# Convex Solids with Hyperplanar Shadow-Boundaries

## Valeriu Soltan

Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA vsoltan@qmu.edu

Received: May 25, 2011 Revised manuscript received: September 22, 2011

Extending the well-known characteristic property of solid ellipsoids as convex bodies with hyperplanar shadow-boundaries, we describe all *n*-dimensional closed convex sets in  $\mathbb{R}^n$  whose shadowboundaries satisfy certain conditions of hyperplanarity.

Keywords: Convex, body, ellipsoid, hypersurface, (sharp) shadow-boundary, solid, quadric

1991 Mathematics Subject Classification: 52A20

## 1. Introduction

Various characterizations of solid ellipsoids among convex bodies in  $\mathbb{R}^n$  form an established topic of convex geometry (see Bonnesen and Fenchel [5, § 70], Heil and Martini [8], Petty [15]). One of the best known, due to various applications (see, e.g., Amir [2]), is a characterization of solid ellipsoids as convex bodies with hyperplanar shadow-boundaries. We need some definitions to describe the existing results in this field.

In what follows, by a *convex solid* we mean a closed convex set  $K \subset \mathbb{R}^n$ ,  $n \geq 2$ , with nonempty interior which is distinct from the entire space (*convex bodies* are compact convex solids). As usual, bd K and int K denote, respectively, the boundary and interior of K. Similarly, rbd M and rint M denote, respectively, the relative boundary and relative interior of a closed convex set  $M \subset \mathbb{R}^n$  of some intermediate dimension.

If  $l \subset \mathbb{R}^n$  is a line, then the *shadow-boundary* of K with respect to l, denoted  $S_l(K)$ , is the set of points in  $\operatorname{bd} K$  at which the lines parallel to l support K. This terminology comes from the concept of illumination of K by a family of rays which are parallel to a given direction (see, e.g., the surveys of Martini [13] and Martini and Soltan [14]). Since any two parallel lines determine the same shadow-boundary of K, we consider, in what follows, the shadow-boundaries generated by 1-dimensional subspaces of  $\mathbb{R}^n$ . If l is a 1-dimensional subspace of  $\mathbb{R}^n$ , then

$$S_l(K) = \operatorname{bd} K \cap \operatorname{bd} (K+l), \tag{1}$$

ISSN 0944-6532 /  $\$  2.50  $\odot$  Heldermann Verlag

where K + l is the vector sum of K and l (equivalently, K + l is the union of all translates of l that intersect K).

Blaschke ([3] and [4, p. 157–159]) proved that a strictly convex body  $K \subset \mathbb{R}^3$  with regular boundary is a solid ellipsoid if any shadow-boundary of K is a plane curve. Alexandrov [1] obtained a far-reaching local version of Blaschke's assertion, which characterizes pieces of convex quadrics or conic surfaces in  $\mathbb{R}^3$  (see Lemma 4.1 below). Refining Blaschke's argument, Busemann [6, p. 93] showed that a convex body  $K \subset \mathbb{R}^n$ ,  $n \geq 3$ , is a solid ellipsoid if for any shadow-boundary  $S_l(K)$  of Kthere is a hyperplane  $H \subset \mathbb{R}^n$  such that

$$S_l(K) \subset H. \tag{2}$$

Marchaud [12] (for n = 3) and Gruber [7] (for all  $n \ge 3$ ) proved (with some additional restrictions on l) that a convex body  $K \subset \mathbb{R}^n$  is a solid ellipsoid provided for any 1-dimensional subspace  $l \subset \mathbb{R}^n$  there is a hyperplane H which is not parallel to l and satisfies the inclusion

$$H \cap \mathrm{bd}\,(K+l) \subset S_l(K). \tag{3}$$

We observe here that a similar condition, with  $H \cap \operatorname{bd} K \subset S_l(K)$  instead of (3), does not characterize ellipsoids: for example, if  $K \subset \mathbb{R}^n$  is a convex polytope, then for any edge e of K that lies in  $S_l(K)$  there is a hyperplane H which is not parallel to l and has the property  $H \cap \operatorname{bd} K = e$ . (In this regard, Marchaud's condition on page 36 of [12] which involves plane sections of  $\operatorname{bd} K$ , and not of  $\operatorname{bd} (K+l)$ , should be treated with caution.)

Our goal here is to describe all convex solids in  $\mathbb{R}^n$  whose shadow-boundaries satisfy one of the conditions (2) and (3). The motivation for this comes from the fact that ellipsoids are particular cases of convex quadric hypersurfaces in  $\mathbb{R}^n$ , which satisfy both conditions (2) and (3) (see Lemma 3.6 below).

We recall that a convex hypersurface (surface if n = 3 or curve if n = 2) is the boundary of a convex solid in  $\mathbb{R}^n$ . This definition includes a hyperplane and a pair of parallel hyperplanes. In a standard way, a quadric (or a second degree hypersurface) in  $\mathbb{R}^n$  is the locus of points  $x = (\xi_1, \ldots, \xi_n)$  that satisfy a quadratic equation

$$F(\xi_1, \dots, \xi_n) \equiv \sum_{i,k=1}^n a_{ik} \xi_i \xi_k + 2 \sum_{i=1}^n b_i \xi_i + c = 0,$$
(4)

where not all scalars  $a_{ik}$  are zero. We say that a convex hypersurface  $C \subset \mathbb{R}^n$  is a *convex quadric* provided there is a real quadric  $Q \subset \mathbb{R}^n$  and a connected component U of  $\mathbb{R}^n \setminus Q$  such that U is convex and  $C = \operatorname{bd} U$ .

As shown in [18], a convex hypersurface  $C \subset \mathbb{R}^n$  is a convex quadric if and only if there is an orthonormal basis  $e_1, \ldots, e_n$  for  $\mathbb{R}^n$  such that C is the locus of points  $x = (\xi_1, \ldots, \xi_n)$  given by one of the conditions

$$a_1\xi_1^2 + \dots + a_k\xi_k^2 = 1, \qquad 1 \le k \le n, \tag{5}$$

$$a_1\xi_1^2 - a_2\xi_2^2 - \dots - a_k\xi_k^2 = 1, \ \xi_1 \ge 0, \qquad 2 \le k \le n, \tag{6}$$

$$a_1\xi_1^2 = 0, (7)$$

$$a_1\xi_1^2 - a_2\xi_2^2 - \dots - a_k\xi_k^2 = 0, \ \xi_1 \ge 0, \qquad 2 \le k \le n,$$
(8)

$$a_1\xi_1^2 + \dots + a_{k-1}\xi_{k-1}^2 = \xi_k, \qquad 2 \le k \le n, \qquad (9)$$

where all scalars  $a_i$  involved are positive. Various characteristic properties of convex quadrics are given in [16]–[19].

We recall that the *recession cone* of a convex solid  $K \subset \mathbb{R}^n$  is given by

$$\operatorname{rec} K = \{ e \in \mathbb{R}^n : x + \lambda e \in K \text{ whenever } x \in K \text{ and } \lambda \ge 0 \}.$$

It is known that rec K is a closed convex cone with apex o (the origin of  $\mathbb{R}^n$ ), and rec  $K \neq \{o\}$  if and only if K is unbounded (see, e.g., [20] for general properties of convex sets). Furthermore, rec K is the union of all halflines h with apex o such that  $x + h \subset K$  for any given  $x \in K$ . The subspace  $\lim K = \operatorname{rec} K \cap (-\operatorname{rec} K)$  is called the *linearity space* of K. Clearly, (i) K is line-free (that is, does not contain a line) if and only if  $\lim K = \{o\}$ ,  $(ii) \lim K$  is an (n - 1)-dimensional subspace if and only if K is either a halfspace of a slab (that is, a closed solid bounded by a pair of distinct parallel hyperplanes). Given a subspace  $L \subset \mathbb{R}^n$  complementary to  $\lim K$  (put  $L = \mathbb{R}^n$  if  $\lim K = \{o\}$ ), the solid K can be expressed as the direct sum  $K = \lim K \oplus (K \cap L)$ , where  $K \cap L$  is a line-free closed convex set. (The sum of sets K and M is called *direct*, denoted  $K \oplus M$ , provided K and M lie, respectively, in complementary subspaces of  $\mathbb{R}^n$ .)

