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1. Introduction

Various characterizations of solid ellipsoids among convex bodies in R
n form an

established topic of convex geometry (see Bonnesen and Fenchel [5, § 70], Heil and
Martini [8], Petty [15]). One of the best known, due to various applications (see, e.g.,
Amir [2]), is a characterization of solid ellipsoids as convex bodies with hyperplanar
shadow-boundaries. We need some definitions to describe the existing results in
this field.

In what follows, by a convex solid we mean a closed convex set K ⊂ R
n, n ≥

2, with nonempty interior which is distinct from the entire space (convex bodies

are compact convex solids). As usual, bdK and intK denote, respectively, the
boundary and interior of K. Similarly, rbdM and rintM denote, respectively, the
relative boundary and relative interior of a closed convex set M ⊂ R

n of some
intermediate dimension.

If l ⊂ R
n is a line, then the shadow-boundary of K with respect to l, denoted

Sl(K), is the set of points in bdK at which the lines parallel to l support K.
This terminology comes from the concept of illumination of K by a family of rays
which are parallel to a given direction (see, e.g., the surveys of Martini [13] and
Martini and Soltan [14]). Since any two parallel lines determine the same shadow-
boundary of K, we consider, in what follows, the shadow-boundaries generated by
1-dimensional subspaces of Rn. If l is a 1-dimensional subspace of Rn, then

Sl(K) = bdK ∩ bd (K+ l), (1)
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where K+ l is the vector sum of K and l (equivalently, K+ l is the union of all
translates of l that intersect K).

Blaschke ([3] and [4, p. 157–159]) proved that a strictly convex body K ⊂ R
3 with

regular boundary is a solid ellipsoid if any shadow-boundary of K is a plane curve.
Alexandrov [1] obtained a far-reaching local version of Blaschke’s assertion, which
characterizes pieces of convex quadrics or conic surfaces in R

3 (see Lemma 4.1
below). Refining Blaschke’s argument, Busemann [6, p. 93] showed that a convex
body K ⊂ R

n, n ≥ 3, is a solid ellipsoid if for any shadow-boundary Sl(K) of K
there is a hyperplane H ⊂ R

n such that

Sl(K) ⊂ H. (2)

Marchaud [12] (for n = 3) and Gruber [7] (for all n ≥ 3) proved (with some
additional restrictions on l) that a convex body K ⊂ R

n is a solid ellipsoid provided
for any 1-dimensional subspace l ⊂ R

n there is a hyperplane H which is not parallel
to l and satisfies the inclusion

H ∩ bd (K+ l) ⊂ Sl(K). (3)

We observe here that a similar condition, with H ∩ bdK ⊂ Sl(K) instead of (3),
does not characterize ellipsoids: for example, if K ⊂ R

n is a convex polytope, then
for any edge e of K that lies in Sl(K) there is a hyperplane H which is not parallel
to l and has the property H ∩ bdK = e. (In this regard, Marchaud’s condition on
page 36 of [12] which involves plane sections of bdK, and not of bd (K+ l), should
be treated with caution.)

Our goal here is to describe all convex solids in R
n whose shadow-boundaries satisfy

one of the conditions (2) and (3). The motivation for this comes from the fact that
ellipsoids are particular cases of convex quadric hypersurfaces in R

n, which satisfy
both conditions (2) and (3) (see Lemma 3.6 below).

We recall that a convex hypersurface (surface if n = 3 or curve if n = 2) is the
boundary of a convex solid in R

n. This definition includes a hyperplane and a pair of
parallel hyperplanes. In a standard way, a quadric (or a second degree hypersurface)
in R

n is the locus of points x = (ξ1, . . . , ξn) that satisfy a quadratic equation

F (ξ1, . . . , ξn) ≡
n

∑

i,k=1

aikξiξk + 2
n

∑

i=1

biξi + c = 0, (4)

where not all scalars aik are zero. We say that a convex hypersurface C ⊂ R
n is a

convex quadric provided there is a real quadric Q ⊂ R
n and a connected component

U of Rn \Q such that U is convex and C = bdU .

As shown in [18], a convex hypersurface C ⊂ R
n is a convex quadric if and only if

there is an orthonormal basis e1, . . . , en for R
n such that C is the locus of points
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x = (ξ1, . . . , ξn) given by one of the conditions

a1ξ
2
1 + · · ·+ akξ

2
k = 1, 1 ≤ k ≤ n, (5)

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 1, ξ1 ≥ 0, 2 ≤ k ≤ n, (6)

a1ξ
2
1 = 0, (7)

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 0, ξ1 ≥ 0, 2 ≤ k ≤ n, (8)

a1ξ
2
1 + · · ·+ ak−1ξ

2
k−1 = ξk, 2 ≤ k ≤ n, (9)

where all scalars ai involved are positive. Various characteristic properties of convex
quadrics are given in [16]–[19].

We recall that the recession cone of a convex solid K ⊂ R
n is given by

recK = {e ∈ R
n : x+ λe ∈ K whenever x ∈ K and λ ≥ 0}.

It is known that recK is a closed convex cone with apex o (the origin of Rn), and
recK 6= {o} if and only if K is unbounded (see, e.g., [20] for general properties of
convex sets). Furthermore, recK is the union of all halflines h with apex o such
that x + h ⊂ K for any given x ∈ K. The subspace linK = recK ∩ (−recK) is
called the linearity space of K. Clearly, (i) K is line-free (that is, does not contain
a line) if and only if linK = {o}, (ii) linK is an (n − 1)-dimensional subspace if
and only if K is either a halfspace of a slab (that is, a closed solid bounded by a
pair of distinct parallel hyperplanes). Given a subspace L ⊂ R

n complementary to
linK (put L = R

n if linK = {o}), the solid K can be expressed as the direct sum
K = linK⊕ (K ∩L), where K ∩L is a line-free closed convex set. (The sum of sets
K and M is called direct, denoted K ⊕M , provided K and M lie, respectively, in
complementary subspaces of Rn.)

