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1. Introduction and preliminaries

The monotone bifunctions were so far studied by means of equilibrium problems
in papers like [10, 1, 8], following the path initiated in the seminal paper [2], these
contributions establishing different connections they share with the monotone op-
erators. On the other hand, after a flourishing era in the seventies, the study of the
monotone operators was resurrected by the rediscovery of the Fitzpatrick function
and the introduction of to it related representative functions, which allowed convex
analysis to jump aboard in order to unveil new and interesting results especially
concerning their maximality, but not only (cf. [11, 12, 6, 9, 4, 5, 3]).

To the best of our knowledge, the representative functions were until now not invited
to bring their contribution to the ongoing investigations on the maximal monotone
bifunctions and with this paper we open them the gate, by showing the immense
potential they posses in order to deal with the current issues in this research area.
More precisely, we attach a representative function to the monotone operator asso-
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ciated to a monotone bifunction in [8, 10, 1] and using it we obtain different results
involving (maximal) monotone bifunctions in both reflexive and nonreflexive Ba-
nach spaces.

We begin by extending to general Banach spaces the statements from [10, 8] where
sufficient conditions that guarantee the maximal monotonicity of a bifunction were
proposed. When the space we work with is taken reflexive, the mentioned results
from the literature are rediscovered via easier proofs that involve representative
functions and convex analysis techniques and do not require renorming arguments
as done in the original papers. Then we deal with the sum of two (maximal)
monotone bifunctions.

1.1. Elements of convex analysis

Let the separated locally convex space X and its continuous dual space X∗. By
〈x∗, x〉 we denote the value of the linear continuous functional x∗ ∈ X∗ at x ∈ X.
Moreover, consider the coupling function c : X×X∗ → R, c(x, x∗) = 〈x∗, x〉. Denote
the indicator function of U ⊆ X by δU and its interior, conical hull and closure by
int(U), cone(U), and cl(U), respectively. Moreover, if U is convex its strong quasi
relative interior is

sqri(U) =
{

x ∈ U : cone(U − x) is a closed linear subspace
}

.

For a function f : X → R = R ∪ {±∞}, we denote its domain by dom f = {x ∈
X : f(x) < +∞}. We call f proper if f(x) > −∞ for all x ∈ X and dom f 6= ∅.
The conjugate function of f is f ∗ : X∗ → R, f ∗(x∗) = sup

{

〈x∗, x〉− f(x) : x ∈ X
}

.
For x ∈ X such that f(x) ∈ R we define the (convex) subdifferential of f at x by
∂f(x) = {x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X}. When f(x) /∈ R we take
by convention ∂f(x) = ∅.

Between a function and its conjugate there is Young’s inequality f ∗(x∗) + f(x) ≥
〈x∗, x〉 for all x ∈ X and all x∗ ∈ X∗, fulfilled as equality by a pair (x, x∗) ∈ X×X∗

if and only if x∗ ∈ ∂f(x). Denote also by cof : X → R the largest convex and
lower semicontinuous function everywhere less than or equal to f , i.e. the lower
semicontinuous convex hull of f . The function f is called upper hemicontinuous if
it is upper semicontinuous on line segments.

Let A and B be two nonempty sets. When f, g : A × B → R are proper, we
consider the function f�2g : A × B → R, f�2g(a, b) = inf{f(a, c) + g(a, b − c) :
c ∈ B}. Denote also by f⊤ the transpose of f , namely the function f⊤ : B × A →
R, f⊤(b, a) = f(a, b) for all (b, a) ∈ B × A. Moreover, we consider the projection
function PrA : A×B → A, defined by PrA(a, b) = a for all (a, b) ∈ A×B.