We distinguish two special types of directions and respective shadow-boundaries: non-recessional and sharp. While non-recessional directions are useful in describing non-empty shadow-boundaries, sharp directions allow refinements of the existing results even for the case of convex bodies. A 1-dimensional subspace l is called recessional for the convex solid K if  $l \subset \operatorname{rec} K \cup (-\operatorname{rec} K)$ ; otherwise, l is called non-recessional, as well as the respective shadow-boundary  $S_l(K)$ . The solid K has non-recessional subspaces if and only if K is not a halfspace (see Lemma 3.1). The 1-dimensional non-recessional for K subspace l is called sharp if every line which is parallel to l and supports K has precisely one point in common with K; the respective shadow-boundary  $S_l(K)$  is also called sharp (see [11] for the number of sharp shadow-boundaries of a convex solid).

#### 2. Main Results

**Theorem 2.1.** Given a convex solid  $K \subset \mathbb{R}^n$ ,  $n \geq 2$ , the following conditions are equivalent.

- 1) For any 1-dimensional subspace  $l \subset \mathbb{R}^n$ , there is a hyperplane  $H \subset \mathbb{R}^n$  which intersects K+l such that the inclusion (3) holds.
- 2) For any 1-dimensional non-recessional for K subspace  $l \subset \mathbb{R}^n$ , there is a hyperplane  $H \subset \mathbb{R}^n$  which intersects K+l such that the inclusion (3) holds.

594 V. Soltan / Convex Solids with Hyperplanar Shadow-Boundaries

3) For any 1-dimensional sharp for K subspace  $l \subset \mathbb{R}^n$ , there is a hyperplane  $H \subset \mathbb{R}^n$  such that

$$H \cap \mathrm{bd}\,(K+l) = S_l(K). \tag{10}$$

- 4) K has one of the following shapes:
  - a)  $\operatorname{bd} K$  is a convex quadric,
  - b) dim  $(\ln K) = n-2$ , and K is the direct sum of lin K and a 2-dimensional line-free closed convex set,
  - c) dim  $(\ln K) = n-3$ , and K is the direct sum of lin K and a 3-dimensional line-free closed convex cone.

**Remark 2.2.** As follows from the proof of Theorem 2.1, condition 3) can be slightly relaxed by replacing the family of all sharp for K subspaces with a dense subset of this family. Furthermore, the shapes a)-c in condition 4) are not mutually exclusive: a cylinder based on a 2-dimensional line-free convex quadric is a particular case of b, and a cylinder based on a sheet of a 3-dimensional elliptic cone is a particular case of c. Obviously, the shape c occurs only if  $n \ge 3$ .

**Corollary 2.3.** Given a line-free convex solid  $K \subset \mathbb{R}^n$ ,  $n \geq 3$ , the following conditions are equivalent.

- 1) Each sharp shadow-boundary of K lies in a hyperplane H.
- 2) bd K is a convex quadric (additionally, K may be a convex cone if n = 3).

In particular, a convex body  $K \subset \mathbb{R}^n$  is a solid ellipsoid if and only if each sharp shadow-boundary of K lies in a hyperplane.  $\Box$ 

A convex solid  $K \subset \mathbb{R}^n$  distinct from a cone is called *strictly convex* provided its boundary contains no line segment; an *n*-dimensional closed convex cone  $K \subset \mathbb{R}^n$ is *strictly convex* provided it has a unique apex, say, *p* such that any line segment in bd *K* belongs to a line through *p*.

**Corollary 2.4.** Given a convex solid  $K \subset \mathbb{R}^n$ ,  $n \geq 2$ , the following conditions are equivalent.

- 1) For any 1-dimensional non-recessional for K subspace  $l \subset \mathbb{R}^n$ , there is a hyperplane  $H \subset \mathbb{R}^n$  that satisfies the inclusion (2).
- 2) K has one of the following shapes:
  - a)  $\operatorname{bd} K$  is a convex quadric,
  - b') dim  $(\ln K) = n-2$ , and K is the direct sum of lin K and a 2-dimensional line-free closed convex set which is either unbounded or bounded and strictly convex,
  - c') dim (lin K) = n-3, and K is the direct sum of lin K and a 3-dimensional line-free closed strictly convex cone.

## 3. Auxiliary Lemmas

We say that a plane  $P \subset \mathbb{R}^n$  (of certain dimension m) properly supports a closed convex set  $M \subset \mathbb{R}^n$  provided P meets the relative boundary, rbd M, of M and is disjoint from its relative interior, rint M. Furthermore, P is parallel to a line  $l \subset \mathbb{R}^n$  if a translate of l lies in P.

**Lemma 3.1.** A convex solid  $K \subset \mathbb{R}^n$  has 1-dimensional non-recessional subspaces if and only if K is not a halfspace. If K is not a halfspace and  $l \subset \mathbb{R}^n$  is a 1dimensional non-recessional subspace for K, then  $S_l(K) \neq \emptyset$  if and only if K is not a slab.

**Proof.** The first assertion immediately follows from the fact that K is a closed halfspace of  $\mathbb{R}^n$  if and only if  $\operatorname{rec} K \cup (-\operatorname{rec} K) = \mathbb{R}^n$ . Assume that K is not a halfspace and choose a 1-dimensional non-recessional for K subspace l. If K is a slab, then l is not parallel to the boundary hyperplanes of K, which gives  $K+l = \mathbb{R}^n$  and

 $S_l(K) = \operatorname{bd} K \cap \operatorname{bd} (K+l) \subset \operatorname{bd} (K+l) = \operatorname{bd} \mathbb{R}^n = \emptyset.$ 

Conversely, let K be neither a halfspace nor a slab. Then dim  $(\ln K) \leq n-2$  because halfspaces and slabs are the only convex solids in  $\mathbb{R}^n$  with (n-1)-dimensional linearity spaces. Due to  $l \cap \operatorname{rec} K = \{o\}$ , there is a subspace  $L \subset \mathbb{R}^n$  containing land complementary to  $\lim K$  (put  $L = \mathbb{R}^n$  if  $\lim K = \{o\}$ ). Then

$$\dim L = n - \dim (\lim K) \ge 2$$
 and  $K = \lim K \oplus (K \cap L)$ ,

where  $K \cap L$  is a line-free closed convex set. Obviously, L meets int K. Choose a point  $x \in (L \setminus l) \cap$  int K and consider the 2-dimensional subspace  $E = \text{span}(\{x\} \cup l)$ . Denote by l' the line through x which is parallel to l. Since rec  $(E \cap K) = E \cap \text{rec } K$ , the subspace l is non-recessional for  $E \cap K$ . Therefore  $(E \cap K) \cap l'$  is a line segment, and at least one of the closed halfplanes of E determined by l' meets  $E \cap K$  along a bounded set (otherwise  $E \cap K$  would be a slab of E between a pair of parallel lines, which is impossible because  $E \cap K$  is line-free as a section of  $K \cap L$ ). Continuously translating l' within this halfplane, we find a line  $l'' \subset E$  that is parallel to l' and properly supports  $E \cap K$ . Hence l'' properly supports  $K \cap L$ . The equalities

bd 
$$K = \lim K \oplus \operatorname{rbd} (K \cap L)$$
 and  $\operatorname{int} K = \lim K \oplus \operatorname{rint} (K \cap L)$ 

imply that l'' supports K, which gives  $S_l(K) \neq \emptyset$ .