We distinguish two special types of directions and respective shadow-boundaries:
non-recessional and sharp. While non-recessional directions are useful in describing
non-empty shadow-boundaries, sharp directions allow refinements of the existing
results even for the case of convex bodies. A 1-dimensional subspace l is called
recessional for the convex solid K if l ⊂ recK ∪ (−recK); otherwise, l is called
non-recessional, as well as the respective shadow-boundary Sl(K). The solid K has
non-recessional subspaces if and only if K is not a halfspace (see Lemma 3.1). The
1-dimensional non-recessional for K subspace l is called sharp if every line which
is parallel to l and supports K has precisely one point in common with K; the
respective shadow-boundary Sl(K) is also called sharp (see [11] for the number of
sharp shadow-boundaries of a convex solid).

2. Main Results

Theorem 2.1. Given a convex solid K ⊂ R
n, n ≥ 2, the following conditions are

equivalent.

1) For any 1-dimensional subspace l ⊂ R
n, there is a hyperplane H ⊂ R

n which

intersects K+ l such that the inclusion (3) holds.

2) For any 1-dimensional non-recessional for K subspace l ⊂ R
n, there is a

hyperplane H ⊂ R
n which intersects K+ l such that the inclusion (3) holds.
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3) For any 1-dimensional sharp for K subspace l ⊂ R
n, there is a hyperplane

H ⊂ R
n such that

H ∩ bd (K+ l) = Sl(K). (10)

4) K has one of the following shapes:

a) bdK is a convex quadric,

b) dim (linK) = n−2, and K is the direct sum of linK and a 2-dimensional

line-free closed convex set,

c) dim (linK) = n−3, and K is the direct sum of linK and a 3-dimensional

line-free closed convex cone.

Remark 2.2. As follows from the proof of Theorem 2.1, condition 3) can be
slightly relaxed by replacing the family of all sharp for K subspaces with a dense
subset of this family. Furthermore, the shapes a)–c) in condition 4) are not mu-
tually exclusive: a cylinder based on a 2-dimensional line-free convex quadric is a
particular case of b), and a cylinder based on a sheet of a 3-dimensional elliptic cone
is a particular case of c). Obviously, the shape c) occurs only if n ≥ 3.

Corollary 2.3. Given a line-free convex solid K ⊂ R
n, n ≥ 3, the following con-

ditions are equivalent.

1) Each sharp shadow-boundary of K lies in a hyperplane H.

2) bdK is a convex quadric (additionally, K may be a convex cone if n = 3).

In particular, a convex body K ⊂ R
n is a solid ellipsoid if and only if each sharp

shadow-boundary of K lies in a hyperplane.

A convex solid K ⊂ R
n distinct from a cone is called strictly convex provided its

boundary contains no line segment; an n-dimensional closed convex cone K ⊂ R
n

is strictly convex provided it has a unique apex, say, p such that any line segment
in bdK belongs to a line through p.

Corollary 2.4. Given a convex solid K ⊂ R
n, n ≥ 2, the following conditions are

equivalent.

1) For any 1-dimensional non-recessional for K subspace l ⊂ R
n, there is a

hyperplane H ⊂ R
n that satisfies the inclusion (2).

2) K has one of the following shapes:

a) bdK is a convex quadric,

b′) dim (linK) = n−2, and K is the direct sum of linK and a 2-dimensional

line-free closed convex set which is either unbounded or bounded and strictly

convex,

c′) dim (linK) = n−3, and K is the direct sum of linK and a 3-dimensional

line-free closed strictly convex cone.

3. Auxiliary Lemmas

We say that a plane P ⊂ R
n (of certain dimension m) properly supports a closed

convex set M ⊂ R
n provided P meets the relative boundary, rbdM , of M and is
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disjoint from its relative interior, rintM . Furthermore, P is parallel to a line l ⊂ R
n

if a translate of l lies in P .

Lemma 3.1. A convex solid K ⊂ R
n has 1-dimensional non-recessional subspaces

if and only if K is not a halfspace. If K is not a halfspace and l ⊂ R
n is a 1-

dimensional non-recessional subspace for K, then Sl(K) 6= ? if and only if K is

not a slab.

Proof. The first assertion immediately follows from the fact that K is a closed
halfspace of Rn if and only if recK ∪ (−recK) = R

n. Assume that K is not a
halfspace and choose a 1-dimensional non-recessional for K subspace l. If K is a
slab, then l is not parallel to the boundary hyperplanes ofK, which givesK+l = R

n

and
Sl(K) = bdK ∩ bd (K+ l) ⊂ bd (K+ l) = bdRn = ?.

Conversely, letK be neither a halfspace nor a slab. Then dim (linK)≤ n−2 because
halfspaces and slabs are the only convex solids in R

n with (n − 1)-dimensional
linearity spaces. Due to l ∩ recK = {o}, there is a subspace L ⊂ R

n containing l

and complementary to linK (put L = R
n if linK = {o}). Then

dimL = n− dim (linK) ≥ 2 and K = linK ⊕ (K ∩ L),

where K ∩ L is a line-free closed convex set. Obviously, L meets intK. Choose a
point x ∈ (L\l)∩ intK and consider the 2-dimensional subspace E = span ({x}∪l).
Denote by l′ the line through x which is parallel to l. Since rec (E∩K) = E∩recK,
the subspace l is non-recessional for E∩K. Therefore (E∩K)∩ l′ is a line segment,
and at least one of the closed halfplanes of E determined by l′ meets E ∩K along a
bounded set (otherwise E ∩K would be a slab of E between a pair of parallel lines,
which is impossible because E ∩K is line-free as a section of K ∩L). Continuously
translating l′ within this halfplane, we find a line l′′ ⊂ E that is parallel to l′ and
properly supports E ∩K. Hence l′′ properly supports K ∩ L. The equalities

bdK = linK ⊕ rbd (K ∩ L) and intK = linK ⊕ rint (K ∩ L)

imply that l′′ supports K, which gives Sl(K) 6= ?.