Take further X to be a normed space. Then X∗ is its topological dual and X∗∗ its
topological bidual. We identify X with its image under the canonical injection of
X into a subspace of X∗∗. If f : X → R, one can attach to it also the biconjugate
function f ∗∗ : X∗∗ → R defined by f ∗∗(x∗∗) = supx∗∈X∗{〈x∗∗, x∗〉 − f ∗(x∗)}. Note
that if f is proper, convex and lower semicontinuous one has the Fenchel-Moreau
formula f(x) = f ∗∗(x) for all x ∈ X.
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1.2. Monotone operators

Now let us present some basic things on monotone operators come next, following
[9, 12]. Further X is taken to be a nontrivial real Banach space. A multifunction
T : X ⇉ X∗ is called a monotone operator provided that for any x, y ∈ X one
has 〈y∗ − x∗, y − x〉 ≥ 0 whenever x∗ ∈ T (x) and y∗ ∈ T (y). The domain of T is
D(T ) = {x ∈ X : T (x) 6= ∅}, while its range is R(T ) = ∪{T (x) : x ∈ X}.

A monotone operator T : X ⇉ X∗ is called maximal when its graph G(T ) =
{(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)} is not properly included in the graph of any other
monotone operator S : X ⇉ X∗. The subdifferential of a proper, convex and lower
semicontinuous function onX is a typical example of a maximal monotone operator.

To a monotone operator T : X ⇉ X∗ one can attach the Fitzpatrick function

ϕT : X ×X∗ → R, ϕT (x, x
∗) = sup

{

〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉 : y∗ ∈ Ty
}

,

which is convex and weak-weak∗ lower semicontinuous.

The function ψT := co(c + δG(T )), where the closure is considered in the strong
topology, is very well connected to the Fitzpatrick function. On X × X∗ we have
ψ∗⊤
T = ϕT and, when X is a reflexive Banach space, one also has ϕ∗⊤

T = ψT .

If T is maximal monotone, then ϕT ≥ c and G(T ) = {(x, x∗) ∈ X×X∗ : ϕT (x, x
∗) =

〈x∗, x〉}. These properties of the Fitzpatrick function motivate attaching to mono-
tone operators other functions, as follows. If T is a monotone operator, a convex
and strong lower semicontinuous function hT : X × X∗ → R fulfilling hT ≥ c and
G(T ) ⊆ {(x, x∗) ∈ X × X∗ : hT (x, x

∗) = c(x, x∗)} is said to be a representative
function of T .

Note that if G(T ) 6= ∅ (in particular if T is maximal monotone), then every rep-
resentative function of T is proper. It follows immediately that ϕT and ψT are
representative functions of the maximal monotone operator T , too. Some proper-
ties of maximal monotone operators and representative functions attached to them
that we need further in this paper follow.

Lemma 1.1 (cf. [6]). Let T : X ⇉ X∗ be a maximal monotone operator and hT
a representative function of T . Then

(i) ϕT (x, x
∗) ≤ hT (x, x

∗) ≤ ψT (x, x
∗) for all (x, x∗) ∈ X ×X∗;

(ii) the restriction of h∗⊤T to X ×X∗ is also a representative function of T ;

(iii)
{

(x, x∗) ∈ X ×X∗ : hT (x, x
∗) = c(x, x∗)

}

=
{

(x, x∗) ∈ X ×X∗ : h∗⊤T (x, x∗) =
c(x, x∗)

}

= G(T ).

Now let us give two maximality criteria for monotone operators.

Theorem 1.2 (cf. [7, Theorem 3.1], [11, Proposition 2.1]). Let X be reflex-
ive. If h : X × X∗ → R is a proper, convex and lower semicontinuous function
with h ≥ c, then the monotone operator {(x, x∗) ∈ X ×X∗ : h(x, x∗) = c(x, x∗)} is
maximal if and only if h∗⊤ ≥ c.

The following statement was formulated as [9, Theorem 3.1] with the condition
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0 ∈ sqri
(

PrX (domh)
)

. However, by translation arguments one can reformulate it
by considering the more general condition sqri

(

PrX(domh)
)

6= ∅, as follows.

Theorem 1.3. Let h : X × X∗ → R be a proper and convex function with h ≥ c
and h∗⊤ ≥ c on X × X∗. If sqri

(

PrX(domh)
)

6= ∅, then the operator {(x, x∗) ∈
X ×X∗ : h∗(x∗, x) = c(x, x∗)} is maximal monotone.