Given a convex solid  $K \subset \mathbb{R}^n$ , a hypersubspace  $L \subset \mathbb{R}^n$  (that is, a subspace of dimension n-1) is called *ordinary* if there is a translate of L that supports K and no translate of L supports K along an (n-1)-dimensional set. From the standard facts of Convex Analysis it follows that  $K \subset \mathbb{R}^n$  has ordinary hypersubspaces provided it is neither a halfspace nor a slab. Since any convex solid has at most countably many (n-1)-dimensional faces, the union of all ordinary for K hypersubspaces is dense in  $\mathbb{R}^n \setminus (\operatorname{rec} K \cup (-\operatorname{rec} K))$  provided K is neither a halfspace nor a slab.

**Lemma 3.2.** If  $K \subset \mathbb{R}^n$  is a convex solid, which is neither a halfspace nor a slab, and L is an ordinary for K hypersubspace, then the union of all 1-dimensional sharp for K subspaces  $l \subset L$  is dense in  $L \setminus (\operatorname{rec} K \cup (-\operatorname{rec} K))$ .

**Proof.** Translating K on a suitable vector, we may suppose that L supports K such that  $o \in K \cap L$ . By the assumption, dim  $(K \cap L) \leq n-2$ . The solid K

#### 596 V. Soltan / Convex Solids with Hyperplanar Shadow-Boundaries

can be expressed as the union of an increasing sequence of convex bodies  $K \cap B_r$ ,  $r = 1, 2, \ldots$ , where  $B_r$  is the closed ball of radius r centered at o. Clearly, L is ordinary for each body  $K \cap B_r$ . As proved in [10], the set  $E_r$  of unit vectors in L which span all 1-dimensional non-sharp for  $K \cap B_r$  subspaces has zero (n-2)dimensional Hausdorff measure. Since rec  $K \cup (-\text{rec } K)$  is the union of two closed convex cones with common apex o, each set  $E_r \setminus (\text{rec } K \cup (-\text{rec } K)), r \geq 1$ , also has zero (n-2)-dimensional Hausdorff measure. Put

$$E = (E_1 \cup E_2 \cup \dots) \setminus (\operatorname{rec} K \cup (-\operatorname{rec} K)), \qquad F = L \cap S^{n-1},$$

where  $S^{n-1}$  is the unit sphere of  $\mathbb{R}^n$ . Then E is the set of unit vectors in  $F \setminus (\operatorname{rec} K \cup (-\operatorname{rec} K))$  which span all 1-dimensional non-recessional and non-sharp for K subspaces. By the above, E has zero (n-2)-dimensional Hausdorff measure. Hence the complement of E in  $F \setminus (\operatorname{rec} K \cup (-\operatorname{rec} K))$ , which is the set of unit vectors that span all 1-dimensional sharp for K spaces, is dense in  $F \setminus (\operatorname{rec} K \cup (-\operatorname{rec} K))$ .  $\Box$ 

The following lemma describes the case when a 1-dimensional subspace l and a hyperplane H that satisfy one of the conditions (2) and (10) are parallel.

**Lemma 3.3.** Given a convex solid  $K \subset \mathbb{R}^n$  which is neither a halfspace nor a slab, the following conditions are equivalent.

- 1) There is a 1-dimensional sharp for K subspace  $l \subset \mathbb{R}^n$  and a hyperplane  $H \subset \mathbb{R}^n$  such that l and H are parallel and satisfy the equality (10).
- 2) There is a 1-dimensional non-recessional for K subspace  $l \subset \mathbb{R}^n$  and a hyperplane  $H \subset \mathbb{R}^n$  such that l and H are parallel and satisfy the inclusion (2).
- 3) dim  $(\ln K) = n 2$ , and K is the direct sum of  $\ln K$  and a 2-dimensional unbounded line-free closed convex set.

**Proof.** Since 1) trivially implies 2), we proceed with  $2) \Rightarrow 3$ ). By Lemma 3.1,  $S_l(K) \neq \emptyset$  and dim (lin K)  $\leq n - 2$ . Write  $K = \lim K \oplus (K \cap L)$ , where L is a subspace containing l and complementary to lin K. Choose a proper translate  $H_1$  of H which meets int K. We state that  $K \cap H_1$  is a slab of  $H_1$ . Indeed, we observe that l is non-recessional for  $K \cap H_1$  because of

$$l \cap \operatorname{rec} (K \cap H_1) \subset l \cap \operatorname{rec} K = \{o\},\$$

which implies that  $K \cap H_1$  is not a halfplane of  $H_1$ . Since  $H_1$  contains no line which is parallel to l and supports K (due to the assumption, all such lines are in H), Lemma 3.1 (with  $H_1$  instead of  $\mathbb{R}^n$ ) gives that  $K \cap H_1$  must be a slab of  $H_1$ . Therefore  $K \cap H_1$  contains an (n-2)-dimensional plane. Hence dim  $(\ln (K \cap H_1)) = n - 2$ . This equality and dim  $(\ln K) \leq n - 2$  imply that dim  $(\ln K) = n - 2$ , and whence dim  $L = n - \dim (\ln K) = 2$ . Furthermore, a suitable translate of lin K lies in H.

Repeating the argument above for H (instead of  $H_1$ ), we obtain that H supports K, since otherwise  $K \cap H$  would be a slab of H and each line in H which is parallel to l would meet int K, contradicting the assumption  $\emptyset \neq S_l(K) \subset H$ . Clearly,  $H = \lim K \oplus (H \cap L)$ , and the line  $H \cap L$  (which is a translate of l) properly supports  $K \cap L$ . We state that  $K \cap L$  is unbounded. Indeed, if  $K \cap L$  were bounded,  $L \setminus H$  would contain another translate of l properly supporting  $K \cap L$  (and thus supporting K), in contradiction with  $S_l(K) \subset H$ .

 $3) \Rightarrow 1$ ). Choose any 1-dimensional sharp for K subspace l. As above, let  $K = \lim K \oplus (K \cap L)$ , where L is a subspace containing l and complementary to lin K. We have dim  $L = n - \dim (\lim K) = 2$ . Because l is sharp for the line-free unbounded set  $K \cap L$ , there is a translate  $l' \subset L$  of l that properly supports  $K \cap L$  along a singleton (see the proof of Lemma 3.1). Furthermore,  $l' \cap \operatorname{rbd} (K \cap L + l) = S_l(K \cap L)$ , since otherwise  $K \cap L$  would be bounded and poses another support line which is parallel to l. Put  $H = \lim K \oplus l'$ . Then H is a hyperplane supporting K such that

$$H \cap \operatorname{bd} (K+l) = (\operatorname{lin} K \oplus l') \cap (\operatorname{lin} K \oplus \operatorname{rbd} (K \cap L+l))$$
$$= \operatorname{lin} K \oplus (l' \cap \operatorname{rbd} (K \cap L+l))$$
$$= \operatorname{lin} K \oplus S_l(K \cap L) = S_l(K).$$

The next lemma describes some relations between the conditions (2), (3), and (10); obviously,  $(10) \Rightarrow (2)$  and  $(10) \Rightarrow (3)$ .

**Lemma 3.4.** Let  $K \subset \mathbb{R}^n$  be a convex solid which is neither a halfspace nor a slab,  $l \subset \mathbb{R}^n$  a 1-dimensional non-recessional for K subspace, and  $H \subset \mathbb{R}^n$  a hyperplane. The following assertions hold.