Given a convex solid K ⊂ R
n, a hypersubspace L ⊂ R

n (that is, a subspace of
dimension n−1) is called ordinary if there is a translate of L that supportsK and no
translate of L supports K along an (n−1)-dimensional set. From the standard facts
of Convex Analysis it follows that K ⊂ R

n has ordinary hypersubspaces provided
it is neither a halfspace nor a slab. Since any convex solid has at most countably
many (n− 1)-dimensional faces, the union of all ordinary for K hypersubspaces is
dense in R

n \ (recK ∪ (−recK)) provided K is neither a halfspace nor a slab.

Lemma 3.2. If K ⊂ R
n is a convex solid, which is neither a halfspace nor a slab,

and L is an ordinary for K hypersubspace, then the union of all 1-dimensional

sharp for K subspaces l ⊂ L is dense in L \ (recK ∪ (−recK)).

Proof. Translating K on a suitable vector, we may suppose that L supports K

such that o ∈ K ∩ L. By the assumption, dim (K ∩ L) ≤ n − 2. The solid K
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can be expressed as the union of an increasing sequence of convex bodies K ∩ Br,
r = 1, 2, . . . , where Br is the closed ball of radius r centered at o. Clearly, L is
ordinary for each body K ∩ Br. As proved in [10], the set Er of unit vectors in
L which span all 1-dimensional non-sharp for K ∩ Br subspaces has zero (n − 2)-
dimensional Hausdorff measure. Since recK ∪ (−recK) is the union of two closed
convex cones with common apex o, each set Er \ (recK ∪ (−recK)), r ≥ 1, also
has zero (n− 2)-dimensional Hausdorff measure. Put

E = (E1 ∪ E2 ∪ . . . ) \ (recK ∪ (−recK)), F = L ∩ Sn−1,

where Sn−1 is the unit sphere of Rn. Then E is the set of unit vectors in F \
(recK ∪ (−recK)) which span all 1-dimensional non-recessional and non-sharp for
K subspaces. By the above, E has zero (n − 2)-dimensional Hausdorff measure.
Hence the complement of E in F \(recK∪(−recK)), which is the set of unit vectors
that span all 1-dimensional sharp forK spaces, is dense in F \(recK∪(−recK)).

The following lemma describes the case when a 1-dimensional subspace l and a
hyperplane H that satisfy one of the conditions (2) and (10) are parallel.

Lemma 3.3. Given a convex solid K ⊂ R
n which is neither a halfspace nor a slab,

the following conditions are equivalent.

1) There is a 1-dimensional sharp for K subspace l ⊂ R
n and a hyperplane

H ⊂ R
n such that l and H are parallel and satisfy the equality (10).

2) There is a 1-dimensional non-recessional for K subspace l ⊂ R
n and a hy-

perplane H ⊂ R
n such that l and H are parallel and satisfy the inclusion

(2).

3) dim (linK) = n − 2, and K is the direct sum of linK and a 2-dimensional

unbounded line-free closed convex set.

Proof. Since 1) trivially implies 2), we proceed with 2) ⇒ 3). By Lemma 3.1,
Sl(K) 6= ? and dim (linK) ≤ n − 2. Write K = linK ⊕ (K ∩ L), where L is a
subspace containing l and complementary to linK. Choose a proper translate H1

of H which meets intK. We state that K ∩H1 is a slab of H1. Indeed, we observe
that l is non-recessional for K ∩H1 because of

l ∩ rec (K ∩H1) ⊂ l ∩ recK = {o},

which implies that K∩H1 is not a halfplane of H1. Since H1 contains no line which
is parallel to l and supports K (due to the assumption, all such lines are in H),
Lemma 3.1 (withH1 instead of Rn) gives thatK∩H1 must be a slab ofH1. Therefore
K ∩H1 contains an (n− 2)-dimensional plane. Hence dim (lin (K ∩H1)) = n− 2.
This equality and dim (linK) ≤ n− 2 imply that dim (linK) = n− 2, and whence
dimL = n− dim (linK) = 2. Furthermore, a suitable translate of linK lies in H.

Repeating the argument above for H (instead of H1), we obtain that H supports
K, since otherwise K ∩ H would be a slab of H and each line in H which is
parallel to l would meet intK, contradicting the assumption ? 6= Sl(K) ⊂ H.
Clearly, H = linK⊕ (H ∩L), and the line H ∩L (which is a translate of l) properly
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supports K∩L. We state that K∩L is unbounded. Indeed, if K∩L were bounded,
L \ H would contain another translate of l properly supporting K ∩ L (and thus
supporting K), in contradiction with Sl(K) ⊂ H.

3) ⇒ 1). Choose any 1-dimensional sharp for K subspace l. As above, let K =
linK⊕(K∩L), where L is a subspace containing l and complementary to linK. We
have dimL = n−dim (linK) = 2. Because l is sharp for the line-free unbounded set
K∩L, there is a translate l′ ⊂ L of l that properly supports K∩L along a singleton
(see the proof of Lemma 3.1). Furthermore, l′ ∩ rbd (K ∩L+ l) = Sl(K ∩L), since
otherwise K ∩L would be bounded and poses another support line which is parallel
to l. Put H = linK ⊕ l′. Then H is a hyperplane supporting K such that

H ∩ bd (K+ l) = (linK ⊕ l′) ∩ (linK ⊕ rbd (K ∩ L+ l))

= linK ⊕ (l′ ∩ rbd (K ∩ L+ l))

= linK ⊕ Sl(K ∩ L) = Sl(K).

The next lemma describes some relations between the conditions (2), (3), and (10);
obviously, (10) ⇒ (2) and (10) ⇒ (3).

Lemma 3.4. Let K ⊂ R
n be a convex solid which is neither a halfspace nor a slab,

l ⊂ R
n a 1-dimensional non-recessional for K subspace, and H ⊂ R

n a hyperplane.

The following assertions hold.

1) If H intersects bd (K+ l) such that (3) holds, then l and H are not parallel.

