(v) = |Fs|(v), since |Fs| ∈ X∗

s and so |Fs|(u) = 0. This
implies that given ε > 0 there exist 0 ≤ u0 ∈ X, 0 ≤ v0 ∈ L∞ such that

‖u0‖X + ‖v0‖∞ < 1 + ε and ‖Fs‖ < |Fs|(v0) + ε/2.

Since y ∈ L1, there exists 0 ≤ v1 ∈ L∞ with ‖v1‖∞ ≤ 1 such that

|Fr|(v) =

∫

Ω

v1|y| dµ > ‖y‖1 − ε/2.

For v = v0 ∨ v1 we have 0 ≤ v ∈ L∞ ⊂ X + L∞ and

|F |(v) = |Fr|(v) + |Fs|(v) =

∫

Ω

v|y| dµ+ |Fs|(v)

≥

∫

Ω

v1|y| dµ+ |Fs|(v0) ≥ (‖y‖1 − ε/2) + (‖Fs‖ − ε/2)

= ‖y‖1 + ‖Fs‖ − ε.

Since ‖v‖∞ < 1 + ε, we have ‖v‖X+L∞
< 1 + ε and hence ‖F‖ ≥ (‖y‖1 + ‖Fs‖ −

ε)/(1 + ε). Consequently,
‖F‖ ≥ ‖y‖1 + ‖Fs‖.

To conclude the proof, it is enough to observe that

‖F‖ = sup
‖x‖X+L∞

≤1

|F (x)| ≥ sup
‖x‖X≤1

|F (x)|

= sup
‖x‖X≤1

|Fr(x)| = sup
‖x‖X≤1

∣∣∣
∫

Ω

xy dµ
∣∣∣ = ‖y‖X′ .

Remark 2.13. The assumptionX ⊂ (X+L∞)a is weaker than the order continuity
of X. In fact there exist Banach function lattices X such that X 6= Xa but X ⊂
(X+L∞)a. Indeed letX be a r.i. space over R+, not order continuous, and such that
φX(1) = 1 and X(0, 1) = (X(0, 1))a. Then we have X ⊂ (X +L∞)a. It is standard
to show that ‖x‖X+L∞

≈ ‖x∗χ(0,1)‖X . Hence given 0 ≤ x ∈ X, and 0 ≤ xn ≤ x,
xn ↓ 0, we have ‖xn‖X+L∞

= ‖x∗nχ(0,1)‖X → 0 since x∗nχ(0,1) ∈ (X(0, 1))a. In
particular take X = Λψ with ψ(0+) = 0, ψ(1) = 1 and ψ(∞) <∞, which is defined
in Section 5.
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Theorem 2.14. Let X be a Banach lattice on (Ω,S, µ). If X ⊂ (X + L∞)a, in
particular if X is order continuous, then

(X + L∞, |||·|||Σ)
∗ ≃ (X ′ ∩ L1)⊕ (X + L∞)⊥a ,

and for every F ∈ (X + L∞, |||·|||Σ)
∗ we have F = Fr + Fs, where Fs ∈ (X + L∞)⊥a ,

and for some y ∈ X ′ ∩ L1,

Fr(x) =

∫

Ω

xy dµ, x ∈ X + L∞,

and ‖Fr‖ = |||y|||X′∩L1
= ‖y‖X′ + ‖y‖1. Moreover,

‖F‖ = ‖y‖X′ + ‖y‖1 + ‖Fs‖.

Proof. The proof of the first part goes similarly as the corresponding part of the
proof of Theorem 2.12. Let x = u + v ∈ X + L∞ with u ∈ X, v ∈ L∞. Then by
Fs(u) = 0 and Hölder’s inequality,

|F (u+ v)| ≤ ‖u‖X‖y‖X′ + ‖y‖1‖v‖∞ + ‖Fs‖‖v‖∞

≤ ‖u‖X‖y‖X′ + ‖v‖∞(‖y‖1 + ‖Fs‖)

≤ max{‖u‖X , ‖v‖∞}(‖y‖X′ + ‖y‖1 + ‖Fs‖).

By taking the infimum over all decompositions of x we get

‖F‖ ≤ ‖y‖X′ + ‖y‖1 + ‖Fs‖.

As before, given ε > 0 there exist 0 ≤ u0 ∈ X, v0 ∈ L∞ such that

max{‖u0‖X , ‖v0‖∞} < 1 + ε and ‖Fs‖ < |Fs|(v0) + ε/3.

Since y ∈ L1 ∩X
′, there exists 0 ≤ v1 ∈ L∞ with ‖v1‖∞ ≤ 1 such that

|Fr|(v1) =

∫

Ω

v1|y| dµ > ‖y‖1 − ε/3,

and there exists 0 ≤ u ∈ X with ‖u‖X ≤ 1 such that

|Fr|(u) =

∫

Ω

u|y| dµ > ‖y‖X′ − ε/3.

Letting v = v0 ∨ v1 we have v ∈ L∞, 0 ≤ v ∈ X + L∞ and so x = u+ v ∈ X + L∞

with 0 ≤ u ∈ X. Hence

|F |(x) = |Fr|(x) + |Fs|(x) = |Fr|(u) + |Fr|(v) + |Fs|(v)

=

∫

Ω

u|y| dµ+

∫

Ω

v|y| dµ+ |Fs|(v)

≥ (‖y‖X′ − ε/3) +

∫

Ω

v1|y| dµ+ |Fs|(v0)

≥ (‖y‖X′ − ε/3) + (‖y‖1 − ε/3) + (‖Fs‖ − ε/3)

= ‖y‖X′ + ‖y‖1 + ‖Fs‖ − ε.
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Since ‖v‖∞ ≤ max{‖v0‖∞, ‖v1‖∞} < 1 + ε, and |||x|||X+L∞

≤ max{‖u‖X , ‖v‖∞} ≤
1 + ε, we have ‖F‖ ≥ (‖y‖X′ + ‖y‖1 + ‖Fs‖ − ε)/(1 + ε). Thus

‖F‖ ≥ ‖y‖X′ + ‖y‖1 + ‖Fs‖,

which completes the proof.

Remark 2.15. In the case of X = L1, Theorems 2.12 and 2.14 were proved in [25].

The concluding two theorems in this section claim that the large class of the spaces
(X + L∞, ‖ · ‖Σ) and (X + L∞, ||| · |||Σ) do not have the Daugavet property.

Theorem 2.16. Let X be a r.i. space over an atomless measure space (Ω,S, µ)
satisfying µ(Ω) ≥ 2. If X ⊂ (X + L∞)a, in particular if X is order continuous,

then the space (X + L∞, ‖ · ‖Σ) does not have the Daugavet property whenever φX
is strictly increasing and φX(t) = t on [0, 1].

Proof. Let A ∈ S be such that µ(A) = 1. Choose B ∈ S such that µ(B) = 1 and
A ∩B = ∅. Let x = χA. Then

‖x‖Σ = min{‖χA‖X , 1} = min{φX(1), 1}.

Define a regular functional G ∈ (X + L∞)∗ by

G(u) =

∫

Ω

ug dµ, u ∈ X + L∞,

where

g = −
1

2
χA +

1

2
χB.

Then we have ‖g‖1 = 1, ‖g‖X′ = 1
2
‖χA∪B‖X′ = 1

2
φX′(2) = 1

φX(2)
< 1, since φX(2) >

φX(1) = 1. Thus, by Theorem 2.12,

‖G‖ = ‖g‖X′∩L1 = 1.