- 1) If H intersects bd(K+l) such that (3) holds, then l and H are not parallel.
- 2) If l and H are not parallel, then  $(2) \Leftrightarrow (10)$ . Furthermore, if (2) holds, then l is sharp for K.
- 3) If l and H are not parallel and l is sharp for K, then  $(2) \Leftrightarrow (3) \Leftrightarrow (10)$ .

**Proof.** 1). Let H intersect  $\operatorname{bd}(K+l)$  such that (3) holds. Assume for a moment that H is parallel to l. Then  $H \cap \operatorname{bd}(K+l)$  and, subsequently,  $S_l(K)$  contains a line l' which is a translate of l. From (1) we obtain  $l' \subset \operatorname{bd} K$ . In this case,  $l \subset \operatorname{lin} K$ , contradicting the assumption on l. Hence H cannot be parallel to l.

2). Since  $(10) \Rightarrow (2)$  trivially holds, it remains to show that  $(2) \Rightarrow (10)$ . Because of

$$S_l(K) = S_l(K) \cap \operatorname{bd}(K+l) \subset H \cap \operatorname{bd}(K+l),$$

one has to prove the opposite inclusion. Choose a point  $x \in H \cap bd(K+l)$ . We state that the line x + l intersects bd K. Indeed, suppose for a moment that x + l and bd K are disjoint. From  $x + l \subset bd(K+l)$  it follows that x + l is asymptotic for K. In this case, l is recessional for K, contradicting the assumption on l. Hence  $bd K \cap (x + l) \neq \emptyset$ . If  $z \in bd K \cap (x + l)$ , then

$$z \in \operatorname{bd} K \cap \operatorname{bd} (K+l) = S_l(K) \subset H.$$

Hence  $z \in H \cap (x + l) = \{x\}$ , giving  $x = z \in S_l(K)$ . Therefore (10) holds. Furthermore, since any line l' that supports K and is parallel to l can be expressed as l' = u + l, where  $u \in l' \cap H$ , the argument above shows that  $l' \cap \operatorname{bd} K$  is a singleton. Hence l is sharp for K. 3). By the facts proved above, it suffices to show that  $(3) \Rightarrow (2)$ . Let x be a point in  $S_l(K)$ . Then the line x + l supports K and lies in bd(K+l). Since H and l are not parallel, x + l intersects H at a single point u. Due to (3),

$$u \in H \cap (x+l) \subset H \cap \mathrm{bd}\,(K+l) \subset S_l(K).$$

Since l is sharp for K, we have  $x = u \in H$ , which implies (2).

**Remark 3.5.** We observe that  $(3) \neq (2)$  and  $(3) \neq (10)$  if l is not sharp for K. Indeed, if K is a square in the coordinate plane, whose base lies on the x-axis and l is the y-axis, then  $S_l(K)$  is the union of two vertical sides of K, while the intersection of  $\operatorname{bd}(K+l)$  with any non-vertical line H consists of two points.

**Lemma 3.6.** Let  $K \subset \mathbb{R}^n$  be a convex solid distinct from a halfspace or a slab such that bd K a convex quadric, and  $l \subset \mathbb{R}^n$  a 1-dimensional non-recessional for K subspace. Then l is sharp for K and there is a hyperplane  $H \subset \mathbb{R}^n$  which is not parallel to l and satisfies the equality (10).

**Proof.** Let  $\operatorname{bd} K$  be as described by (4). By Lemma 3.1, there is a line l' which is parallel to l and supports  $\operatorname{bd} K$ . Write  $l' = \{u + tv \in \mathbb{R}^n : t \in \mathbb{R}\}$ , where  $u \in l' \cap \operatorname{bd} K$  and v is a unit vector of l. Equivalently,  $x = (\xi_1, \ldots, \xi_n)$  belongs to l'if and only if

$$\xi_i = u_i + tv_i, \quad t \in \mathbb{R}, \ i = 1, \dots, n,$$

where  $u = (u_1, \ldots, u_n)$  and  $v = (v_1, \ldots, v_n)$ . To determine the values of t for which  $x \in l' \cap \operatorname{bd} K$ , we substitute  $\xi_i = u_i + tv_i$  into (4). This results in a quadratic equation

$$A(v) t2 + 2B(u, v) t + C(u) = 0, (11)$$

where

$$A(v) = \sum_{i,k=1}^{n} a_{ik} v_i v_k, \qquad B(u,v) = \sum_{i=1}^{n} \left( \sum_{k=1}^{n} a_{ik} u_k + b_i \right) v_i,$$
$$C(u) = F(u_1, \dots, u_n).$$

Because (11) has at most two solutions, which correspond to the points of  $l' \cap \operatorname{bd} K$ , the convex set  $l' \cap \operatorname{bd} K$  must be a singleton,  $\{u\}$ . Hence l is sharp for K.

Since l is non-recessional for K, there is a translate  $l_1$  of l that meets int K such that  $l_1 \cap K$  is a line segment [a, c]. Writing  $l_1 = \{u_1 + tv \in \mathbb{R}^n : t \in \mathbb{R}\}$ , where  $u_1$  is any given point of  $l_1$ , we obtain that a and c correspond to two distinct solutions for the equation

$$A(v) t^{2} + 2B(u_{1}, v) t + C(u_{1}) = 0,$$

which gives  $A(v) \neq 0$ . Because (11) has precisely one solution, t = 0, we have

$$B(u,v) \equiv \sum_{i=1}^{n} \left( \sum_{k=1}^{n} a_{ik} u_k + b_i \right) v_i = 0.$$

Equivalently,

$$\sum_{k=1}^{n} \left( \sum_{i=1}^{n} a_{ik} v_i \right) u_k + \sum_{i=1}^{n} b_i v_i = 0.$$
(12)

Interpreted as an equation in  $u_1, \ldots, u_n$ , (12) describes a hyperplane, H, because at least one of the scalars

$$c_k = \sum_{i=1}^n a_{ik} v_i, \quad k = 1, \dots, n,$$

is not zero. Indeed, assuming  $c_1 = \cdots = c_n = 0$ , we would obtain

$$A(v) = c_1 v_1 + \dots + c_n v_n = 0.$$

If we fix v and vary u as the point of contact of a variable line l' supporting K, then (12) shows that u belongs to H. Hence  $S_l(K) \subset H$ . By Lemma 3.4, l and H are not parallel and the equality (10) holds.

#### 4. Proof of Theorem 2.1

 $(4) \Rightarrow 1$ ). Let l be a 1-dimensional subspace of  $\mathbb{R}^n$ . Write  $K = \lim K \oplus (K \cap L)$ , where L is a subspace of  $\mathbb{R}^n$  complementary to  $\lim K$  (put  $L = \mathbb{R}^n$  if  $\lim K = \{o\}$ ). In what follows, we consider separately the following cases:

$$l \subset \lim K, \qquad l \subset (\operatorname{rec} K \setminus \lim K) \cup \{o\}, \qquad l \cap \operatorname{rec} K = \{o\}.$$

(i). Let  $l \subset \lim K$ . Then  $x + l \subset \operatorname{bd} K$  for any point  $x \in \operatorname{bd} K$ , which shows that  $S_l(K) = \operatorname{bd} K = \operatorname{bd} (K+l)$ . If G is a subspace complementary to l within  $\lim K$  (put  $G = \{o\}$  if  $l = \lim K$ ), then  $H = G \oplus L$  is a hyperplane which intersects K + l and

$$H \cap \mathrm{bd}\,(K+l) \subset \mathrm{bd}\,(K+l) = S_l(K).$$

(*ii*). Let  $l \subset (\operatorname{rec} K \setminus \lim K) \cup \{o\}$ . (*a*). If bd K is a convex quadric, then the inclusion  $l \subset (\operatorname{rec} K \setminus \lim K) \cup \{o\}$  implies that bd K has one of the types (6), (8), (9). In this case,  $\operatorname{int} (K+l)$  is either the whole space, an open halfspace, or an open slab. Choosing a hyperplane  $H \subset \operatorname{int} (K+l)$ , we obtain

$$H \cap \mathrm{bd}\,(K+l) = \emptyset \subset S_l(K). \tag{13}$$

(b). If dim L = 2 and  $K \cap L$  is a line-free closed convex set, then rint  $(K \cap L) + l$  is either L, an open halfplane of L, or an open slab of L. If G is a line in rint  $(K \cap L) + l$ , then the hyperplane  $H = \lim K \oplus G$  satisfies (13).