1.3. Monotone bifunctions

Let us also present some preliminaries on bifunctions, following [10, 8]. Let the
nonempty set C ⊆ X. A function F : C × C → R is called bifunction. The
bifunction F is called monotone if F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C. To the
bifunction F one can attach the operators AF : X ⇉ X∗ and FA : X ⇉ X∗ defined
by

AF (x) =

{

{x∗ ∈ X∗ : F (x, y)− F (x, x) ≥ 〈x∗, y − x〉 ∀y ∈ C}, if x ∈ C,

∅, otherwise,

and, respectively,

FA(x) =

{

{x∗ ∈ X∗ : F (x, x)− F (y, x) ≥ 〈x∗, y − x〉 ∀y ∈ C}, if x ∈ C,

∅, otherwise,

which are monotone when F (x, x) = 0 for all x ∈ C and F , respectively −F , is
monotone. Actually, when F is monotone and F (x, x) = 0 for all x ∈ C one has
G
(

AF
)

⊆ G
(

FA
)

.

The monotone bifunction F fulfilling F (x, x) = 0 for all x ∈ C is said to be
maximal monotone if AF is maximal monotone and, respectively, BO-maximal
monotone (where BO stands for Blum-Oettli, as this type of monotone bifunction
was introduced in [2]) when for every (x, x∗) ∈ C ×X∗ it holds

F (y, x) + 〈x∗, y − x〉 ≤ 0 ∀y ∈ C ⇒ F (x, y) ≥ 〈x∗, y − x〉 ∀y ∈ C.

When F is monotone and F (x, x) = 0 for all x ∈ C, note that its BO-maximal
monotonicity is equivalent to FA = AF . Any maximal monotone bifunction is BO-
maximal monotone, but the opposite implication is not always valid, as the situation
in [10, Example 2.2] shows.

In order not to overcomplicate the paper, when x ∈ C we denote by a slight abuse
of notation by F (x, ·) + δC the function defined on X with extended real values
which is equal to F (x, ·) on C and takes the value +∞ otherwise. Analogously,
when y ∈ C we denote by −F (·, y) + δC the function defined on X with extended
real values which is equal to −F (·, y) on C and takes the value +∞ otherwise.
Hence, when F (x, x) = 0 for all x ∈ C, AF (x) = ∂(F (x, ·) + δC)(x) and FA(x) =
∂(−F (·, x) + δC)(x) for all x ∈ X.

We close the section by presenting a statement which holds in a more general
framework than originally considered in [2, Lemma 3].
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Lemma 1.4. Let F and G be two bifunctions defined on the nonempty and convex
set C ⊆ X, satisfying F (x, x) = G(x, x) = 0 for all x ∈ C, such that F is monotone,
F (x, ·) and G(x, ·) are convex for all x ∈ C and F (·, y) is upper hemicontinuous for
all y ∈ C. Then the following statements are equivalent

(i) x̄ ∈ C and F (y, x̄) ≤ G(x̄, y) for all y ∈ C;

(ii) x̄ ∈ C and 0 ≤ F (x̄, y) +G(x̄, y) for all y ∈ C.

Note that the monotonicity of F is required only for proving the implication “(ii) ⇒
(i)�, which actually holds even if the convexity and topological hypotheses are
removed. Using Lemma 1.4 we prove another statement which will be useful later.

Lemma 1.5. Let F be a bifunction defined on the nonempty and convex set C ⊆ X,
satisfying F (x, x) = 0 for all x ∈ C. If F (x, ·) is convex for all x ∈ C and F (·, y)
is upper hemicontinuous for all y ∈ C, then G

(

FA
)

⊆ G
(

AF
)

.

Proof. Let (x, x∗) ∈ G
(

FA
)

. Then x ∈ C and F (y, x) ≤ 〈x∗, x − y〉 for all y ∈ C.
By Lemma 1.4(i) ⇒ (ii) one gets 0 ≤ F (x, y) + 〈x∗, x − y〉 for all y ∈ C, thus
(x, x∗) ∈ G

(

AF
)

.

Remark 1.6. If in addition to the assumptions of Lemma 1.5 F is taken moreover
monotone, then one gets that F is BO-maximal monotone.