Let 0 < ε < min
{

1
2φX(2)

, 1− 1
φX(2)

}
and F ∈ (X+L∞)∗ with ‖F‖ = 1, F (x) > 1−ε.

Then, by Theorem 2.12, F can be represented as F = Fr + Fs, where Fr is a
regular functional induced by h ∈ X ′ ∩ L1, and Fs is a singular functional. Set
C = {t ∈ Ω : h(t) ≥ 0}. Since x = χA ∈ X it is order continuous and so Fs(x) = 0.
Hence

1− ε < F (x) =

∫

A

h dµ ≤ ‖hχA∩C‖1 ≤ ‖h‖1.

By Theorem 2.12, ‖h‖1 ≤ max{‖h‖X′ , ‖h‖1 + ‖Fs‖} = ‖F‖ = 1, which yields
‖hχ(A∩C)′‖1 < ε. Therefore

1 = ‖F‖ ≥ ‖h‖1 + ‖Fs‖ > 1− ε+ ‖Fs‖,

and so ‖Fs‖ < ε. Let

D = {t ∈ C ∩ A : h(t) ≤ 1/2} and E = {t ∈ C ∩ A : h(t) > 1/2}.
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We will show that ‖F + G‖ is far away from 2. To see this observe that F + G =
Fr + Fs +G and

‖g + h‖X′ ≤ ‖g‖X′ + ‖h‖X′ ≤ ‖g‖X′ + ‖F‖ = 1/φX(2) + 1.

On the other hand, if (C ∩ A)′ = Ω\(C ∩ A), then we have

‖g + h‖1 = ‖(g + h)χC∩A‖1 + ‖(g + h)χ(C∩A)′‖1

=

∫

D

(1
2
− h

)
dµ+

∫

E

(
h−

1

2

)
dµ+ ‖(g + h)χ(C∩A)′‖1

≤
1

2

(
µ(D)− µ(E)

)
+ ‖hχE‖1 + ‖gχ(C∩A)′‖1 + ‖hχ(C∩A)′‖1.

Since ‖h‖X′ ≤ ‖F‖ = 1 and ‖hχE‖1 ≤ ‖h‖X′‖χE‖X ≤ φX(µ(E)) = µ(E) by
assumption and µ(E) ≤ 1, we obtain

‖g + h‖1 ≤
1

2
(µ(D) + µ(E)) + ‖gχ(C∩A)′‖1 + ε

≤ ‖gχD‖1 + ‖gχE‖1 + ‖gχ(C∩A)′‖1 + ε = ‖g‖1 + ε ≤ 1 + ε.

Combining the above estimates, by Theorem 2.12,

‖F +G‖ = max{‖g + h‖X′ , ‖g + h‖1 + ‖Fs‖} ≤ max{1 + 1/φX(2), 1 + 2ε}

= 1 + 1/φX(2) < 2− ε.

Hence condition (ii) in Lemma 2.7 is not satisfied, and so the space under consid-
eration does not possess the Daugavet property.

Theorem 2.17. LetX be a r.i. space on an infinite atomless measure space (Ω,S,µ).

If the fundamental function φX is continuous on [1,∞), limt→0+
φX(t)
t

< ∞ and

X ⊂ (X+L∞)a, then the space (X+L∞, ||| · |||Σ) does not have the Daugavet property.

Proof. We will denote by Y = (X + L∞, ||| · |||Σ). In this case we shall also show

that the second condition of Lemma 2.7 is not satisfied. Put c = 1+φX(1)
φX(1)

and choose

a measurable subset Ω1 ⊂ Ω satisfying µ(Ω1) = 1. Let x0 = cχΩ1 , we have that
|||x0 |||Σ = 1. Indeed, x0 = χΩ1 +

1
φX(1)

χΩ1 ∈ BL∞ +BX ⊂ BY . Moreover, if F0 is the

functional induced by f0 =
1
c
χΩ1 , then in view of Theorem 2.14, we have that

‖F0‖ = ‖f0‖X′ + ‖f0‖1 =
1

c

(1 + φX(1)

φX(1)

)
= 1

and F0(x0) = 1. Hence ‖F0‖ = 1 and thus x0 ∈ SY .

We choose a real number K > c. Since φX is continuous on [1,∞) and c < K,

there is a real number m0 > 0 such that K = (1 + m0)
1+φX(1+m0)
φX(1+m0)

. We choose a

measurable subset Ω2 ⊂ Ω such that µ(Ω2) = m0 and Ω2 ∩ Ω1 = ?.
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We will use the element G0 ∈ Y ′ associated to the function g0 given by

g0 =
1

K

(
−χΩ1 − χΩ2

)
.

It satisfies

‖G0‖ = ‖g0‖X′ + ‖g0‖1 =
1

K

( 1 +m0

φX(1 +m0)
+ 1 +m0

)
= 1,

so G0 ∈ SY ∗ .

By assumption there is M ≥ max
{
1, sup

{
φX(t)
t

: t ∈ (0, 1)
}}

and choose 0 < ε <

2(K−c)
2K+(MK−1)Kc

. Take now any element F ∈ SY ∗ such that

1− ε < F (x0).

and by Theorem 2.14, decompose it as F = Fr + Fs, where Fr is induced by
h ∈ X ′ ∩ L1, and Fs is a singular functional. Further Theorem 2.14 yields

‖F‖ = ‖h‖X′ + ‖h‖1 + ‖Fs‖ = 1

and so ‖h‖X′ ≤ 1. We will check that ‖h‖∞ ≤M . Observe that if s > 0 and C ⊂ Ω
is a measurable set with 0 < µ(C) < 1 such that h(t) ≥ s, then we have

φ(µ(C)) = ‖χC‖X ≥ ‖h‖X′‖χC‖X ≥

∫

Ω

hχC dµ ≥ sµ(C).

Hence

s ≤
φ(µ(C))

µ(C)
≤ sup

{φX(t)
t

: t ∈ (0, 1)
}
≤M

and so h is essentially bounded and ‖h‖∞ ≤M .

Now we apply Lemma 2.8 for the following sets

D =
{
t ∈ Ω1 : h(t) ≥ 0

}
, A =

{
t ∈ D : h(t) ≤

1

K

}
,

B =
{
t ∈ D : h(t) >

1

K

}
,

and the elements g0 and h that satisfy the required conditions, and so we obtain
that

‖(h+ g0)χD‖1 ≤ ‖hχD‖1 + ‖g0χD‖1 − 2µ(B)/K.

By the assumption X ⊂ (X + L∞)a and so Fs(x0) = 0. Since ‖h‖∞ ≤ M we get
a lower estimate of µ(B) as follows

1− ε < F (x0) = Fr(x0) = c

∫

Ω1

h dµ ≤ c

∫

D

h dµ

= c
(∫

A

h dµ+

∫

B

h dµ
)
≤

c

K
µ(A) + cMµ(B)

≤ c
( 1

K
(1− µ(B)) +Mµ(B)

)
= µ(B)

(
cM −

c

K

)
+

c

K
.
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Hence, µ(B) > K−c−εK
cKM−c

. Linking now this estimate of µ(B) to the previous one
shown above we conclude that

‖(h+ g0)χD‖1 ≤ ‖hχD‖1 + ‖g0χD‖1 −
2(K − c− εK)

K(cKM − c)
. (1)

Combining this inequality with Theorem 2.14 we deduce that

‖G0 + F‖ = ‖g0 + h‖X′ + ‖g0 + h‖1 + ‖Fs‖

≤ ‖g0‖X′ + ‖h‖X′ + ‖(g0 + h)χD‖1 + ‖(g0 + h)χΩ\D‖1 + ‖Fs‖

≤ ‖g0‖X′ + ‖h‖X′ + ‖g0χD‖1 + ‖hχD‖1 −
2(K − c− εK)

K(cKM − c)

+ ‖g0χΩ\D‖1 + ‖hχΩ\D‖1 + ‖Fs‖

= ‖g0‖X′ + ‖g0‖1 + ‖h‖X′ + ‖h‖1 + ‖Fs‖ −
2(K − c− εK)

K(cKM − c)

≤ 2−
2(K − c− εK)

K(cKM − c)
.