2) If l and H are not parallel, then (2) ⇔ (10). Furthermore, if (2) holds, then
l is sharp for K.

3) If l and H are not parallel and l is sharp for K, then (2) ⇔ (3) ⇔ (10).

Proof. 1). Let H intersect bd (K+ l) such that (3) holds. Assume for a moment
that H is parallel to l. Then H∩bd (K+ l) and, subsequently, Sl(K) contains a line
l′ which is a translate of l. From (1) we obtain l′ ⊂ bdK. In this case, l ⊂ linK,
contradicting the assumption on l. Hence H cannot be parallel to l.

2). Since (10) ⇒ (2) trivially holds, it remains to show that (2) ⇒ (10). Because
of

Sl(K) = Sl(K) ∩ bd (K+ l) ⊂ H ∩ bd (K+ l),

one has to prove the opposite inclusion. Choose a point x ∈ H ∩ bd (K+ l). We
state that the line x + l intersects bdK. Indeed, suppose for a moment that x + l

and bdK are disjoint. From x + l ⊂ bd (K+ l) it follows that x + l is asymptotic
for K. In this case, l is recessional for K, contradicting the assumption on l. Hence
bdK ∩ (x+ l) 6= ?. If z ∈ bdK ∩ (x+ l), then

z ∈ bdK ∩ bd (K+ l) = Sl(K) ⊂ H.

Hence z ∈ H ∩ (x + l) = {x}, giving x = z ∈ Sl(K). Therefore (10) holds.
Furthermore, since any line l′ that supports K and is parallel to l can be expressed
as l′ = u + l, where u ∈ l′ ∩ H, the argument above shows that l′ ∩ bdK is a
singleton. Hence l is sharp for K.
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3). By the facts proved above, it suffices to show that (3) ⇒ (2). Let x be a point
in Sl(K). Then the line x+ l supports K and lies in bd (K+ l). Since H and l are
not parallel, x+ l intersects H at a single point u. Due to (3),

u ∈ H ∩ (x+ l) ⊂ H ∩ bd (K+ l) ⊂ Sl(K).

Since l is sharp for K, we have x = u ∈ H, which implies (2).

Remark 3.5. We observe that (3) 6⇒ (2) and (3) 6⇒ (10) if l is not sharp for
K. Indeed, if K is a square in the coordinate plane, whose base lies on the x-axis
and l is the y-axis, then Sl(K) is the union of two vertical sides of K, while the
intersection of bd (K+ l) with any non-vertical line H consists of two points.

Lemma 3.6. Let K ⊂ R
n be a convex solid distinct from a halfspace or a slab such

that bdK a convex quadric, and l ⊂ R
n a 1-dimensional non-recessional for K

subspace. Then l is sharp for K and there is a hyperplane H ⊂ R
n which is not

parallel to l and satisfies the equality (10).

Proof. Let bdK be as described by (4). By Lemma 3.1, there is a line l′ which
is parallel to l and supports bdK. Write l′ = {u + tv ∈ R

n : t ∈ R}, where
u ∈ l′ ∩ bdK and v is a unit vector of l. Equivalently, x = (ξ1, . . . , ξn) belongs to l′

if and only if
ξi = ui + tvi, t ∈ R, i = 1, . . . , n,

where u = (u1, . . . , un) and v = (v1, . . . , vn). To determine the values of t for which
x ∈ l′ ∩ bdK, we substitute ξi = ui + tvi into (4). This results in a quadratic
equation

A(v) t2 + 2B(u, v) t+ C(u) = 0, (11)

where

A(v) =
n
∑

i,k=1

aikvivk, B(u, v) =
n
∑

i=1

(

n
∑

k=1

aikuk + bi

)

vi,

C(u) = F (u1, . . . , un).

Because (11) has at most two solutions, which correspond to the points of l′∩bdK,
the convex set l′ ∩ bdK must be a singleton, {u}. Hence l is sharp for K.

Since l is non-recessional for K, there is a translate l1 of l that meets intK such
that l1 ∩K is a line segment [a, c]. Writing l1 = {u1 + tv ∈ R

n : t ∈ R}, where u1 is
any given point of l1, we obtain that a and c correspond to two distinct solutions
for the equation

A(v) t2 + 2B(u1, v) t+ C(u1) = 0,

which gives A(v) 6= 0. Because (11) has precisely one solution, t = 0, we have

B(u, v) ≡
n
∑

i=1

(

n
∑

k=1

aikuk + bi

)

vi = 0.

Equivalently,
n
∑

k=1

(

n
∑

i=1

aikvi

)

uk +
n
∑

i=1

bivi = 0. (12)
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Interpreted as an equation in u1, . . . , un, (12) describes a hyperplane, H, because
at least one of the scalars

ck =
n
∑

i=1

aikvi, k = 1, . . . , n,

is not zero. Indeed, assuming c1 = · · · = cn = 0, we would obtain

A(v) = c1v1 + · · ·+ cnvn = 0.

If we fix v and vary u as the point of contact of a variable line l′ supporting K,
then (12) shows that u belongs to H. Hence Sl(K) ⊂ H. By Lemma 3.4, l and H

are not parallel and the equality (10) holds.

4. Proof of Theorem 2.1

4) ⇒ 1). Let l be a 1-dimensional subspace of Rn. Write K = linK ⊕ (K ∩ L),
where L is a subspace of Rn complementary to linK (put L = R

n if linK = {o}).
In what follows, we consider separately the following cases:

l ⊂ linK, l ⊂ (recK \ linK) ∪ {o}, l ∩ recK = {o}.

(i). Let l ⊂ linK. Then x + l ⊂ bdK for any point x ∈ bdK, which shows that
Sl(K) = bdK = bd (K+ l). If G is a subspace complementary to l within linK
(put G = {o} if l = linK), then H = G⊕ L is a hyperplane which intersects K+ l

and

H ∩ bd (K+ l) ⊂ bd (K+ l) = Sl(K).