2. Maximality of monotone bifunctions

In this section let X be, unless otherwise stated, a nontrivial real Banach space, let
C ⊆ X be a nonempty subset and let F : C × C → R be a bifunction. In order to
deal with its maximal monotonicity, we attach to F the following functions

hF : X ×X∗ → R,

hF (x, x
∗) = sup

y∈C

{

〈x∗, y〉 − F (x, y)
}

+ δC(x) = (F (x, ·) + δC)
∗(x∗) + δC(x)

and

gF : X ×X∗ → R,

gF (x, x
∗) = sup

y∈C

{

〈x∗, y〉+ F (y, x)
}

+ δC(x) = (−F (·, x) + δC)
∗(x∗) + δC(x).

Note that for (x, x∗) ∈ X ×X∗ one has

h∗F (x
∗, x) = sup

y∈C

{

〈x∗, y〉+ (F (y, ·) + δC)
∗∗(x)

}

and
g∗F (x

∗, x) = sup
y∈C

{

〈x∗, y〉+ (−F (·, y) + δC)
∗∗(x)

}

.

Other properties of these functions are given in the following statements, whose
proofs are trivial.

Lemma 2.1. The following statements are true:
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(a) It holds gF (x, x
∗) ≥ h∗F (x

∗, x) for all (x, x∗) ∈ X ×X∗.

(b) If F (x, x) = 0 for all x ∈ C, then hF ≥ c and gF ≥ c.

(c) If F is monotone, then hF (x, x
∗) ≥ gF (x, x

∗) and cohF (x, x
∗) ≥ h∗F (x

∗, x) for
all (x, x∗) ∈ X ×X∗.

If F (x, x) = 0 for all x ∈ C, by construction, one has that hF (x, x
∗) = c(x, x∗) if

and only if (x, x∗) ∈ G
(

AF
)

and gF (x, x
∗) = c(x, x∗) if and only if (x, x∗) ∈ G

(

FA
)

.
However, gF and hF are in general neither convex nor lower semicontinuous, there-
fore they are not always representative functions for AF in case this is monotone.
Now we are ready to give our main statements, where sufficient conditions for the
maximal monotonicity of AF are provided. We begin with a theorem where F is
not even asked to be monotone.

Theorem 2.2. Let C be convex and closed and F be fulfilling F (x, x) = 0 for all
x ∈ C. If sqri(C) 6= ∅, F (x, ·) is convex and lower semicontinuous for all x ∈ C, and
F (·, y) concave upper semicontinuous for all y ∈ C, then AF is maximal monotone
and AF = FA.

Proof. The convexity and topological assumptions on C and F (x, ·), for x ∈ C,
yield that the function F (x, ·) + δC is proper, convex and lower semicontinuous
whenever x ∈ C. Then (F (x, ·) + δC)

∗∗(z) = F (x, z) + δC(z) whenever x ∈ C and
z ∈ X, consequently, via Lemma 2.1, h∗

⊤

F = gF ≥ c on X × X∗. Analogously,
the convexity and topological assumptions on C and −F (·, y), y ∈ C, imply hF =
g∗

⊤

F ≥ c on X ×X∗. Obviously, hF and gF are in this case convex functions, whose
properness follows immediately, too.

One gets PrX(domhF ) ⊆ PrX(dom gF ) ⊆ C. Taking an x ∈ C, since F (x, ·) +
δC is proper, convex and lower semicontinuous, its conjugate is proper (cf. [13,
Theorem 2.3.3]), so there exists an x∗ ∈ X∗ such that (F (x, ·) + δC)

∗(x∗) < +∞.
Consequently, hF (x, x

∗) < +∞, i.e. C ⊆ PrX(domhF ). Therefore PrX(domhF ) =
PrX(dom gF ) = C. We are now ready to apply Theorem 1.3 for hF and gF , obtaining
that the operators (identified through their graphs)

{(x, x∗) ∈ X ×X∗ : h∗F (x
∗, x) = c(x, x∗)}

= {(x, x∗) ∈ X ×X∗ : gF (x, x
∗) = c(x, x∗)} = G

(

FA
)

and

{(x, x∗) ∈ X ×X∗ : g∗F (x
∗, x) = c(x, x∗)}

= {(x, x∗) ∈ X ×X∗ : hF (x, x
∗) = c(x, x∗)} = G

(

AF
)

are maximal monotone.

Using Lemma 1.5, it follows G
(

FA
)

⊆ G
(

AF
)

, consequently, AF = FA, since both
are maximal monotone operators.