(c). If dim L = 3 and  $K \cap L$  is a 3-dimensional line-free closed convex cone, then rint  $(K \cap L) + l$  is an open halfspace of L. If G is a 2-dimensional plane in rint  $(K \cap L) + l$ , then the hyperplane  $H = \lim K \oplus G$  satisfies (13).

(*iii*). Let  $l \cap \operatorname{rec} K = \{o\}$ . If  $\operatorname{bd} K$  is a convex quadric, then (3) follows from Lemma 3.6. Assume that K has one of the shapes (b), (c). Then  $2 \leq \dim L \leq 3$ . From the standard properties of 2-dimensional convex sets (respectively, 3-dimensional closed convex cones) we conclude the existence of a line  $G \subset L$  (respectively, of a 2-dimensional plane  $G \subset L$ ) which is not parallel to l and satisfies

the inclusion  $G \cap \operatorname{rbd} (K \cap L + l) \subset S_l(K \cap L)$ . Then  $H = \lim K \oplus G$  is a hyperplane such that

$$H \cap \operatorname{bd} (K+l) = (\operatorname{lin} K \oplus G) \cap (\operatorname{lin} K \oplus \operatorname{rbd} (K \cap L+l))$$
$$= \operatorname{lin} K \oplus (G \cap \operatorname{rbd} (K \cap L+l))$$
$$\subset \operatorname{lin} K \oplus S_l(K \cap L) = S_l(K).$$

Since  $1 \Rightarrow 2$  trivially holds and  $2 \Rightarrow 3$  due to Lemma 3.4, it remains to show that  $3 \Rightarrow 4$ . This part is organized by induction on  $n \ge 3$ . The case n = 3 is considered in Proposition 4.2 below, which involves the following result of Alexandrov [1].

**Lemma 4.1 ([1]).** Let  $K \subset \mathbb{R}^3$  be a convex solid and T a non-planar, bounded, open, and simply connected piece of  $\operatorname{bd} K$ . If for any shadow-boundary  $S_l(K)$  of Kthat meets T there is a plane H such that  $S_l(K) \cap T \subset H$ , then T is a piece of a line-free convex quadric or a piece of the boundary of a strictly convex cone.

We note that Lemma 4.1 deals with shadow-boundaries corresponding to all (possibly, non-sharp, or even recessional for K) 1-dimensional subspaces l, and the plane H is allowed to be parallel to l. Furthermore, Lemma 4.1 refines Alexandrov's original conclusion "T is a piece of a convex quadric or a piece of the boundary of a convex cone."

**Proposition 4.2.** If a convex solid  $K \subset \mathbb{R}^3$  satisfies condition 3) of Theorem 2.1, then it has one of the following shapes:

- a)  $\operatorname{bd} K$  is a convex quadric,
- b) K is a cylinder based on a 2-dimensional line-free closed convex set,
- c) K is a line-free closed convex cone.

**Proof.** If K contains a line, then K is a cylinder based on a 2-dimensional closed convex set M. If M contains a line, then K is either a halfplane or a slab between two parallel planes, implying that  $\operatorname{bd} K$  is a degenerate convex quadric. If M is line-free, then K has the shape b.

Assuming that K is line-free, we divide the proof of Proposition 4.2 into a sequence of assertions.

**Assertion 4.3.** If  $\operatorname{bd} K$  contains an open strictly convex piece S, then the whole surface  $\operatorname{bd} K$  is a strictly convex quadric.

**Proof.** Choose a point  $x \in S$  and a scalar r > 0 such that the set  $T = U_r(x) \cap \operatorname{bd} K$ lies in S, where  $U_r(x)$  is an open ball of radius r > 0 centered at x. Translating Kon -x, we may assume that x = o. Denote by P a 2-dimensional subspace which supports K at o. Then  $P \cap K = \{o\}$  because T is strictly convex. By Lemma 3.2, the family  $\mathcal{F}$  of 1-dimensional sharp for K subspaces is dense in the family of all 1-dimensional subspaces of P. Due to condition  $\mathcal{I}$ , each sharp shadow-boundary  $S_l(K), l \in \mathcal{F}$ , lies in a plane H(l). Because T is strictly convex, the family of planar arcs  $S_l(K) \cap T, l \in \mathcal{F}$ , is dense in the family of all arcs of the form  $S_l(K) \cap T, l \subset P$ . Therefore each arc  $S_l(K) \cap T, l \subset P$ , lies in a plane. Since this argument holds for any point  $z \in T$ , Lemma 4.1 implies that T is a piece of a strictly convex quadric Q.

Because Q is strictly convex, it is either an ellipsoid, an elliptic paraboloid, or a sheet of hyperboloid on two sheets. In either case, there is a line m through o which is the axis of affine symmetry of Q. Applying a suitable linear transformation that keeps P fixed, we may assume that m is orthogonal to P (clearly, the image of K under this transformation satisfies condition 3). Therefore, m is the axis of symmetry of Q and each plane H(l) contains m. Hence the family of planes H(l),  $l \in \mathcal{F}$ , is dense in the family of all planes containing m.

Next, we state that K is strictly convex. For contradiction, assume for a moment the existence of a line segment  $[u, v] \subset K$ . Then [u, v] should lie in a plane through m. Suppose that [u, v] and m do not lie in a common plane. By the above, there is a 1-dimensional sharp for K subspace  $l \in \mathcal{F}$  such that the respective plane H(l) meets the open segment (u, v). This gives the inclusion  $[u, v] \subset S_l(K)$ , in contradiction with the condition  $S_l(K) \subset H(l)$ .

Denote by M the plane which contains  $m \cup [u, v]$ . Choosing a point  $z \in T \setminus M$  and repeating the consideration above for z instead of x, we conclude that [u, v] should lie in a common plane with the axis of affine symmetry of Q that contains z. Since this is impossible, we obtain a contradiction with the assumption  $[u, v] \subset K$ . Hence K is strictly convex.

Finally, cover  $\operatorname{bd} K$  with countably many pieces of the form  $T = U_r(x) \cap \operatorname{bd} K$ . Since any two overlapping pieces of strictly convex quadrics belong to the same strictly convex quadric, the whole surface  $\operatorname{bd} K$  is a strictly convex quadric.  $\Box$ 

Our further goal is to show that K is a convex cone provided  $\operatorname{bd} K$  is not a convex quadric. Let us recall that a subset F of  $\operatorname{bd} K$  is an *exposed face* of K provided  $F = K \cap P$  for a suitable plane P that supports K.

Assertion 4.4. Any 2-dimensional exposed face of K is a convex cone.

**Proof.** Assume, for contradiction, that K has a 2-dimensional exposed face F which is distinct from a cone. Denote by P the plane containing F. Translating K on a suitable vector we may assume that P is a subspace. Choose a unit vector  $u \in P$  such that the 1-dimensional subspace l(u) spanned by u is sharp for F (u exists because the family of line segments in rbd F is at most countable). Then rbd F can be expressed as the union of two convex arcs  $\gamma$  and  $\gamma'$  such that  $\gamma \cap \gamma' = \{p\}$  if F is unbounded (respectively,  $\gamma \cap \gamma' = \{p, q\}$  if F is bounded) where  $\{p\}$  (respectively,  $\{p, q\}$ ) is the set of contact of F with the line(s) parallel to l(u) and supporting F.