(ii). Let l ⊂ (recK \ linK) ∪ {o}. (a). If bdK is a convex quadric, then the
inclusion l ⊂ (recK \ linK) ∪ {o} implies that bdK has one of the types (6), (8),
(9). In this case, int (K+ l) is either the whole space, an open halfspace, or an open
slab. Choosing a hyperplane H ⊂ int (K+ l), we obtain

H ∩ bd (K+ l) = ? ⊂ Sl(K). (13)

(b). If dimL = 2 and K ∩L is a line-free closed convex set, then rint (K ∩L) + l is
either L, an open halfplane of L, or an open slab of L. If G is a line in rint (K∩L)+l,
then the hyperplane H = linK ⊕G satisfies (13).

(c). If dimL = 3 and K ∩ L is a 3-dimensional line-free closed convex cone, then
rint (K ∩L)+ l is an open halfspace of L. If G is a 2-dimensional plane in rint (K ∩
L) + l, then the hyperplane H = linK ⊕G satisfies (13).

(iii). Let l ∩ recK = {o}. If bdK is a convex quadric, then (3) follows from
Lemma 3.6. Assume that K has one of the shapes (b), (c). Then 2 ≤ dimL ≤
3. From the standard properties of 2-dimensional convex sets (respectively, 3-
dimensional closed convex cones) we conclude the existence of a line G ⊂ L (re-
spectively, of a 2-dimensional plane G ⊂ L) which is not parallel to l and satisfies
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the inclusion G∩ rbd (K ∩L+ l) ⊂ Sl(K ∩L). Then H = linK⊕G is a hyperplane
such that

H ∩ bd (K+ l) = (linK ⊕G) ∩ (linK ⊕ rbd (K ∩ L+ l))

= linK ⊕ (G ∩ rbd (K ∩ L+ l))

⊂ linK ⊕ Sl(K ∩ L) = Sl(K).

Since 1) ⇒ 2) trivially holds and 2) ⇒ 3) due to Lemma 3.4, it remains to show that
3) ⇒ 4). This part is organized by induction on n ≥ 3. The case n = 3 is considered
in Proposition 4.2 below, which involves the following result of Alexandrov [1].

Lemma 4.1 ([1]). Let K ⊂ R
3 be a convex solid and T a non-planar, bounded,

open, and simply connected piece of bdK. If for any shadow-boundary Sl(K) of K
that meets T there is a plane H such that Sl(K) ∩ T ⊂ H, then T is a piece of a

line-free convex quadric or a piece of the boundary of a strictly convex cone.

We note that Lemma 4.1 deals with shadow-boundaries corresponding to all (possi-
bly, non-sharp, or even recessional for K) 1-dimensional subspaces l, and the plane
H is allowed to be parallel to l. Furthermore, Lemma 4.1 refines Alexandrov’s orig-
inal conclusion “T is a piece of a convex quadric or a piece of the boundary of a
convex cone.�

Proposition 4.2. If a convex solid K ⊂ R
3 satisfies condition 3) of Theorem 2.1,

then it has one of the following shapes:

a) bdK is a convex quadric,

b) K is a cylinder based on a 2-dimensional line-free closed convex set,

c) K is a line-free closed convex cone.

Proof. If K contains a line, then K is a cylinder based on a 2-dimensional closed
convex set M . If M contains a line, then K is either a halfplane or a slab between
two parallel planes, implying that bdK is a degenerate convex quadric. If M is
line-free, then K has the shape b).

Assuming that K is line-free, we divide the proof of Proposition 4.2 into a sequence
of assertions.

Assertion 4.3. If bdK contains an open strictly convex piece S, then the whole

surface bdK is a strictly convex quadric.

Proof. Choose a point x ∈ S and a scalar r > 0 such that the set T = Ur(x)∩bdK
lies in S, where Ur(x) is an open ball of radius r > 0 centered at x. Translating K

on −x, we may assume that x = o. Denote by P a 2-dimensional subspace which
supports K at o. Then P ∩K = {o} because T is strictly convex. By Lemma 3.2,
the family F of 1-dimensional sharp for K subspaces is dense in the family of all
1-dimensional subspaces of P . Due to condition 3), each sharp shadow-boundary
Sl(K), l ∈ F , lies in a plane H(l). Because T is strictly convex, the family of planar
arcs Sl(K)∩T , l ∈ F , is dense in the family of all arcs of the form Sl(K)∩T , l ⊂ P .
Therefore each arc Sl(K) ∩ T , l ⊂ P , lies in a plane. Since this argument holds for
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any point z ∈ T , Lemma 4.1 implies that T is a piece of a strictly convex quadric
Q.

Because Q is strictly convex, it is either an ellipsoid, an elliptic paraboloid, or a
sheet of hyperboloid on two sheets. In either case, there is a line m through o which
is the axis of affine symmetry of Q. Applying a suitable linear transformation that
keeps P fixed, we may assume that m is orthogonal to P (clearly, the image of
K under this transformation satisfies condition 3)). Therefore, m is the axis of
symmetry of Q and each plane H(l) contains m. Hence the family of planes H(l),
l ∈ F , is dense in the family of all planes containing m.

Next, we state that K is strictly convex. For contradiction, assume for a moment
the existence of a line segment [u, v] ⊂ K. Then [u, v] should lie in a plane through
m. Suppose that [u, v] and m do not lie in a common plane. By the above, there is a
1-dimensional sharp forK subspace l ∈ F such that the respective planeH(l) meets
the open segment (u, v). This gives the inclusion [u, v] ⊂ Sl(K), in contradiction
with the condition Sl(K) ⊂ H(l).

Denote by M the plane which contains m∪ [u, v]. Choosing a point z ∈ T \M and
repeating the consideration above for z instead of x, we conclude that [u, v] should
lie in a common plane with the axis of affine symmetry of Q that contains z. Since
this is impossible, we obtain a contradiction with the assumption [u, v] ⊂ K. Hence
K is strictly convex.

Finally, cover bdK with countably many pieces of the form T = Ur(x) ∩ bdK.
Since any two overlapping pieces of strictly convex quadrics belong to the same
strictly convex quadric, the whole surface bdK is a strictly convex quadric.