As a consequence we conclude by the choice of ε that ‖G0 + F‖ < 2 − ε and thus
Lemma 2.7(ii) implies that Y does not have the Daugavet property.

Remark 2.18. Theorems 2.16 and 2.17 recover the results from [5] proved for
X = L1.

3. Orlicz spaces

In this section we investigate the Daugavet property and the weak neighborhoods in
Orlicz spaces. Let ϕ : R → R+ be an Orlicz function, that is ϕ is even and convex,
ϕ(0) = 0 and ϕ(u) > 0 for u > 0. By Lϕ denote the Orlicz space over (Ω,S, µ),
that is, the set of all x ∈ L0 such that Iϕ(λx) <∞ for some λ > 0, where

Iϕ(x) =

∫

Ω

ϕ(x) dµ.

The space Lϕ is a Banach space when equipped with either the Luxemburg norm
‖ · ‖ϕ or the Orlicz norm ‖ · ‖0ϕ defined as

‖x‖ϕ = inf{ǫ > 0 : Iϕ(x/ǫ) ≤ 1},

or

‖x‖0ϕ = inf
k>0

1

k
(1 + Iϕ(kx)),

respectively. These norms are equivalent, and in fact ‖x‖ϕ ≤ ‖x‖0ϕ ≤ 2‖x‖ϕ. The
Orlicz space equipped with either norm is a r.i. space satisfying the Fatou property.
By Eϕ denote the space (Lϕ)a, which is the closure in Lϕ of bounded functions
supported on finite measure sets. In the sequence case, the Orlicz space is denoted
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by ℓϕ, and (ℓϕ)a by hϕ. The sequence of unit vectors (en) is an unconditional basis
in hϕ. Recall that ϕ satisfies condition ∆2 (resp., ∆∞

2 , ∆0
2) if

lim sup
t→∞; t→0

{ϕ(2t)/ϕ(t)} <∞,

(resp. lim sup
t→∞

{ϕ(2t)/ϕ(t)} <∞, lim sup
t→0

{ϕ(2t)/ϕ(t)} <∞).

The conditions ∆2, ∆
∞
2 , ∆0

2 always correspond to the measure spaces (Ω,S, µ) that
are atomless and infinite, atomless and finite, and purely atomic with Ω = N and
µ the counting measure, respectively. The Orlicz space Lϕ is order continuous if
and only if ϕ satisfies the corresponding condition ∆2. It is also equivalent to
Lϕ = (Lϕ)a. Let

ϕ∗(t) = sup
u>0

{ut− ϕ(u)}

be a conjugate function to ϕ. By Köthe duality we have

(Lϕ, ‖ · ‖ϕ)
′ = (Lϕ∗

, ‖ · ‖0ϕ∗
) and (Lϕ, ‖ · ‖

0
ϕ)

′ = (Lϕ∗
, ‖ · ‖ϕ∗

).

Consequently, by general form of dual spaces of Banach lattices and by suppEϕ = Ω,
it holds

L∗
ϕ ≃ Lϕ∗

⊕ E⊥
ϕ .

It is well known that an Orlicz space Lϕ is reflexive if and only if both ϕ and ϕ∗

satisfy the appropriate condition ∆2. For the theory of Orlicz spaces, we refer the
reader to the monographs [13, 28, 39, 36] devoted entirely to Orlicz spaces and to
[10, 30, 31] containing considerable parts on those spaces.

The next result provides a class of Orlicz spaces defined on an atomless measure
space (Ω,S, µ) failing the Daugavet property. Since L1(µ) has the Daugavet prop-
erty for every atomless measure µ, some assumption on the function ϕ is needed in
order to obtain such a result.

Theorem 3.1. Assume that the Orlicz function ϕ satisfies N-condition at infinity,

that is limt→∞ ϕ(t)/t = ∞. Then the Orlicz space Lϕ on an atomless measure

space (Ω,S, µ) and equipped with either Luxemburg or Orlicz norm has no Daugavet

property.

Proof. We notice first that (Lϕ, ‖ · ‖0ϕ) does not contain an isometric copy of ℓ1.
From Theorem 4 in [14] it follows that (Lϕ, ‖ · ‖

0
ϕ) contains an isometric copy of ℓ1

if and only if A := supu>0{u(limv→∞ ϕ(v)/v)− ϕ(u)} <∞. Obviously, if an Orlicz
function ϕ satisfies N -condition at infinity, then A = ∞ and (Lϕ, ‖ · ‖

0
ϕ) does not

contain an isometric copy of ℓ1.

It is well known that if an Orlicz function ϕ satisfies N -condition at infinity, then
the Young function ϕ∗ is an Orlicz function also satisfying N -condition at infinity
[13]. It follows that ϕ∗ assumes finite values, and so suppEϕ∗

= Ω. Further, by the
Köthe duality formula we have

supp(L′
ϕ)a = supp(Lϕ∗

)a = suppEϕ∗
= Ω.
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Since (Lϕ, ‖ · ‖0ϕ) does not contain an isometric copy of ℓ1, it fails the Daugavet
property in view of Proposition 2.3(i).

If Lϕ is equipped with the Luxemburg norm and would have the Daugavet property,
then we would conclude by the Köthe duality and Corollary 2.2(i) that the Orlicz
space Lϕ∗

equipped with an Orlicz norm would contain an isometric copy of ℓ1,
which is impossible since ϕ∗ is N -function at infinity. This completes the proof.

Before presenting the next result, let us recall some further concepts from the theory
of Orlicz spaces. Let ϕ be an Orlicz function. An interval [a, b] ⊂ R is called affine
interval of ϕ provided that ϕ is affine on [a, b] and it is not affine on either [a− ε, b]
or [a, b+ ε] for any ε > 0. By Ext(ϕ), we define the set of all strictly convex points
of ϕ, i.e. such u ∈ R that there are no s, t ∈ R, s 6= t, satisfying

u =
s+ t

2
and ϕ

(s+ t

2

)
=
ϕ(s) + ϕ(t)

2
.

Let X be a Banach space. A point x ∈ BX is said to be a locally uniformly

rotund point (in short LUR point) if for any sequence (xn) ⊂ BX , the condition
‖xn + x‖ → 2 implies xn → x in X. Recall also that a subset S of X is a slice of

BX if for some F ∈ SX∗ and 0 < α < 1, S coincides with

S(F, α) = {x ∈ BX : F (x) > 1− α}.

We say that x ∈ BX is strongly exposed if there exists a functional F ∈ SX∗ such that
F (x) = 1 and for any sequence (xn) ⊂ BX , if F (xn) → 1 then ‖x− xn‖ → 0. It is
well-known that if x ∈ SX is a strongly exposed point then infα>0 diamS(F, α) = 0
for the functional F exposing x. So any space with strongly exposed points has
slices of arbitrarily small diameters. It is easy to show that every LUR point is
strongly exposed.