Because F is not a cone, at least one of the arcs  $\gamma, \gamma'$ , say,  $\gamma$  does not belong to a halfline. Denote by Q a closed slab of P which is bounded by a pair of lines  $l_1, l_2$  both parallel to l(u) and intersecting rint F such that  $\gamma \cap Q$  is not a line segment. We may assume that namely  $\gamma$  is the part of rbd F illuminated in the direction u (that is, the halfline  $\{x + \lambda u : \lambda \geq 0\}$  intersects rint F for any point  $x \in \gamma \cap Q$ ); otherwise replace u with -u.

Choose a plane N which is parallel to l(u) but not to P and supports K such

that  $K \cap N$  is a bounded set with dim  $(K \cap N) \leq 1$  (if, additionally, there is another plane N' which is parallel to N and supports K, then we also require that dim  $(K \cap N') \leq 1$ ). As above, N exists because the family of 2-dimensional faces of K parallel to l(u) is at most countable and K is line-free. Furthermore, choose a unit vector  $v \in \mathbb{R}^3$  which is parallel to N but not to l(u) such that P separates v from K. Let  $N_1$  and  $N_2$  be the planes through  $l_1$  and  $l_2$ , respectively, both parallel to N. Denote by  $l'_j$  the line in  $N_j$  which is parallel to  $l_j$  and supports the 2-dimensional compact convex set  $K \cap N_j$  from the opposite to  $l_j$  side, j = 1, 2. Also, let V be the closed slab of  $\mathbb{R}^3$  bounded by  $N_1$  and  $N_2$ .

By Lemma 3.2 and the choice of N, the open interval  $(0, \infty) \subset \mathbb{R}$  contains a dense subset  $\Lambda$  such that every 1-dimensional subspace  $l(u + \varepsilon v)$ ,  $\varepsilon \in \Lambda$ , is sharp for K. Choose in  $\Lambda$  a sequence  $\varepsilon_1, \varepsilon_2, \ldots$  which converges to 0. Each set  $S_{l(u+\varepsilon_i v)}(K) \cap V$ is a disjoint union of two curves; one of these curves tends to the non-line curve  $\gamma \cap Q$  as  $i \to \infty$ , while the end-points of the second curve approach the sets  $K \cap l'_1$ and  $K \cap l'_2$ , respectively. This argument shows that  $S_{l(u+\varepsilon_i v)}(K) \cap V$  cannot lie in a plane for a sufficiently large i, in contradiction with condition 3) of the theorem. Hence F must be a convex cone.

**Assertion 4.5.** If  $P_1$  and  $P_2$  are distinct parallel planes both supporting K such that  $K \cap P_1$  is a cone, then  $K \cap P_2$  is a translate of  $K \cap P_1$ .

**Proof.** Let  $z_1$  be the apex of  $K \cap P_1$ . Then  $K \cap P_1 - z_1$  is a convex cone with apex o, which lies in rec K. Choose a point  $u \in K \cap P_2$ . From  $u + \operatorname{rec} K \subset K$  it follows that

$$(u-z_1)+K\cap P_1\subset K\cap P_2.$$
(14)

First, assume that dim  $(K \cap P_1) = 2$ . Then (14) shows that dim  $(K \cap P_2) = 2$ . By Assertion 4.4,  $K \cap P_2$  is a convex cone. Denote by  $z_2$  the apex of  $K \cap P_2$ . By the argument above,

$$(z_2 - z_1) + K \cap P_1 \subset K \cap P_2$$
 and  $(z_1 - z_2) + K \cap P_2 \subset K \cap P_1$ .

Hence  $(z_2 - z_1) + K \cap P_1 = K \cap P_2$ .

Now, assume that dim  $(K \cap P_1) = 1$ . Then  $K \cap P_1$  is a halfline,  $h_1$ , with endpoint  $z_1$ . If  $K \cap P_2$  were 2-dimensional, then, by the facts proved above,  $K \cap P_1$  would be a translate of  $K \cap P_2$ , which is impossible. Hence dim  $(K \cap P_2) = 1$ . From (14) we obtain that  $K \cap P_2$  is a translate of  $h_1$ .

Assertion 4.6. Any 1-dimensional exposed face of K is a halfline.

**Proof.** Assume for a moment that K has a 1-dimensional exposed face F which is not a halfline. Since K is line-free, F is a line segment, [x, z]. We may suppose that x = o, so that the line l through o and z is a subspace. Choose a 2-dimensional subspace L with the property  $L \cap K = [o, z]$  and a 2-dimensional subspace M through l that meets int K. If there is another plane L' which is parallel to L and supports K, then, due to Assertions 4.4 and 4.5 above,  $K \cap L'$  should be a point or a line segment. Denote by  $\mathcal{F}$  the family of 1-dimensional subspaces from L which

are sharp for K. From Lemma 3.2 it follows that  $\mathcal{F}$  is dense in the family of all 1-dimensional subspaces of L.

Choose a plane N which is parallel to L and intersects int K. Due to  $L \cap K = [o, z]$ , the section  $K \cap N$  is bounded (if  $K \cap N$  were unbounded and whence contained a halfline h, then  $K \cap L$  would contain a translate of h). Choose a subspace  $l' \in \mathcal{F} \setminus \{l\}$ so close to l that  $S_{l'}(K)$  meets  $K \cap N$  at some points  $x_1$  and  $x_2$  which are strictly separated by M. By condition 3), there is a plane H' that intersects K + l' and satisfies the equality  $H' \cap \operatorname{bd} (K + l') = S_{l'}(K)$ . Due to the construction above, H' should contain the set  $X = [o, z] \cup \{x_1, x_2\}$ , which is impossible since X is not planar. The obtained contradiction shows that F is a halfline.

Assertions 4.3, 4.4, and 4.6 imply the following corollary.

**Assertion 4.7.** bd K = cl C, where C is the union of all exposed halflines and exposed cones of K.

**Assertion 4.8.** *K* is the closed convex hull of its exposed halflines, and any two such halflines lie in a common plane.

**Proof.** The first part of Assertion 4.8 immediately follows from Klee [9, Assertion 3.6] and Assertion 4.7 above. Assume, for contradiction, the existence of exposed halflines  $h_1$  and  $h_2$  of K whose union  $h_1 \cup h_2$  does not lie in a plane. Denote by  $z_1$  and  $z_2$  the endpoints of  $h_1$  and  $h_2$ , respectively. Choose planes  $P_1$  and  $P_2$  such that  $K \cap P_1 = h_1$  and  $K \cap P_2 = h_2$ .

We observe that  $P_1$  and  $P_2$  are not parallel, since otherwise  $h_1$  should be a translate of  $h_2$  (see Assertion 4.5), implying that  $h_1 \cup h_2$  lies in a plane. Therefore  $P_1 \cap P_2$  is a line, m. Next, we state that none of the halflines  $h_1$  and  $h_2$  is parallel to m. Indeed, assuming that  $h_1$  is parallel to m, we would obtain that the halfline  $h'_1 = (z_2 - z_1) + h_1$ lies in  $K \cap P_2$ , in contradiction with the assumption  $K \cap P_2 = h_2$ . Denote by  $g_i$ the line through  $z_i$  which is parallel to m, and by  $G_i$  the closed halfplane of  $P_i$  that contains  $h_i$  and is bounded by  $g_i$ . Let  $N_1$  and  $N_2$  be parallel planes through  $g_1$  and  $g_2$ , respectively, such that both  $N_1$  and  $N_2$  meet int K.