Our further goal is to show that K is a convex cone provided bdK is not a convex
quadric. Let us recall that a subset F of bdK is an exposed face of K provided
F = K ∩ P for a suitable plane P that supports K.

Assertion 4.4. Any 2-dimensional exposed face of K is a convex cone.

Proof. Assume, for contradiction, that K has a 2-dimensional exposed face F

which is distinct from a cone. Denote by P the plane containing F . Translating K

on a suitable vector we may assume that P is a subspace. Choose a unit vector u ∈ P

such that the 1-dimensional subspace l(u) spanned by u is sharp for F (u exists
because the family of line segments in rbdF is at most countable). Then rbdF can
be expressed as the union of two convex arcs γ and γ′ such that γ ∩ γ′ = {p} if F is
unbounded (respectively, γ ∩ γ′ = {p, q} if F is bounded) where {p} (respectively,
{p, q}) is the set of contact of F with the line(s) parallel to l(u) and supporting F .

Because F is not a cone, at least one of the arcs γ, γ′, say, γ does not belong to a
halfline. Denote by Q a closed slab of P which is bounded by a pair of lines l1, l2
both parallel to l(u) and intersecting rintF such that γ ∩Q is not a line segment.
We may assume that namely γ is the part of rbdF illuminated in the direction u

(that is, the halfline {x + λu : λ ≥ 0} intersects rintF for any point x ∈ γ ∩ Q);
otherwise replace u with −u.

Choose a plane N which is parallel to l(u) but not to P and supports K such



602 V. Soltan / Convex Solids with Hyperplanar Shadow-Boundaries

that K ∩ N is a bounded set with dim (K ∩ N) ≤ 1 (if, additionally, there is
another plane N ′ which is parallel to N and supports K, then we also require that
dim (K ∩ N ′) ≤ 1). As above, N exists because the family of 2-dimensional faces
of K parallel to l(u) is at most countable and K is line-free. Furthermore, choose
a unit vector v ∈ R

3 which is parallel to N but not to l(u) such that P separates
v from K. Let N1 and N2 be the planes through l1 and l2, respectively, both
parallel to N . Denote by l′j the line in Nj which is parallel to lj and supports the
2-dimensional compact convex set K ∩ Nj from the opposite to lj side, j = 1, 2.
Also, let V be the closed slab of R3 bounded by N1 and N2.

By Lemma 3.2 and the choice of N , the open interval (0,∞) ⊂ R contains a dense
subset Λ such that every 1-dimensional subspace l(u + εv), ε ∈ Λ, is sharp for K.
Choose in Λ a sequence ε1, ε2, . . . which converges to 0. Each set Sl(u+εiv)(K) ∩ V

is a disjoint union of two curves; one of these curves tends to the non-line curve
γ ∩Q as i → ∞, while the end-points of the second curve approach the sets K ∩ l′1
and K ∩ l′2, respectively. This argument shows that Sl(u+εiv)(K) ∩ V cannot lie in
a plane for a sufficiently large i, in contradiction with condition 3) of the theorem.
Hence F must be a convex cone.

Assertion 4.5. If P1 and P2 are distinct parallel planes both supporting K such

that K ∩ P1 is a cone, then K ∩ P2 is a translate of K ∩ P1.

Proof. Let z1 be the apex of K ∩P1. Then K ∩P1− z1 is a convex cone with apex
o, which lies in recK. Choose a point u ∈ K ∩ P2. From u+ recK ⊂ K it follows
that

(u− z1) +K ∩ P1 ⊂ K ∩ P2. (14)

First, assume that dim (K ∩ P1) = 2. Then (14) shows that dim (K ∩ P2) = 2. By
Assertion 4.4, K ∩ P2 is a convex cone. Denote by z2 the apex of K ∩ P2. By the
argument above,

(z2 − z1) +K ∩ P1 ⊂ K ∩ P2 and (z1 − z2) +K ∩ P2 ⊂ K ∩ P1.

Hence (z2 − z1) +K ∩ P1 = K ∩ P2.

Now, assume that dim (K ∩ P1) = 1. Then K ∩ P1 is a halfline, h1, with endpoint
z1. If K ∩ P2 were 2-dimensional, then, by the facts proved above, K ∩ P1 would
be a translate of K ∩ P2, which is impossible. Hence dim (K ∩ P2) = 1. From (14)
we obtain that K ∩ P2 is a translate of h1.

Assertion 4.6. Any 1-dimensional exposed face of K is a halfline.

Proof. Assume for a moment that K has a 1-dimensional exposed face F which is
not a halfline. Since K is line-free, F is a line segment, [x, z]. We may suppose that
x = o, so that the line l through o and z is a subspace. Choose a 2-dimensional
subspace L with the property L ∩ K = [o, z] and a 2-dimensional subspace M

through l that meets intK. If there is another plane L′ which is parallel to L and
supports K, then, due to Assertions 4.4 and 4.5 above, K ∩L′ should be a point or
a line segment. Denote by F the family of 1-dimensional subspaces from L which
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are sharp for K. From Lemma 3.2 it follows that F is dense in the family of all
1-dimensional subspaces of L.

Choose a plane N which is parallel to L and intersects intK. Due to L∩K = [o, z],
the section K ∩N is bounded (if K ∩N were unbounded and whence contained a
halfline h, thenK∩L would contain a translate of h). Choose a subspace l′ ∈ F\{l}
so close to l that Sl′(K) meets K ∩N at some points x1 and x2 which are strictly
separated by M . By condition 3), there is a plane H ′ that intersects K+ l′ and
satisfies the equality H ′ ∩ bd (K+ l′) = Sl′(K). Due to the construction above,
H ′ should contain the set X = [o, z] ∪ {x1, x2}, which is impossible since X is not
planar. The obtained contradiction shows that F is a halfline.

Assertions 4.3, 4.4, and 4.6 imply the following corollary.

Assertion 4.7. bdK = clC, where C is the union of all exposed halflines and

exposed cones of K.