The criteria for LUR points in Orlicz spaces equipped with the Luxemburg norm
and generated by N -functions are given in [13, Theorem 2.22]. Following its proof
we have the following lemma.

Lemma 3.2. Let ϕ satisfy ∆2 (resp. ∆∞
2 ) condition. Let Lϕ be the Orlicz space

on an atomless measure space (Ω,S, µ) with µ(Ω) = ∞ (resp. µ(Ω) <∞), equipped
with the Luxemburg norm. Assume that x ∈ SLϕ satisfies the following conditions.

(i) x(t) ∈ Ext(ϕ) for µ-a.e. t ∈ Ω,

(ii) µ({t ∈ Ω : |x(t)| = ai}) = 0, i = 1, 2, for all affine intervals [a1, a2] of ϕ.

Then x is a LUR point of BLϕ.

Proof. Since Lϕ is order continuous, it follows from [19, Corollary 1] that Lϕ has
the Kadec-Klee property with respect to measure, i.e., if for any x ∈ BX and any
sequence (xn) ⊂ BX , the conditions ‖xn‖ → ‖x‖ and xn → x in L0(µ) imply xn → x
in X.

Combining the above remark with a careful analysis of the proof of the implication
(iii) ⇒ (i) in Theorem 2.22 in [13] shows that the proof works also under the
assumption that ϕ is not N -function, and yields the desired result.
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Since every LUR point is strongly exposed, the next result is an immediate conse-
quence of the above lemma.

Corollary 3.3. If ϕ satisfies condition ∆2 (resp. ∆∞
2 ) when µ(Ω) = ∞ (resp.

µ(Ω) <∞) and ϕ is strictly convex on some interval, then Lϕ has slices of arbitrarily

small diameters.

Theorem 3.1 and the following corollary show that the Daugavet property in the
class of Orlicz spaces is rare.

Theorem 3.4. Let Lϕ be an Orlicz space on an atomless measure space equipped

with the Luxemburg norm. Assume that Lϕ satisfies the Daugavet property.

(i) If µ(Ω) < ∞, then Lϕ = L1 up to equivalence of norms and ϕ is not strictly

convex on any open interval in R (the graph of ϕ is composed of straight

segments).

(ii) If µ(Ω) = ∞ and ϕ satisfies condition ∆2 then ϕ is not strictly convex on any

open interval.

Proof. It is obvious that Lϕ →֒ L1 for any Orlicz space on a finite measure space.
Assume that Lϕ has the Daugavet property. From Theorem 3.1, it follows that
ϕ is not N -function at infinity. This implies that ϕ is equivalent to the identity
function s(t) = t for large enough arguments, and whence L1 →֒ Lϕ. Combining
both continuous inclusions, we conclude that Lϕ = L1 in the case µ(Ω) <∞.

It follows from the above that ϕ satisfies ∆∞
2 condition whenever µ(Ω) <∞. Let’s

also assume that ϕ satisfies condition ∆2 if µ(Ω) = ∞. Now by applying Corollary
3.3 we obtain the above statement.

Despite that for a large class of Orlicz spaces the Daugavet property fails, substan-
tially more Orlicz spaces have the weaker property that every nonempty weakly
open subset of their unit ball has diameter two. Of course, all the spaces hav-
ing the last property fail the Radon-Nikodým property. For the Orlicz spaces Lϕ
the Radon-Nikodým property is characterized in terms of ϕ (see e.g. [13, Theorem
3.32]). The assumption of the next result implies non-reflexivity of the Orlicz space
Lϕ.

Theorem 3.5. Let the measure µ be atomless. If µ(Ω) = ∞ and ϕ does not satisfy

condition ∆2, or µ(Ω) <∞ and ϕ does not satisfy condition ∆∞
2 , then the diameter

of any relatively weakly open subset of the unit ball in Orlicz space Lϕ equipped with

the Luxemburg norm is equal to 2.

Proof. Let W 6= ? be a weakly open subset of the unit ball in Lϕ. Since µ is
atomless and µ is σ-finite by the initial assumption, it follows that Lϕ is infinite-
dimensional. Then there exists x ∈ W with ‖x‖ϕ = 1. Choose c > 0 and E ∈ S
such that µ(E) > 0 and |x(t)| ≤ c on E. Suppose that ϕ does not satisfy ∆2

condition in case when µ(Ω) = ∞, and ϕ does not satisfy ∆∞
2 when µ(Ω) < ∞.

Then there exists a sequence (tn) of positive real numbers such that

ϕ((1 + 1/n)tn) > 2nϕ(tn).
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We observe that in the case of finite measure we can always assume that tn → ∞,
and in the case when the measure is infinite we can suppose that either tn → ∞ or
tn → 0. In the case when tn → ∞, without loss of generality we choose a sequence
(En) of measurable disjoint sets satisfying for each n ∈ N,

µ(En) = 1/(2nϕ(tn)).

In the case when the measure is infinite and tn → 0, we choose (En) satisfying the
above equation and such that En ⊂ Ω \Ωn where (Ωn) is an increasing sequence of
sets of finite measure and such that

⋃∞
n=1 Ωn = Ω. Define

x′n = xχΩ\En + tnχEn , x′′n = xχΩ\En − tnχEn .

It is clear that x′n → x and x′′n → x a.e., and thus by the Fatou property 1 =
‖x‖ϕ ≤ lim inf ‖x′n‖ϕ and 1 = ‖x‖ϕ ≤ lim inf ‖x′′n‖ϕ. On the other hand Iϕ(x

′
n) ≤

Iϕ(x) + 1/2n → Iϕ(x) ≤ 1. Hence lim sup Iϕ(x
′
n) ≤ 1 and so lim sup ‖x′n‖ϕ ≤ 1.

Since the similar inequalities hold also for x′′n, we get that

lim
n

‖x′n‖ϕ = lim
n

‖x′′n‖ϕ = 1.

Let now F be a bounded linear functional on Lϕ. Then F = H+S, where H is the
integral functional associated to a function h ∈ Lϕ∗

, and S a singular functional
identically equal to zero on Eϕ. Notice that x−x

′
n ∈ Eϕ since x is bounded on each

En, and so

F (x− x′n) =

∫

En

xh dµ−

∫

En

tnh dµ.

Since h ∈ Lϕ∗
we have Iϕ∗

(λh) < ∞ for some λ > 0. Applying Young’s inequality
we obtain

|F (x− x′n)| =
∣∣∣λ−1

∫

En

xλh dµ− λ−1

∫

En

tnλh dµ
∣∣∣

≤

∫

En

λ−1
(
ϕ(x) + ϕ∗(λh)

)
dµ+

∫

En

λ−1
(
ϕ(tn) + ϕ∗(λh)

)
dµ

= λ−1

∫

En

ϕ(x) dµ+ 2λ−1

∫

En

ϕ∗(λh) dµ+ λ−1ϕ(tn)µ(En).

By the choice of (En),
∫
Ω
ϕ(x) dµ ≤ 1 and

∫
Ω
ϕ∗(λh) dµ < ∞, the right side

approaches zero. Thus x′n → x and x′′n → x weakly.

We notice also that

‖x′n − x′′n‖ϕ = 2‖tnχEn‖ϕ = 2tn/ϕ
−1(1/µ(En)),

and so by ϕ((1 + 1/n)tn) > 2nϕ(tn) and µ(En) = 1/(2nϕ(tn)) we get

tn/ϕ
−1(1/µ(En)) ≥ n/(n+ 1).