Denote by l the 1-dimensional subspace parallel to m. From the argument above it follows that  $S_l(K) \cap G_i = h_i$ , i = 1, 2, and  $S_l(K) \setminus (h_1 \cup h_2)$  lies in the open slab between  $N_1$  and  $N_2$ . We claim that  $S_l(K)$  is sharp. Indeed, assume for a moment that  $S_l(K)$  contains a line segment [x, y] which is parallel to l. Clearly, [x, y] lies between  $N_1$  and  $N_2$ . Let F be an exposed face of K that contains [x, y]. Due to Assertions 4.4 and 4.5 above, F is a convex cone. We observe that  $F \cap$  $(\operatorname{rint} G_1 \cup \operatorname{rint} G_2) = \emptyset$ . Indeed, if F contained a point  $u \in \operatorname{rint} G_i$ , then the triangle  $G_i \cap \operatorname{Conv}\{x, u, y\}$  would lie in  $K \cap P_i$ , in contradiction with  $K \cap P_i = h_i$ . Hence F lies in the closed slab between  $N_1$  and  $N_2$ . Since a 2-dimensional cone containing the segment [x, y] and lying in bd K cannot be embedded between  $N_1$ and  $N_2$ , the face F is not 2-dimensional. So, F is a halfline parallel to l. Then rec Kcontains a halfline h with apex o which is parallel to l. In this case, the halflines  $h'_1 = z_1 + h$  and  $h'_2 = z_2 + h$  satisfy the inclusions  $h'_1 \subset K \cap P_1$  and  $h'_2 \subset K \cap P_2$ . Hence  $h'_1 = h_1$  and  $h'_2 = h_2$ , implying that  $h_1$  and  $h_2$  are parallel. The last is in contradiction with the choice of  $h_1$  and  $h_2$ . Therefore l is sharp for K.

By condition 3), there is a plane H satisfying the equality (10). Hence the set  $h_1 \cup h_2 = S_l(K) \cap (P_1 \cup P_2)$  lies in H, contrary to our assumption.

Our final step in the proof of Proposition 4.2 (see Assertion 4.10) uses the following elementary statement.

**Assertion 4.9.** A family  $\mathcal{R}$  of lines in  $\mathbb{R}^3$  has the property that any two lines from  $\mathcal{R}$  belong to a plane if and only if either of the following assertions holds: (i) all lines from  $\mathcal{R}$  lie in the same plane, (ii) any two lines from  $\mathcal{R}$  are parallel, (iii) all lines from  $\mathcal{R}$  have a common point.

Assertion 4.10. K is a convex cone.

**Proof.** Denote by  $\mathcal{H}$  the family of exposed halflines of K and by  $\mathcal{R}$  the family of lines containing the halflines from  $\mathcal{H}$ . Let H and R be the unions of the halflines from  $\mathcal{H}$  and the lines from  $\mathcal{R}$ , respectively. Due to Assertion 4.8,  $\mathcal{R}$  satisfies one of conditions (i)-(iii) from Assertion 4.9 and

$$K = \operatorname{cl}\left(\operatorname{Conv} H\right). \tag{15}$$

We claim that  $\mathcal{R}$  satisfies condition (*iii*). Indeed, assuming that (*i*) holds and denoting by P the plane containing all lines from  $\mathcal{R}$ , we would obtain from (15) the inclusion  $K \subset P$ , which is impossible. Assume for a moment that  $\mathcal{R}$  satisfies condition (*ii*). Then (15) implies that K lies within the convex solid cylinder  $D = \operatorname{cl}(\operatorname{Conv} R)$ . Since K is line-free, any two halflines from  $\mathcal{H}$  are translates of each other. Choose a point  $z \in \operatorname{int} D \setminus K$  and denote by h the halfline with apex z which is a translate of any given halfline from  $\mathcal{H}$ . Then the point of intersection of h and bd K does not belong to a halfline which lies in bd K, contradicting Assertion 4.7.

So,  $\mathcal{R}$  satisfies condition (*iii*) from Assertion 4.9. Denote by p the common point of all lines from  $\mathcal{R}$ . We claim that no halfline from  $\mathcal{H}$  contains p in its relative interior. Indeed, assume for a moment that p is a relatively interior point of a halfline  $h_1 \in \mathcal{H}$ . Choose a halfline  $h_2 \in \mathcal{H} \setminus \{h_1\}$  and denote by  $P_2$  a plane such that  $K \cap P_2 = h_2$ . From  $p \in \operatorname{rint} h_1 \subset K$  we conclude that  $P_2$  should contain  $h_1$ . Hence  $h_1 \subset K \cap P_2 = h_2$ . Then  $h_1 = h_2$  because  $h_1$  is an exposed halfline. The latter is in contradiction with the choice of  $h_2$ .

Next, we state that  $p \in K$ . Indeed, assuming the opposite, choose a halfline h with apex p which intersects int K. If u is the point of intersection of h and  $\operatorname{bd} K$ , then u does not belong to any halfline from  $\mathcal{H}$ , in contradiction with Assertion 4.7. Hence p is a common endpoint of all halflines from  $\mathcal{H}$ , which implies that K is a cone with apex p.

Let n > 3. We continue the proof of  $3 \implies 4$  assuming that it holds for all  $m \le n-1$ , where  $n \ge 4$ . Let K be a convex solid in  $\mathbb{R}^n$  that satisfies condition 3). First, we eliminate the trivial cases when either every 1-dimensional subspace of  $\mathbb{R}^n$  is recessional for K or every shadow-boundary  $S_l(K)$  is empty. This occurs precisely when K is either a halfspace or a slab (see Lemma 3.1), with bd K being a degenerate convex quadric. So, we assume that K is neither a halfspace nor a slab. This gives dim (lin K)  $\leq n - 2$ . Since the union of all ordinary hyperspaces of K is dense in  $\mathbb{R}^n \setminus (\operatorname{rec} K \cup (-\operatorname{rec} K))$ , Lemma 3.2 implies that the union of all 1-dimensional sharp for K subspaces also is dense in  $\mathbb{R}^n \setminus (\operatorname{rec} K \cup (-\operatorname{rec} K))$ .

Next, consider the case  $\lim K \neq \{o\}$ . Choose a subspace  $L \subset \mathbb{R}^n$  which is complementary to  $\lim K$  and write  $K = \lim K \oplus M$ , where  $M = K \cap L$  is a line-free closed convex set. Clearly,  $\dim L = n - \dim(\lim K) \geq 2$ . Let  $l \subset L$  be a 1dimensional subspace which is sharp for M. From  $K = \lim K \oplus M$  it follows that l is also sharp for K. By condition 3), there is a hyperplane H intersecting K + land satisfying the equality (10). From  $S_l(K) = \lim K \oplus S_l(M)$  it follows that Hcontains a plane which is a translate of  $\lim K$ . Therefore,  $L \not\subset H$  (since otherwise  $\mathbb{R}^n = \lim K \oplus L \subset H$ ). Hence  $G = H \cap L$  is a plane of dimension  $\dim L - 1$ . Furthermore,  $G \cap \operatorname{rbd}(M+l) = S_l(M)$ . Indeed, assuming the existence of a point

$$x \in [(G \cap \operatorname{rbd} (M+l)) \setminus S_l(M)] \cup [S_l(M) \setminus (G \cap \operatorname{rbd} (M+l))],$$

we would obtain

$$x \in [(H \cap \operatorname{bd} (K+l)) \setminus S_l(K)] \cup [S_l(K) \setminus (H \cap \operatorname{bd} (K+l))],$$

in contradiction with (10). Hence M satisfies condition 3) within L. Since  $\lim M = \{o\}$ , the inductive assumption implies that M is either a 2-dimensional line-free closed convex set (if m = 2), or a 3-dimensional line-free closed convex cone (if m = 3), or rbd M is a line-free convex quadric (if  $m \ge 3$ ). Therefore  $K = \lim K \oplus M$  has one of the shapes a)-c).