If X is reflexive, then the condition sqri(C) 6= ∅ in Theorem 2.2 is not needed, since
one can use in its proof in this case Theorem 1.2 in place of Theorem 1.3. If C = X
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the condition sqri(C) 6= ∅ is automatically satisfied and Theorem 2.2 yields the
following statement, noting that the lower/upper semicontinuity of a real valued
convex/concave function on the entire space is equivalent to its continuity (cf. [13,
Proposition 2.1.6]).

Theorem 2.3. Let F (x, x) = 0 for all x ∈ X, F (x, ·) be convex and continuous for
all x ∈ X and F (·, y) concave and continuous for all y ∈ X. Then AF is maximal
monotone and AF = FA.

Remark 2.4. By Theorem 2.3 we prove one of the conjectures formulated at the
end of [8], actually slightly weakening its hypotheses since instead of taking F
continuous we ask it to be continuous in each of its variables. If X is reflexive,
Theorem 2.3 rediscovers [8, Theorem 3.6(i)], bringing the mentioned improvement
to its hypotheses.

Taking F to be monotone, here are some hypotheses that guarantee its maximality
even in the absence of convexity assumptions in its first variable.

Theorem 2.5. Let C be convex and closed and F be monotone and fulfilling F (x, x)
= 0 for all x ∈ C. If sqri(C) 6= ∅, F (x, ·) is convex and lower semicontinuous for
all x ∈ C and F (·, y) upper hemicontinuous for all y ∈ C, then F is maximal
monotone.

Proof. The convexity and topological assumptions on C and F (x, ·), for x ∈ C,
yield that the function F (x, ·) + δC is proper, convex and lower semicontinuous
whenever x ∈ C. Then (F (x, ·) + δC)

∗∗(z) = F (x, z) + δC(z) whenever x ∈ C and
z ∈ X, whence h∗F (x

∗, x) = gF (x, x
∗) for all (x, x∗) ∈ X × X∗. Consequently, via

Lemma 2.1 and taking into consideration the properties of the conjugate function,
one has

hF (x, x
∗) ≥ cohF (x, x

∗) ≥ h∗F (x
∗, x) ≥ c(x, x∗) ∀(x, x∗) ∈ X ×X∗. (1)

Assuming that hF were improper leads to a contradiction with (1), consequently
hF , cohF and h∗F are all proper. Like in the proof of Theorem 2.2 one can show
that PrX(domhF ) = C. One has

PrX(domhF ) ⊆ PrX(dom cohF ) ⊆ coPrX(domhF ) (2)

and, since C is convex and closed, we get PrX
(

dom
(

cohF
))

= C.

In the following we show that

G
(

AF
)

=
{

(x, x∗) ∈ X ×X∗ : cohF (x, x
∗) = c(x, x∗)

}

=
{

(x, x∗) ∈ X ×X∗ : h∗F (x
∗, x) = c(x, x∗)

}

. (3)

If (x, x∗) ∈ G
(

AF
)

, (1) yields h∗F (x
∗, x) = c(x, x∗).

Let now (x, x∗) ∈ X ×X∗ for which h∗F (x
∗, x) = c(x, x∗). Then (x, x∗) ∈ G

(

FA
)

, so
Lemma 1.5 yields (x, x∗) ∈ G

(

AF
)

. This implies that cohF (x, x
∗) = c(x, x∗) holds

if and only if (x, x∗) ∈ G
(

AF
)

. Applying Theorem 1.3 for cohF , it follows that A
F

is maximal monotone, i.e. F is maximal monotone, too.
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When the space X is reflexive, the regularity condition sqri(C) 6= ∅ is no longer nec-
essary and we rediscover [10, Proposition 3.1], by means of representative functions,
employing tools of convex analysis and without renorming X.

Theorem 2.6. Let X be reflexive, C be convex and closed and F be monotone and
fulfilling F (x, x) = 0 for all x ∈ C. If F (x, ·) is convex and lower semicontinuous
for all x ∈ C and F (·, y) upper hemicontinuous for all y ∈ C, then F is maximal
monotone.