Hence
‖x′n − x′′n‖ϕ → 2.

Finally taking f ′
n = x′n/‖x

′
n‖ϕ and f ′′

n = x′′n/‖x
′′
n‖ϕ, we have f ′

n, f
′′
n ∈ BLϕ , f

′
n → x

and f ′′
n → x weakly, and ‖f ′

n−x′′n‖ → 2. This concludes the proof showing that the
diameter of W is equal to two.
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The proof of the next theorem is similar as of Theorem 3.5, however it requires
some modifications. We include the proof for the sake of completeness.

Theorem 3.6. If an Orlicz function ϕ does not satisfy condition ∆0
2, then the

diameter of any non-empty relatively weakly open subset of the unit ball in Orlicz

space ℓϕ equipped with the Luxemburg norm is equal to 2.

Proof. LetW 6= ∅ be a weakly open subset of the unit ball in ℓϕ. Then there exists
x ∈W with ‖x‖ϕ = 1. By the Fatou property we have limn→∞ ‖xχ{1,...,n}‖ϕ → ‖x‖ϕ.
Since ϕ does not satisfy ∆0

2, there exists a positive decreasing sequence (tn) such
that tn → 0 and

ϕ((1 + 1/n)tn) > 2nϕ(tn).

By passing to a subsequence we can assume without loss of generality that there is
a sequence (En) of finite subsets of N \ {1, . . . , n} such that

2−n ≤ ϕ(tn)|En| ≤ 2−n+1,

where |A| = card(A) for any A ⊂ N. Define the sequences (xn) and (yn) by

xn = xχN\En + tnχEn , yn = xχN\En − tnχEn .

We have
Iϕ(xn) = Iϕ(xχN\En) + ϕ(tn)|En| ≤ 1 + 2−n+1.

This implies, ‖xn‖ϕ ≤ 1 + 2−n+1. Since ‖xχ{1,...,n}‖ϕ → ‖x‖ϕ and

‖xn‖ϕ ≥ ‖xχN\En‖ϕ ≥ ‖xχ{1,...,n}‖ϕ,

it follows ‖xn‖ϕ → 1. Similarly we get that ‖yn‖ϕ → 1.

We show that xn → x weakly. Since x − xn = xχEn + tnχEn ∈ hϕ, it is enough to
show that H(x − xn) → 0 for any order continuous functional H on ℓϕ. Let H be
order continuous functional, generated by η = (ηn) ∈ ℓϕ∗ , i.e., H(ξ) =

∑∞
n=1 ξnηn

for any ξ = (ξn) ∈ ℓϕ.

Since η ∈ ℓϕ∗
, there exists λ > 0 such that Iϕ∗

(λη) < ∞. Applying the Young’s
inequality we obtain

|H(x− xn)| =
∣∣∣
∑

j∈En

tnηj

∣∣∣+
∣∣∣
∑

j∈En

xjηj

∣∣∣

≤ λ−1(Iϕ(tnχEn) + Iϕ∗
(ληχEn)) + λ−1(Iϕ(xχEn) + Iϕ∗

(ληχEn).

The right side approaches zero since Iϕ(xχEn) ≤ 2−n+1 → 0,
∑∞

j=1 ϕ∗(ληj) < ∞
and En ⊂ N \ {1, . . . , n}. Similarly we get that yn → x weakly in ℓϕ.

Now observe that

‖xn − yn‖ϕ = 2‖tnχEn‖ϕ = 2tn/ϕ
−1(1/|En|).

From the inequalities at the beginning of the proof we have

tn/ϕ
−1(1/|En|) ≥ n/(n+ 1).
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Hence
‖xn − yn‖ϕ → 2.

Finally taking un = xn/‖xn‖ϕ and vn = yn/‖yn‖ϕ, we have un, vn ∈ Bℓϕ , un → x
and vn → x weakly, and ‖un − vn‖ϕ → 2. This shows that the diameter of W is
equal to two, and the proof is complete.

4. Nakano spaces

Let (Ω,S, µ) be a measure space and let p ∈ L0 with 1 ≤ p(t) ≤ ∞, for t ∈ Ω.
Then for a.e. t ∈ Ω and u ∈ R+, define

Φp(u, t) =

{
up(t)

p(t)
if t ∈ A,

α(u) if t ∈ Ac,

where A = {t : 1 ≤ p(t) < ∞}, Ac = {t : p(t) = ∞}, and α(u) = 0 for 0 ≤ u ≤ 1
and α(u) = ∞ for u > 1. For every t ∈ Ω the function u→ Φp(u, t) is an extended
real valued Orlicz function. Denote by Φq(u, t) the Young conjugate function to
Φp(u, t). For any x ∈ L0 denote by I(x) the modular

I(x) = Ip(x) =

∫

Ω

Φp(|x(t)|, t) dµ.

By Iq(x) we denote the modular determined by the function Φq(u, t). The collection
of all measurable functions x ∈ L0 satisfying

‖x‖ = ‖x‖p(t) = inf
{
λ > 0 : I(x/λ) ≤ 1

}
<∞

is the Nakano space Lp(t). It is equipped with either the Luxemburg norm ‖ · ‖p(t)
or the Amemyia norm

‖x‖0 = ‖x‖0p(t) = inf
k>0

1

k

(
1 + I(kx)

)
,

which is identical with the Orlicz norm ‖x‖0p(t) = sup{
∫
Ω
|xy| : Iq(t)(y) ≤ 1} where

1/p(t) + 1/q(t) = 1 a.e. with the usual convention that if p(t) = 1 then q(t) = ∞.
The latter fact follows by the same techniques as for Orlicz spaces [28, 39]. By Lq(t)
we denote the Nakano space associated to the modular Iq. We have ‖x‖ ≤ ‖x‖0 ≤
2‖x‖ for every x ∈ Lp(t). The Nakano space equipped with either norm is a Banach
function space with the Fatou property. It is also well known that if p(t) < ∞
a.e., then supp(Lp(t))a = Ω a.e. [24, p. 64]. A Nakano space is not rearrangement
invariant unless the exponent p(t) is a constant function. The Köthe dual spaces
are described as follows

(Lp(t), ‖ · ‖
0
p(t))

′ = (Lq(t), ‖ · ‖q(t)), (Lp(t), ‖ · ‖p(t))
′ = (Lq(t), ‖ · ‖

0
q(t)).

Nakano spaces belong to the large family of Musielak-Orlicz spaces, and therefore
many basic properties of these spaces follow from general results on Musielak-Orlicz
spaces [36].
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Theorem 4.1. If 1 < p(t) < ∞ a.e., then the Nakano space Lp(t) equipped with

either the Luxemburg or Orlicz norm has no Daugavet property.

Proof. We start with Lp(t) equipped with the Amemiya norm. Notice that since
1 < p(t) < ∞, (1/k)(1 + I(kx)) → ∞ as k → 0 or k → ∞, for any x ∈ Lp(t)\{0}.
Hence the infimum in the Amemyia norm is attained on (0,∞) for any x ∈ Lp(t)\{0}.
Moreover, if x 6= 0 and I(x) < ∞, then I(λx) < λI(x) for any 0 < λ < 1. Hence
for any disjoint non-zero elements x, y ∈ Lp(t) there exist k1, k2 > 0 such that
‖x‖0 = (1/k1)(1 + I(k1x)) and ‖y‖0 = (1/k2)(1 + I(k2y)), and

‖x+ y‖0 ≤
k1 + k2
k1k2

(
1 + I

( k1k2
k1 + k2

(x+ y)
))

=
1

k1
+

1

k2
+
k1 + k2
k1k2

I
( k1k2
k1 + k2

x
)
+
k1 + k2
k1k2

I
( k1k2
k1 + k2

y
)

<
1

k1
+

1

k2
+

1

k1
I(k1x) +

1

k2
I(k2y) = ‖x‖0 + ‖y‖0.