Finally, consider the case  $\lim K = \{o\}$  (so that K is line-free). Translating K on a suitable vector, we may suppose that  $o \in \inf K$ . Choose an ordinary hypersubspace G that lies in  $\mathbb{R}^n \setminus (\operatorname{rec} K \cup (-\operatorname{rec} K)) \cup \{o\}$  and a 1-dimensional subspace  $l \subset G$  which is sharp for K (see Lemma 3.2). By condition 3), there is a hyperplane H intersecting K+l and satisfying the equality (10). Then H meets  $\operatorname{bd}(K+l)$  because K is line-free, and Lemma 3.4 implies that H is not parallel to l. Hence  $H \cap G$  is an (n-2)-dimensional plane in G and

$$(G \cap H) \cap \operatorname{rbd} (G \cap K + l) = (G \cap H) \cap \operatorname{bd} (K + l)$$
$$= G \cap S_l(K) = S_l(G \cap K).$$

Therefore the (n-1)-dimensional compact convex set  $G \cap K$  satisfies condition 3) within the hypersubspace G. By the inductive assumption,  $G \cap \operatorname{bd} K$  is an (n-1)dimensional ellipsoid. Since any hypersubspace  $G' \subset \mathbb{R}^n \setminus (\operatorname{rec} K \cup (-\operatorname{rec} K)) \cup$  $\{o\}$  can be expressed as the limit of a sequence of ordinary for K hypersubspaces  $G_1, G_2, \ldots$  from  $\mathbb{R}^n \setminus (\operatorname{rec} K \cup (-\operatorname{rec} K)) \cup \{o\}$ , and since  $G_i \cap \operatorname{bd} K$  tends to  $G' \cap \operatorname{bd} K$ when  $i \to \infty$ , we conclude that  $G' \cap \operatorname{bd} K$  is an (n-1)-dimensional ellipsoid. By Theorem 2 from [17], the set  $\operatorname{bd} K \setminus (-\operatorname{rec} K)$  is a piece of a convex quadric (see the picture below).



Continuously translating K such that o tends to  $\operatorname{bd} K$  within  $-\operatorname{rec} K$ , we conclude that the whole hypersurface  $\operatorname{bd} K$  is a convex quadric.

#### 5. Proof of Corollary 2.4

 $1) \Rightarrow 2$ ). Let a 1-dimensional non-recessional for K subspace l and a hyperplane H satisfy condition 1) of the corollary. If l and H are parallel, then Lemma 3.3 implies that dim (lin K) = n-2 and K is the direct sum of lin K and a 2-dimensional unbounded line-free closed convex set M. Suppose that l and H are not parallel for any choice of a 1-dimensional non-recessional for K subspace l. Then, according to Lemma 3.4, (2)  $\Leftrightarrow$  (10); whence K has one of the shapes a)-c from Theorem 2.1. It remains to show that K has one of the shapes a), b', and c'. Since case a trivially holds and the proof of case c' is similar to that of b', we will consider case b' only.

b'). Let  $K = \lim K \oplus M$ , where M is a 2-dimensional line-free closed convex set. Denote by L the plane containing M. Assume for a moment that M is bounded and not strictly convex. Choose a line segment  $[x, z] \subset \operatorname{rbd} M$ . Denote by l the 1-dimensional subspace parallel to [x, z] and by  $l_1, l_2 \subset L$  the lines which are parallel to l and properly support M. Then the set  $S_l(M) = (M \cap l_1) \cup (M \cap l_2)$  does not lie on a line. Since l and H are not parallel, the set  $H \cap L$  is a line, which cannot contain  $S_l(M)$ . Therefore  $S_l(K) = \lim K \oplus S_l(M)$  does not contain  $S_l(K) = \lim K \oplus S_l(M)$ , in contradiction with condition 1). Hence M must be strictly convex.

 $(2) \Rightarrow 1$ ). Let *l* be a 1-dimensional non-recessional for *K* subspace. Condition 2) of the corollary implies that *l* is sharp for *K*. Therefore Theorem 2.1 gives the existence of a hyperplane *H* such that (10) holds. In particular,  $S_l(K) \subset H$ .

Acknowledgements. The author thanks the referee for many helpful comments on an earlier draft of the paper.

#### References

- A. D. Alexandrov: On convex surfaces with plane shadow-boundaries, Mat. Sb. 5 (1939) 309–316 (in Russian).
- [2] D. Amir: Characterizations of Inner Product Spaces, Birkhäuser, Basel (1986).
- [3] W. Blaschke: Räumliche Variationsprobleme mit symmetrischer Transversalitätsbedingung, Leipz. Ber. 68 (1916) 50–55.
- [4] W. Blaschke: Kreis und Kugel, Viet, Leipzig (1916).

- [5] T. Bonnesen, W. Fenchel: Theorie der konvexen Körper, Springer, Berlin (1934); Engl. transl.: Theory of Convex Bodies, BCS Associates, Moscow, USA (1987).
- [6] H. Busemann: The Geometry of Geodesics, Academic Press, New York (1955).
- [7] P. M. Gruber: Über kennzeichnende Eigenschaften von euklidischen Räumen und Ellipsoiden. III, Monatsh. Math. 78 (1974) 311–340.
- [8] E. Heil, H. Martini: Special convex bodies, in: Handbook of Convex Geometry, Vol. A, P. M. Gruber et al. (ed.), North-Holland, Amsterdam (1993) 347–385.
- [9] V. L. Klee: Extremal structure of convex sets, Arch. Math. 8 (1957) 234–240.
- [10] D. G. Larman, C. A. Rogers: Increasing paths on the one-skeleton of a convex body and the directions of line segments on the boundary of a convex body, Proc. Lond. Math. Soc., III. Ser. 23 (1971) 683–694.
- [11] E. Makai, V. Soltan: Lower bounds on the numbers of shadow-boundaries and illuminated regions of a convex body, in: Intuitive Geometry (Szeged, 1991), K. Böröczky et al. (ed.), Colloq. Math. Soc. János Bolyai 63, North-Holland, Amsterdam (1994) 249-268.
- [12] A. Marchaud: Un théorème sur les corps convexes, Ann. Sci. Éc. Norm. Supér., III. Sér. 76 (1959) 283–304.
- [13] H. Martini: Shadow-boundaries of convex bodies, Discrete Math. 155 (1996) 161–172.
- [14] H. Martini, V. Soltan: Combinatorial problems on the illumination of convex bodies, Aequationes Math. 57 (1999) 121–152.
- [15] C. M. Petty: Ellipsoids, in: Convexity and its Applications, P. M. Gruber et al. (ed.), Birkhäuser, Basel (1983) 264–276.
- [16] V. Soltan: Convex solids with planar midsurfaces, Proc. Amer. Math. Soc. 136 (2008) 1071–1081.
- [17] V. Soltan: Convex solids with planar homothetic sections through given points, J. Convex Analysis 16 (2009) 473–486.
- [18] V. Soltan: Convex quadrics, Bul. Acad. Ştiinţe Repub. Mold. Mat. 3 (2010) 94–106.
- [19] V. Soltan: Convex solids with hyperplanar midsurfaces for restricted families of chords, Bul. Acad. Ştiinţe Repub. Mold. Mat. 2 (2011) 23–40.
- [20] R. J. Webster: Convexity, Oxford University Press, Oxford (1994).