Proof. Things work in the lines of the proof of Theorem 2.5, noticing that (1) and
(3) are fulfilled. Then we apply Theorem 1.3.

When C = X we obtain from Theorem 2.5 the following statement.

Theorem 2.7. Let F be monotone and fulfilling F (x, x) = 0 for all x ∈ X. If
F (x, ·) is convex and continuous for all x ∈ X and F (·, y) upper hemicontinuous
for all y ∈ X, then F is maximal monotone.

Remark 2.8. In [8, Theorem 3.6(ii)] the same conclusion is obtained when X is
reflexive for a monotone bifunction F that fulfills F (x, x) = 0 for all x ∈ X, by
assuming F (x, ·) only convex for all x ∈ X and F (·, y) continuous for all y ∈ X.
However, we doubt that this result holds without any topological assumption on
the functions F (x, ·), x ∈ X, since in its proof is used [8, Theorem 3.4(ii)] whose
hypotheses should contain also the lower semicontinuity of F (x, ·) for all x ∈ X. A
similar comment can be made also for [8, Theorem 3.6(iii)] and for the conjectures
extending the two mentioned statements to nonreflexive spaces given at the end of
[8].

Whenever F is BO-maximal monotone, one has AF = FA so Lemma 1.4 is not
longer needed in the proof of Theorem 2.5. Hence we rediscover, in the reflexive
case, and extend, when X is a general Banach space, [1, Proposition 3.2], as follows.

Corollary 2.9. Let C be convex and closed with sqri(C) 6= ∅ and F be BO-maximal
monotone. If F (x, ·) is convex and lower semicontinuous for all x ∈ C, then F is
maximal monotone.

Corollary 2.10. Let X be reflexive, C convex and closed and F be BO-maximal
monotone. If F (x, ·) is convex and lower semicontinuous for all x ∈ C, then F is
maximal monotone.

When C = X one can formulate another maximality criterium for a monotone
bifunction, extending [10, Proposition 3.5] to general Banach spaces.

Theorem 2.11. Let F be monotone and fulfilling F (x, x) = 0 for all x ∈ X. If
D
(

AF
)

= X and F (·, y) is upper hemicontinuous for all y ∈ X, then F is maximal
monotone.

Proof. As D
(

AF
)

= X, for all x ∈ X one has ∂F (x, ·)(x) 6= ∅, which yields
coF (x, ·)(x) = F (x, x) = 0. On the other hand, for all x ∈ X it holds X =
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domF (x, ·) ⊆ dom coF (x, ·), which implies dom coF (x, ·) = X and via [13, Propo-
sition 2.2.5], as coF (x, ·)(x) = 0, also the properness of coF (x, ·). Then, for any
(x, x∗) ∈ X ×X∗, one has

h∗F (x
∗, x) = sup

y∈X

{

〈x∗, y〉+ (F (y, ·))∗∗(x)
}

= sup
y∈X

{

〈x∗, y〉+ coF (y, ·)(x)
}

≥ 〈x∗, x〉+ coF (x, ·)(x) = 〈x∗, x〉,

consequently, hF ≥ cohF ≥ h∗⊤F ≥ c on X ×X∗. As D
(

AF
)

= X, PrX(domhF ) =
X, using (2) it follows PrX(domcohF ) = X. Applying Theorem 1.3 for cohF , the
operator having the graph

{

(x, x∗) ∈ X × X∗ : h∗F (x
∗, x) = c(x, x∗)

}

turns out to
be maximal monotone. This graph includes G

(

AF
)

. To show that the opposite
inclusion holds, too, let (x, x∗) ∈ X × X∗ for which h∗F (x

∗, x) = c(x, x∗). Then
h∗F (x

∗, x) ≤ c(x, x∗), so for all y ∈ X it holds coF (y, ·)(x) ≤ 〈x∗, x − y〉. This
means nothing but (x, x∗) ∈ G

(

HA
)

, where the bifunction H : X × X → R is
defined by H(x, y) := coF (x, ·)(y). It follows immediately that H(z, z) = 0 for all
z ∈ X. As H(z, ·) = coF (z, ·) is convex for all z ∈ X and for all y ∈ X one can
verify that H(·, y) is upper hemicontinuous, Lemma 1.5 yields (x, x∗) ∈ G

(

AH
)

.
This means that for all y ∈ X one has coF (x, ·)(y) ≥ 〈x∗, y − x〉, followed by
F (x, y) ≥ 〈x∗, y − x〉. Thus (x, x∗) ∈ G

(

AF
)

, therefore (3) holds. Consequently, F
is maximal monotone.