Consequently, Lp(t) equipped with the Amemiya norm cannot contain an order
isometric copy of ℓ1. We also observe that Lp(t) with the Amemiya norm is strictly
monotone. Indeed, letting 0 ≤ x ≤ y, x 6= y, we have ‖y‖0 = (1/k)(1 + I(ky)) for
some k > 0. Hence

‖x‖0 ≤
1

k

(
1 + I(kx)

)
<

1

k

(
1 + I(ky)

)
= ‖y‖0.

Thus the space is strictly monotone and by [46] it cannot contain any isometric
copy of ℓ1 too.

Now assume that (Lp(t), ‖ · ‖
0
p(t)) has the Daugavet property. Since (Lp(t), ‖ · ‖

0
p(t))

′ =

(Lq(t), ‖ · ‖q(t)) and supp(Lq(t))a = Ω, the space (Lp(t), ‖ · ‖0p(t)) should contain an

isometric copy of ℓ1 by Proposition 2.3(i), which is impossible.

If (Lp(t), ‖·‖p(t)) has the Daugavet property, then it follows from Corollary 2.2(i) that
(Lp(t), ‖ · ‖p(t))

′ = (Lq(t), ‖ · ‖
0
q(t)) contains ℓ1 isometrically, which is again impossible

and the proof is completed.

The next lemma is surely well-known but we use it in the next result and include
a proof for completeness.

Lemma 4.2. Let X = (X1 ⊕ · · · ⊕ Xn)∞ be a finite direct sum of Banach spaces

(Xi, ‖ · ‖i), i = 1, . . . , n, equipped with the norm ‖x‖ = max1≤i≤n ‖xi‖i, where

x = (x1, . . . , xn), xi ∈ Xi. If X has the Daugavet property, then it is inherited by

each component Xi, i = 1, . . . , n.

Proof. Without loss of generality assume that n = 2. Suppose that X has the
Daugavet property. It is enough to show that X1 has also this property. Let’s take
any normalized rank one operator T on X1, i.e., Tx1 = x∗1(x1)y1 with ‖x∗1‖X∗

1
=

‖y1‖1 = 1. Obviously ‖I + T‖X1→X1 ≤ 2, thus we need to show the opposite
inequality. Define for any x = (x1, x2) ∈ X,

x∗(x) = x∗1(x1), y = (y1, 0) and T̃ (x) = x∗(x)y = (x∗1(x1)y1, 0).
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Since X∗ ≃ (X∗
1 ⊕ X∗

2 )1, ‖x
∗‖ = ‖x∗1‖X∗

1
= 1. This implies by ‖y‖ = ‖y1‖1 = 1,

‖T̃‖X→X = ‖x∗‖‖y‖ = 1. Since T̃ is a rank-one operator on X, so by the Daugavet

property of X, ‖I + T̃‖X→X = 2. In consequence,

2 = sup
‖x‖≤1

‖x+ x∗(x)y‖ = sup
‖x1‖1≤1,‖x2‖2≤1

max{‖x1 + x∗1(x1)y1‖1, ‖x2‖2}

= sup
‖x1‖1≤1,‖x2‖2≤1

‖x1 + x∗1(x1)y1‖1 = ‖I + T‖X1→X1 .

This shows the Daugavet property of X1 and finishes the proof.

Theorem 4.3. Let Lp(t) be a Nakano space on (Ω,S, µ). Then for any x ∈ Lp(t)
we have

‖x‖ = max{‖xχA‖, ‖xχAc‖∞},

and thus

Lp(t) ≃ (Lp(t)(A)⊕ L∞(Ac))∞,

where A = {t ∈ Ω : 1 ≤ p(t) < ∞} and Ac = Ω\A. Consequently, if 1 < p(t) ≤ ∞
a.e. and (Lp(t), ‖ · ‖) has the Daugavet property then Lp(t) = L∞ with the equality of

norms.

Proof. By‖xχAc‖=‖xχAc‖∞ and monotonicity of the norm, max{‖xχA‖,‖xχAc‖∞}
≤ ‖x‖. Now, if ‖xχA‖ > ‖xχAc‖∞ then

I(x/‖xχA‖) = I(xχA/‖xχA‖) ≤ 1,

and so ‖x‖ ≤ ‖xχA‖. In the opposite case when ‖xχA‖ ≤ ‖xχAc‖∞ we have

I(x/‖xχAc‖∞) = I(xχA/‖xχAc‖∞) ≤ I(xχA/‖xχA‖) ≤ 1,

and thus ‖x‖ ≤ ‖xχAc‖∞ which proves the desired equality ‖x‖ = max{‖xχA‖,
‖xχAc‖∞}.

Applying now Lemma 4.2, both Lp(t)(A) and L∞(A) must have the Daugavet
property. However in view of Theorem 4.1, it is only possible if p(t) = ∞ a.e.

Remark 4.4. If p(t) = 1 for t ∈ A and p(t) = ∞ for t ∈ Ac, then

Lp(t) = L1(A)⊕ L∞(Ac),

and for all x ∈ Lp(t),

‖x‖ = max{‖xχA‖1, ‖xχAc‖∞} and ‖x‖0 = ‖xχA‖1 + ‖xχAc‖∞.

In this case Lp(t) equipped with either Luxemburg or Orlicz norm has the Daugavet
property if the measure µ is atomless [45].

If µ is atomless, it is known that every slice of the unit ball of L∞(µ) has diameter
two. Hence, in the case when µ(Ac) > 0 and µ is atomless, in view of Theorem 4.3,
it is easy to check that Lp(t) satisfies the same property. Below we state and prove
a more general result.
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Theorem 4.5. Let (Ω,S, µ) be an atomless measure space. If 1 ≤ p(t) < ∞ for

a.a. t ∈ Ω and esssupΩ p(t) = ∞, then the diameter of any nonempty relatively

weakly open subset V of the unit ball in Lp(t) equipped with the Luxemburg norm is

equal to 2.

Proof. Let x ∈ V with ‖x‖ = 1, and assume that esssupΩ p(t) = ∞. Let (Ωm) be
an increasing sequence of measurable sets such that

⋃
mΩm = Ω, 0 < µ(Ωm) < ∞

and for every m ∈ N, u ≥ 0,

esssupt∈Ωm u
p(t)/p(t) <∞.

A construction of such a sequence is given e.g. in [24, p. 64]. Let (Bi) be a sequence of
measurable sets which covers Ω and |x| be bounded on every Bi. By the assumption
on p, there is a sequence (Cj) of measurable sets in Ω satisfying that for every j,
0 < µ(Cj), p(t) > 22j for t ∈ Cj and µ(Cj) → 0. Since Cj = ∪m,i(Cj ∩Ωm ∩Bi) for
each j, we can find a subsequence (An) of elements in {Cj ∩ Ωm ∩ Bi : j ∈ N,m ∈
N, i ∈ N} such that |x| is bounded on every An, 0 < µ(An), (µ(An)) → 0 and for
every t ∈ An,

p(t) > 22n.

If t ∈ An then for each n ∈ N,

(
1 +

1

n

)p(t)
≥

(
1 +

1

n

)22n

=
[(

1 +
1

n

)n]22n/n
≥ 2n.