Assertion 4.8. K is the closed convex hull of its exposed halflines, and any two

such halflines lie in a common plane.

Proof. The first part of Assertion 4.8 immediately follows from Klee [9, Assertion
3.6] and Assertion 4.7 above. Assume, for contradiction, the existence of exposed
halflines h1 and h2 of K whose union h1 ∪ h2 does not lie in a plane. Denote by z1
and z2 the endpoints of h1 and h2, respectively. Choose planes P1 and P2 such that
K ∩ P1 = h1 and K ∩ P2 = h2.

We observe that P1 and P2 are not parallel, since otherwise h1 should be a translate
of h2 (see Assertion 4.5), implying that h1∪h2 lies in a plane. Therefore P1∩P2 is a
line, m. Next, we state that none of the halflines h1 and h2 is parallel to m. Indeed,
assuming that h1 is parallel tom, we would obtain that the halfline h′

1 = (z2−z1)+h1

lies in K ∩ P2, in contradiction with the assumption K ∩ P2 = h2. Denote by gi
the line through zi which is parallel to m, and by Gi the closed halfplane of Pi that
contains hi and is bounded by gi. Let N1 and N2 be parallel planes through g1 and
g2, respectively, such that both N1 and N2 meet intK.

Denote by l the 1-dimensional subspace parallel to m. From the argument above
it follows that Sl(K) ∩ Gi = hi, i = 1, 2, and Sl(K) \ (h1 ∪ h2) lies in the open
slab between N1 and N2. We claim that Sl(K) is sharp. Indeed, assume for a
moment that Sl(K) contains a line segment [x, y] which is parallel to l. Clearly,
[x, y] lies between N1 and N2. Let F be an exposed face of K that contains [x, y].
Due to Assertions 4.4 and 4.5 above, F is a convex cone. We observe that F ∩
(rintG1 ∪ rintG2) = ?. Indeed, if F contained a point u ∈ rintGi, then the
triangle Gi ∩ Conv{x, u, y} would lie in K ∩ Pi, in contradiction with K ∩ Pi = hi.
Hence F lies in the closed slab between N1 and N2. Since a 2-dimensional cone
containing the segment [x, y] and lying in bdK cannot be embedded between N1

and N2, the face F is not 2-dimensional. So, F is a halfline parallel to l. Then recK
contains a halfline h with apex o which is parallel to l. In this case, the halflines
h′

1 = z1 + h and h′

2 = z2 + h satisfy the inclusions h′

1 ⊂ K ∩ P1 and h′

2 ⊂ K ∩ P2.
Hence h′

1 = h1 and h′

2 = h2, implying that h1 and h2 are parallel. The last is in
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contradiction with the choice of h1 and h2. Therefore l is sharp for K.

By condition 3), there is a plane H satisfying the equality (10). Hence the set
h1 ∪ h2 = Sl(K) ∩ (P1 ∪ P2) lies in H, contrary to our assumption.

Our final step in the proof of Proposition 4.2 (see Assertion 4.10) uses the following
elementary statement.

Assertion 4.9. A family R of lines in R
3 has the property that any two lines from

R belong to a plane if and only if either of the following assertions holds: (i) all

lines from R lie in the same plane, (ii) any two lines from R are parallel, (iii) all
lines from R have a common point.

Assertion 4.10. K is a convex cone.

Proof. Denote by H the family of exposed halflines of K and by R the family of
lines containing the halflines from H. Let H and R be the unions of the halflines
from H and the lines from R, respectively. Due to Assertion 4.8, R satisfies one of
conditions (i)–(iii) from Assertion 4.9 and

K = cl (ConvH). (15)

We claim that R satisfies condition (iii). Indeed, assuming that (i) holds and
denoting by P the plane containing all lines from R, we would obtain from (15)
the inclusion K ⊂ P , which is impossible. Assume for a moment that R satisfies
condition (ii). Then (15) implies that K lies within the convex solid cylinder
D = cl (ConvR). SinceK is line-free, any two halflines fromH are translates of each
other. Choose a point z ∈ intD \K and denote by h the halfline with apex z which
is a translate of any given halfline from H. Then the point of intersection of h and
bdK does not belong to a halfline which lies in bdK, contradicting Assertion 4.7.

So, R satisfies condition (iii) from Assertion 4.9. Denote by p the common point
of all lines from R. We claim that no halfline from H contains p in its relative
interior. Indeed, assume for a moment that p is a relatively interior point of a
halfline h1 ∈ H. Choose a halfline h2 ∈ H \ {h1} and denote by P2 a plane such
that K ∩ P2 = h2. From p ∈ rinth1 ⊂ K we conclude that P2 should contain h1.
Hence h1 ⊂ K ∩ P2 = h2. Then h1 = h2 because h1 is an exposed halfline. The
latter is in contradiction with the choice of h2.

Next, we state that p ∈ K. Indeed, assuming the opposite, choose a halfline h with
apex p which intersects intK. If u is the point of intersection of h and bdK, then u

does not belong to any halfline from H, in contradiction with Assertion 4.7. Hence
p is a common endpoint of all halflines from H, which implies that K is a cone with
apex p.

Let n > 3. We continue the proof of 3) ⇒ 4) assuming that it holds for all
m ≤ n− 1, where n ≥ 4. Let K be a convex solid in R

n that satisfies condition 3).

First, we eliminate the trivial cases when either every 1-dimensional subspace of
R

n is recessional for K or every shadow-boundary Sl(K) is empty. This occurs
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precisely when K is either a halfspace or a slab (see Lemma 3.1), with bdK being
a degenerate convex quadric. So, we assume that K is neither a halfspace nor a
slab. This gives dim (linK) ≤ n − 2. Since the union of all ordinary hyperspaces
of K is dense in R

n \ (recK ∪ (−recK)), Lemma 3.2 implies that the union of all
1-dimensional sharp for K subspaces also is dense in R

n \ (recK ∪ (−recK)).