Remark 2.12. One can see in the proofs of Theorem 2.2, Theorem 2.5 and Theo-
rem 2.11 that not only cohF (which coincides with hF under the hypotheses of the
first of them), but also the restriction to X×X∗ of h∗⊤F are representative functions
of the maximal monotone operator AF .

In Theorem 2.2, Theorem 2.5 and Theorem 2.11 we have shown with the help of
the theory of representative functions that under some hypotheses AF is maximal
monotone. Now let us show that the representative functions of it identified there
are actually representative to AF whenever it is maximal monotone.

Theorem 2.13. Let F be maximal monotone. Then cohF and the restriction to
X ×X∗ of h∗⊤F are representative functions of AF .

Proof. The maximal monotonicity of F implies via Lemma 1.1 that

G
(

AF
)

=
{

(x, x∗) ∈ X ×X∗ : ψAF (x, x∗) = c(x, x∗)
}

=
{

(x, x∗) ∈ X ×X∗ : ϕAF (x, x∗) = c(x, x∗)
}

.

On the other hand, the way hF is constructed implies (c + δAF )(x, x∗) ≥ hF (x, x
∗)

for all (x, x∗) ∈ X ×X∗, which yields

h∗F (x
∗, x) ≥ (c+ δAF )∗(x∗, x) = ψ∗

AF (x
∗, x) = ϕAF (x, x∗) ∀(x, x∗) ∈ X ×X∗.

Since the monotonicity of F implies, via Lemma 2.1, hF (x, x
∗) ≥ cohF (x, x

∗) ≥
h∗F (x

∗, x) for all (x, x∗) ∈ X×X∗, it follows immediately that for all (x, x∗) ∈ X×X∗

it holds

ψAF (x, x∗) ≥ cohF (x, x
∗) ≥ h∗F (x

∗, x) ≥ ϕAF (x, x∗) ≥ c(x, x∗).
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Consequently,

G
(

AF
)

=
{

(x, x∗) ∈ X ×X∗ : cohF (x, x
∗) = c(x, x∗)

}

=
{

(x, x∗) ∈ X ×X∗ : h∗F (x
∗, x) = c(x, x∗)

}

,

which implies that cohF and h∗⊤F restricted to X ×X∗ are representative functions
of AF .

Remark 2.14. One can easily see that, when F is maximal monotone with F (x, x)
= 0 for all x ∈ C, then cogF and the restriction to X×X∗ of g∗⊤F are representative
functions of AF , too.

Remark 2.15. In the lines of the proof of Theorem 2.13, one can show that if
T : X ⇉ X∗ is a maximal monotone operator and h : X × X∗ → R is a function
fulfilling h(x, x∗) ≥ h∗(x∗, x) for all (x, x∗) ∈ X × X∗ and h(x, x∗) ≤ c(x, x∗)
whenever (x, x∗) ∈ G(T ), then cohF and the restriction to X × X∗ of h∗⊤F are
representative functions of T .

3. The sum of two monotone bifunctions

One of the most dealt with questions regarding maximal monotone operators is what
guarantees that the sum of two of them remains maximal monotone. This issue
was extended for maximal monotone bifunctions in [10], by means of equilibrium
problems. We provide another answer in this matter, preceded by a preliminary
result.

Lemma 3.1. Let F and G be monotone bifunctions defined on a nonempty set
C ⊆ X. Then AF (x) + AG(x) ⊆ AF+G(x) for all x ∈ X and F +G is monotone.

Proof. Let x ∈ X, y∗ ∈ AF (x) and z∗ ∈ AG(x). Then x ∈ C and for all y ∈ C one
has F (x, y) ≥ 〈y∗, y − x〉 and G(x, y) ≥ 〈z∗, y − x〉. Adding these inequalities, one
gets F (x, y) +G(x, y) ≥ 〈y∗ + z∗, y − x〉 for all y ∈ C, i.e. y∗ + z∗ ∈ AF+G(x).