Since for each n, the function u 7→
∫
An
up(t)/p(t) dµ from R+ to R+ is continuous

and surjective, there exist un > 0 such that

Ip(unχAn) = 1/2n.

We have for all n,

Ip

((
1 +

1

n

)
unχAn

)
=

∫

An

(1 + 1
n
)p(t)u

p(t)
n

p(t)
dµ ≥ 2n

∫

An

u
p(t)
n

p(t)
= 1.

and on the other hand
1 > Ip(unχAn) → 0.

By the definition of the Luxemburg norm this yields

1 ≥ ‖unχAn‖ ≥ n/(n+ 1).

Define now
y′n = xχAcn + unχAn and y′′n = xχAcn − unχAn .

Since µ(An) → 0, so y′n → x and y′′n → x a.e.. Thus by the Fatou property we
have that 1 = ‖x‖ ≤ lim inf ‖y′n‖ and 1 = ‖x‖ ≤ lim inf ‖y′′n‖. On the other hand
Ip(y

′
n) ≤ Ip(x)+ Ip(unχAn) ≤ 1+ 1/n. This yields lim sup Ip(y

′
n) ≤ 1, which in turn

implies that lim sup ‖y′n‖ ≤ 1. Similarly lim sup ‖y′′n‖ ≤ 1. Finally we have

lim ‖y′n‖ = lim ‖y′′n‖ = 1.
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By the choice of An, Ip(βxχAn) < ∞ and Ip(βunχAn) < ∞ for every β > 0 and all
n. Hence x− y′n = xχAn − unχAn ∈ (Lp(t))a and x− y′′n = xχAn + unχAn ∈ (Lp(t))a.

Let now F be an arbitrary functional on Lp(t). By the equality (Lp(t))
∗ ≃ Lq(t) ⊕

[(Lp(t))a]
⊥, F = H + S, where H is a regular (integral) functional induced by

h ∈ Lq(t), and S is a singular functional vanishing on the subspace (Lp(t))a. Hence
F (x − y′n) = H(x − y′n) and F (x − y′′n) = H(x − y′′n). Let β > 0 be such that
Iq(βh) <∞. Then by Young’s inequality uv ≤ Φp(u, t)+Φq(v, t), u, v ≥ 0, we have

|F (x− y′n)|

=
∣∣∣β−1

∫

An

xβh− β−1

∫

An

unβh
∣∣∣

≤

∫

An

β−1(Φp(|x(t)|, t) + Φq(β|h(t)|, t)) dµ+

∫

An

β−1(Φp(un, t) + Φq(β|h(t)|, t)) dµ

= β−1

∫

An

Φp(|x(t)|, t) dµ+ 2β−1

∫

An

Φq(β|h(t)|, t) dµ+ β−1

∫

An

Φp(un, t) dµ.

The right side of the above inequality approaches zero since µ(An) → 0, Ip(x) ≤
1 <∞ and Iq(βh) <∞, and by the choice of un. Thus F (x−y

′
n) → 0 and similarly

F (x− y′′n) → 0, which means that y′n → x and y′′n → x weakly. However

‖y′n − y′′n‖ = 2‖unχAn‖ → 2.

We finish by setting new functions z′n = y′n/‖y
′
n‖, z

′′
n = y′′n/‖y

′′
n‖ that belong to the

intersection of V and the unit sphere of Lp(t), and since ‖z′n−z
′′
n‖ → 2, the diameter

of V is two.

5. Lorentz and Marcinkiewicz spaces

Let P be a class of functions ψ : R+ → R+ that are concave, not trivially equal to
zero and ψ(0) = 0. Denote ψ(0+) = limt→0+ ψ(t) and ψ(∞) = limt→∞ ψ(t). Given
ψ ∈ P, the Lorentz space Λψ over the measure space (Ω, µ) consists of all x ∈ L0

such that

‖x‖Λψ =

∫ γ

0

x∗(t)dψ(t) = ‖x‖∞ · ψ(0+) +

∫ γ

0

x∗(t)ψ′(t) dt <∞,

where γ := µ(Ω) and ψ′ is the derivative of ψ. Note that the derivative of a concave
function exists except a countable set. The reason that in the definition of Λψ we use
a concave function is that the functional ‖ · ‖Λψ induced by increasing ψ : R+ → R+

is a norm if and only if ψ is concave and ψ(0) = 0 [32].

Let Q be the class of functions ψ : R+ → R+ that are not trivially equal to zero,
increasing, quasi-concave i.e. t/ψ(t) is increasing, and ψ(0+) = 0. For ψ ∈ Q, the
Marcinkiewicz space Mψ over (Ω,S, µ) is the set of all x ∈ L0 such that

‖x‖Mψ
= sup

0<t<γ

∫ t
0
x∗

ψ(t)
<∞.
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Observe that P ⊂ Q, and a quasi-concave function ψ is also subadditive, meaning
ψ(s+ t) ≤ ψ(s) + ψ(t).

Unless we say otherwise, any time we discuss the Lorentz space Λψ we assume a
priori that ψ ∈ P, and in the case of Marcinkiewicz space Mψ, that ψ ∈ Q.

Both (Λψ, ‖·‖Λψ) and (Mψ, ‖·‖Mψ
) are Banach function lattices satisfying the Fatou

property.

We summarize below the basic facts on Λψ and Mψ [27]. We note that the proof
of the Köthe duality between Lorentz and Marcinkiewicz spaces stated below can
be obtained in a similar way as corresponding results on the description of the
Banach duality between those spaces in [27]. The strict monotonicity is a direct
consequence of the definition of the norm in Λψ.

Proposition 5.1. Let (Ω,S, µ) be an atomless measure space. Then the following

conditions hold true.

(1) The space (Mψ)a is not trivial, that is supp(Mψ)a = Ω, if and only if

limt→0+ t/ψ(t) = 0.

(2) For any ψ ∈ P it holds

(Λψ)
′ =Mψ and (Mψ)

′ = Λψ

with equality of norms.

(3) If ψ ∈ P and limt→0+ t/ψ(t) = 0, then

((Mψ)a)
∗ ≃ ((Mψ)a)

′ = (Mψ)
′ = Λψ,

where the last equation holds with equality of norms.

(4) If µ(Ω) < ∞, then Λψ is order continuous (resp. separable) if and only if

ψ(0+) = 0 (resp. ψ(0+) = 0 and µ is separable).

(5) If µ(Ω) = ∞, then Λψ is order continuous (resp. separable) if and only if

ψ(0+) = 0 and ψ(∞) = ∞ (resp. ψ(0+) = 0, ψ(∞) = ∞ and µ is separable).

(6) The space Λψ is strictly monotone if and only if ψ is strictly monotone on

(0, γ) and ψ(∞) = ∞ when µ(Ω) = ∞.

We present results on the Daugavet property in Lorentz and Marcinkiewicz spaces
which show that for a large class of concave or quasi-concave functions up to equiv-
alence of norms the spaces are of special types.

Theorem 5.2. Let (Ω,S, µ) be an atomless measure space. Assume that ψ ∈ P.

Then the Lorentz space Λψ does not have the Daugavet property whenever one of

the following conditions is satisfied:

(i) Let µ(Ω) <∞, ψ(0+) = 0 and limt→0+ t/ψ(t) = 0.

(ii) Let µ(Ω) = ∞, ψ(0+) = 0 and limt→0+ t/ψ(t) = 0 and ψ(∞) = ∞.