Next, consider the case linK 6= {o}. Choose a subspace L ⊂ R
n which is com-

plementary to linK and write K = linK ⊕ M , where M = K ∩ L is a line-free
closed convex set. Clearly, dimL = n − dim (linK) ≥ 2. Let l ⊂ L be a 1-
dimensional subspace which is sharp for M . From K = linK ⊕M it follows that
l is also sharp for K. By condition 3), there is a hyperplane H intersecting K+ l

and satisfying the equality (10). From Sl(K) = linK ⊕ Sl(M) it follows that H

contains a plane which is a translate of linK. Therefore, L 6⊂ H (since otherwise
R

n = linK ⊕ L ⊂ H). Hence G = H ∩ L is a plane of dimension dimL − 1.
Furthermore, G ∩ rbd (M+ l) = Sl(M). Indeed, assuming the existence of a point

x ∈ [(G ∩ rbd (M+ l)) \ Sl(M)] ∪ [Sl(M) \ (G ∩ rbd (M+ l))],

we would obtain

x ∈ [(H ∩ bd (K+ l)) \ Sl(K)] ∪ [Sl(K) \ (H ∩ bd (K+ l))],

in contradiction with (10). Hence M satisfies condition 3) within L. Since linM =
{o}, the inductive assumption implies that M is either a 2-dimensional line-free
closed convex set (if m = 2), or a 3-dimensional line-free closed convex cone (if
m = 3), or rbdM is a line-free convex quadric (if m ≥ 3). Therefore K = linK⊕M

has one of the shapes a)–c).

Finally, consider the case linK = {o} (so that K is line-free). Translating K on a
suitable vector, we may suppose that o ∈ intK. Choose an ordinary hypersubspace
G that lies in R

n \ (recK ∪ (−recK)) ∪ {o} and a 1-dimensional subspace l ⊂ G

which is sharp for K (see Lemma 3.2). By condition 3), there is a hyperplane H

intersecting K+ l and satisfying the equality (10). Then H meets bd (K+ l) because
K is line-free, and Lemma 3.4 implies that H is not parallel to l. Hence H ∩ G is
an (n− 2)-dimensional plane in G and

(G ∩H) ∩ rbd (G ∩K+ l) = (G ∩H) ∩ bd (K+ l)

= G ∩ Sl(K) = Sl(G ∩K).

Therefore the (n− 1)-dimensional compact convex set G∩K satisfies condition 3)
within the hypersubspace G. By the inductive assumption, G∩ bdK is an (n− 1)-
dimensional ellipsoid. Since any hypersubspace G′ ⊂ R

n \ (recK ∪ (−recK)) ∪
{o} can be expressed as the limit of a sequence of ordinary for K hypersubspaces
G1, G2, . . . from R

n\(recK∪(−recK))∪{o}, and since Gi∩bdK tends to G′∩bdK
when i → ∞, we conclude that G′ ∩ bdK is an (n − 1)-dimensional ellipsoid. By
Theorem 2 from [17], the set bdK \ (−recK) is a piece of a convex quadric (see
the picture below).
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Continuously translating K such that o tends to bdK within −recK, we conclude
that the whole hypersurface bdK is a convex quadric.

5. Proof of Corollary 2.4

1) ⇒ 2). Let a 1-dimensional non-recessional for K subspace l and a hyperplane
H satisfy condition 1) of the corollary. If l and H are parallel, then Lemma 3.3
implies that dim (linK) = n−2 andK is the direct sum of linK and a 2-dimensional
unbounded line-free closed convex set M . Suppose that l and H are not parallel for
any choice of a 1-dimensional non-recessional for K subspace l. Then, according to
Lemma 3.4, (2) ⇔ (10); whence K has one of the shapes a)–c) from Theorem 2.1.
It remains to show that K has one of the shapes a), b′), and c′). Since case a)
trivially holds and the proof of case c′) is similar to that of b′), we will consider case
b′) only.

b′). Let K = linK ⊕ M , where M is a 2-dimensional line-free closed convex set.
Denote by L the plane containing M . Assume for a moment that M is bounded
and not strictly convex. Choose a line segment [x, z] ⊂ rbdM . Denote by l the
1-dimensional subspace parallel to [x, z] and by l1, l2 ⊂ L the lines which are parallel
to l and properly support M . Then the set Sl(M) = (M ∩ l1)∪ (M ∩ l2) does not lie
on a line. Since l andH are not parallel, the setH∩L is a line, which cannot contain
Sl(M). Therefore Sl(K) = linK ⊕Sl(M) does not contain Sl(K) = linK ⊕Sl(M),
in contradiction with condition 1). Hence M must be strictly convex.

2) ⇒ 1). Let l be a 1-dimensional non-recessional for K subspace. Condition 2)
of the corollary implies that l is sharp for K. Therefore Theorem 2.1 gives the
existence of a hyperplane H such that (10) holds. In particular, Sl(K) ⊂ H.
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bedingung, Leipz. Ber. 68 (1916) 50–55.

[4] W. Blaschke: Kreis und Kugel, Viet, Leipzig (1916).



V. Soltan / Convex Solids with Hyperplanar Shadow-Boundaries 607

[5] T. Bonnesen, W. Fenchel: Theorie der konvexen Körper, Springer, Berlin (1934);
Engl. transl.: Theory of Convex Bodies, BCS Associates, Moscow, USA (1987).

[6] H. Busemann: The Geometry of Geodesics, Academic Press, New York (1955).
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et al. (ed.), Colloq. Math. Soc. János Bolyai 63, North-Holland, Amsterdam (1994)
249-268.
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Birkhäuser, Basel (1983) 264–276.

[16] V. Soltan: Convex solids with planar midsurfaces, Proc. Amer. Math. Soc. 136 (2008)
1071–1081.

[17] V. Soltan: Convex solids with planar homothetic sections through given points, J.
Convex Analysis 16 (2009) 473–486.

[18] V. Soltan: Convex quadrics, Bul. Acad. Ştiinţe Repub. Mold. Mat. 3 (2010) 94–106.
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