Analogously, writing what the monotonicity of F and G means and adding the
obtained inequalities one gets that F +G is monotone.

Theorem 3.2. Let X be reflexive and F and G two maximal monotone bifunctions
defined on a nonempty set C ⊆ X with fF and fG their corresponding representative
functions. If 0 ∈ sqri

(

D
(

AF
)

−D(AG)
)

(or, equivalently, 0 ∈ sqri
(

PrX(dom fF )−
PrX(dom fG)

)

), then F +G is maximal monotone, AF +AG = AF+G and fF�2fG
is a representative function of AF+G.

Proof. By [11, Corollary 3.6] we obtain that the hypotheses yield the maximal
monotonicity of AF + AG, to which fF�2fG is a representative function. Then
Lemma 3.1 implies that AF (x) + AG(x) = AF+G(x) for all x ∈ X. Consequently,
F + G is maximal monotone and fF�2fG is a representative function of AF+G,
too.
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Remark 3.3. Note that under the hypotheses of Theorem 3.2 also the function
(fF�2fG)

∗⊤ is a representative function of AF+G. If one takes fF := cohF and
fG := cohG, then it holds

(fF�2fG)
∗(x∗, x)

= sup
y∈C

{

〈x∗, y〉+ (F (y, ·) + δC)
∗∗(x) + (G(y, ·) + δC)

∗∗(x)
}

≤ h∗F+G(x
∗, x)

for all (x, x∗) ∈ X ×X∗. Thus the just identified representative function of AF+G

is smaller than the ones obtained for it via Theorem 2.13.

Remark 3.4. If both F and G satisfy the hypotheses of one of Theorem 2.2, Theo-
rem 2.5, Theorem 2.6 or, when C = X, Theorem 2.11, then F + G fulfills them,
too, and this has as consequence its maximal monotonicity.

Now let us present a situation, different from the one displayed in Theorem 3.2,
when the inclusion proven in Lemma 3.1 turns out to be actually an equality. Note
that the reflexivity of the space X plays no role in this statement.

Proposition 3.5. Let F and G be monotone bifunctions defined on the convex
and closed set C fulfilling F (x, x) = G(x, x) = 0 for all x ∈ C, such that for all
x ∈ C the functions F (x, ·) and G(x, ·) are convex and lower semicontinuous. If
0 ∈ sqri(C − C), then AF + AG = AF+G.

Proof. Let x ∈ C. One has dom(F (x, ·) + δC) = dom(G(x, ·) + δC) = dom((F +
G)(x, ·) + δC) = C. By definition, AF (x) = ∂(F (x, ·) + δC)(x). Note also that
(F (x, ·) + δC) + (G(x, ·) + δC) = (F + G)(x, ·) + δC . By [13, Theorem 2.8.7], the
hypotheses imply

∂(F (x, ·) + δC)(x) + ∂(G(x, ·) + δC)(x) = ∂(F (x, ·) +G(x, ·) + δC)(x).

Consequently, AF (x) + AG(x) = AF+G(x) and since x ∈ C was arbitrarily chosen,
the conclusion follows.

Remark 3.6. Note that the hypotheses of Proposition 3.5 ensure that cohF+G(x,
x∗) ≥ h∗F+G(x

∗, x) ≥ c(x, x∗) for all (x, x∗) ∈ X × X∗. Unfortunately, this is
not enough in order to guarantee the maximality of F + G, which would follow
for instance provided the BO-maximal monotonicity of this bifunction. However,
checking also Remark 3.4, this additional assumption would make, at least in the
reflexive case, the condition 0 ∈ sqri(C−C) redundant. Therefore, it remains as an
open question what should one add to the hypotheses of Proposition 3.5 in order
to obtain the maximality of F +G under no stronger hypotheses than the ones in
Remark 3.4.
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aware of the preprint of [A. N. Iusem, B. F. Svaiter: On diagonal subdifferential operators

in nonreflexive Banach spaces, Set-Valued Var. Anal. 20(1) (2012) 1–14; July 20th 2011].

Theorem 2.5 in our article seems to positively answer the conjecture formulated at the

end of this paper.
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