Proof. If ψ(0+) = 0 and ψ(∞) = ∞ provided µ(Ω) = ∞, then X = Λψ is
order continuous Banach lattices. Since X has the Fatou property, our hypothesis
limt→0+ t/ψ(t) = 0 implies by Proposition 2.5 the statement.
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In the case of separable atomless measure space we have the following result.

Theorem 5.3. Let (Ω,S, µ) be an atomless separable measure space. Assume that

ψ ∈ P. Then both Lorentz space Λψ and Marcinkiewicz space Mψ do not have the

Daugavet property whenever one of the following conditions is satisfied:

(i) Let µ(Ω) <∞, ψ(0+) = 0 and limt→0+ t/ψ(t) = 0.

(ii) Let µ(Ω) = ∞, ψ(0+) = 0 and limt→0+ t/ψ(t) = 0 and ψ(∞) = ∞.

(iii) limt→0+ t/ψ(t) = 0, ψ(∞) = ∞ in case µ(Ω) = ∞, and ψ is strictly increasing

on (0, γ).

Proof. Case 10. Consider first the Lorentz space Λψ. If the condition (i) or (ii) is
satisfied then Theorem 5.2 applies.

(iii) If ψ(0+) = 0, then we have the case (i) or (ii) above. Assume now that
ψ(0+) > 0. By Proposition 5.1, our hypotheses on ψ imply that (Mψ)a is nontrivial
and Λψ is strictly monotone. We also have the identity

((Mψ)a)
∗ ≃ ((Mψ)a)

′ = Λψ

isometrically. Let Λψ have the Daugavet property. It follows that (Mψ)a has also
this property. Apply now Proposition 2.4 to X = (Mψ)a. We see that φX′(0+) =
ψ(0+) > 0, suppXa = Ω and X ′ = Λψ is strictly monotone, and so (Mψ)a cannot
have the Daugavet property, and this contradiction completes the proof.

Case 20. Now consider the Marcinkiewicz space Mψ. If (i) or (ii) is fulfilled then
by the isometric identity

(Λψ)
∗ ≃ ((Λψ)a)

′ =Mψ,

if Mψ have had the Daugavet property then Λψ would have this property, but it is
impossible by case 10.

(iii) We can assume that ψ(0+) > 0. Then applying Proposition 2.4 to X = (Mψ)a
exactly as in (iii) of case 10, we get that (Mψ)a cannot have the Daugavet property,
and so Mψ has no Daugavet property.

The following result can be proved by careful modification of the proof in the case
of Ω = (0, 1) due to Briskin and Semenov [12, Theorem 3].

Theorem 5.4. Let (Ω,S, µ) be an atomless measure space and ψ ∈ P. Let ψ(∞) =
∞ if µ(Ω) = ∞, and let ψ do not coincide with a constant on R+. Then the following

conditions are equivalent:

(i) Two dimensional space ℓ
(2)
1 is isometrically embedded into Λψ.

(ii) Two dimensional space ℓ
(2)
1 is order isometrically embedded into Λψ.

(iii) The function ψ is linear in some neighborhood of zero.

If ψ is constant on R+, then Λψ = L∞ with ‖ · ‖Λψ = ψ(0+)‖ · ‖∞, and then ℓ
(2)
1 is

isometrically embedded into Λψ.

In the next proposition, applying the above result, we improve condition (iii) of
Theorem 5.3.
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Proposition 5.5. Let (Ω,S, µ) be an atomless measure space and ψ ∈ P. Then

both the Marcinkiewicz spaceMψ and the Lorentz space Λψ do not have the Daugavet

property whenever limt→0+ t/ψ(t) = 0, ψ is not constant on R+, and ψ(∞) = ∞ if

µ(Ω) = ∞.

Proof. By the assumption limt→0+ t/ψ(t) = 0, supp(Mψ)a = Ω and so ((Mψ)a)
′ =

Λψ. IfMψ has the Daugavet property then (Mψ)a has this property and by Corollary
2.2(i), Λψ contains an isometric copy of L1(0, 1). Hence Λψ contains an isometric

copy of ℓ
(2)
1 , and by Theorem 5.4, ψ is linear around zero and so limt→0+ t/ψ(t) > 0

contradicting the initial assumption.

If Λψ has the Daugavet property then by ((Mψ)a)
∗ ≃ Λψ, (Mψ)a inherits this

property, but it is impossible by the above considerations.

A space without the Daugavet property may satisfy that all slices of the unit ball
have diameter two. This is not the case of Λψ under some restrictions on ψ.

Proposition 5.6. Let ψ(0+) = 0, limt→0+ t/ψ(t) = 0, µ be separable and ψ(∞) =
∞ if µ(Ω) = ∞. Then the function Lorentz space Λψ over an atomless measure

space (Ω,S, µ) has slices of arbitrarily small diameter.

Proof. Since the space Λψ has the Radon-Nikodým property by the assumptions
and Proposition 5.1, so it has strongly exposed points. Hence there exist slices of
arbitrarily small diameters.

Observe that under suitable function ψ, (∆, |||·|||∆) and (Σ, |||·|||Σ) are Λψ and Mψ,
respectively. Hence from Proposition 5.5 we will show that some results from [5]
can be recovered.

Corollary 5.7. Both Banach lattices (∆, |||·|||∆) and (Σ, |||·|||Σ) over any atomless

measure space do not have the Daugavet property.

Proof. Letting ψ(t) = 1 + t for every t ≥ 0, we have ψ(0+) = 1 and ψ′(t) = 1
for all t > 0. This implies that Λψ = (∆, |||·|||∆) with equality of norms. We have
t/ψ(t) → 0 as t → 0 and ψ is strictly increasing on (0,∞). Hence (∆, |||·|||∆) does
not have the Daugavet property by Theorem 5.3(iii) applied to Lorentz space Λψ.

To conclude, observe that (∆, |||·|||∆)
′ = (Σ, |||·|||Σ) with equality of norms, and thus

(Σ, |||·|||Σ) =Mψ with equality of norms, which in turn implies that it does not have
the Daugavet property by Theorem 5.3(iii) applied to Marcinkiewicz spaceMψ.

Corollary 5.8. Let ψ ∈ P be a constant function on [t0,∞) for some t0 > 0. Then
the Marcinkiewicz space Mψ over (0,∞) has the Daugavet property if and only if ψ
is constant on (0,∞).

Proof. Without loss of generality we assume that t0 = 1 and ψ(1) = 1 (see Corol-
lary 2.10). Define ψ0(t) = max{t, ψ(t)} for every t ≥ 0 and let X = Mψ0 be the
Marcinkiewicz space generated by a quasi-concave function ψ0. It is easy to check
that

Mψ = L1 ∩X
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with equality of norms. Since φX(t) = t/ψ0(t) for every t > 0, φX′(t) = t/φX(t) =
ψ0(t) for every t > 0. Our hypothesis on concavity of ψ yields φX′(t) = ψ(t) on
(0, 1].

If we assume thatMψ has the Daugavet property, Theorem 2.9 applies and concludes
that ψ is a constant function on (0,∞).

If ψ(t) = c for every t > 0, then obviously Mψ = L1 with c‖ · ‖Mψ
= ‖ · ‖1, and the

proof is complete by the well known fact that any L1 space on an atomless measure
space has the Daugavet property.

In view of Theorem 2.9 and Corollary 2.10, we can state the analogous results as
above replacing (0,∞) by an atomless measure space (Ω,S, µ) under the additional
assumption that t0 = 1.
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