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Given any polar pair of convex bodies we study its conjugate face maps and we characterize
conjugate faces of non-exposed faces in terms of normal cones. The analysis is carried out using
the positive hull operator which defines lattice isomorphisms linking three Galois connections.
One of them assigns conjugate faces between the convex bodies. The second and third Galois
connection is defined between the touching cones and the faces of each convex body separately.
While the former is well-known, we introduce the latter in this article for any convex set in any
finite dimension. We demonstrate our results about conjugate faces with planar convex bodies
and planar self-dual convex bodies, for which we also include constructions.
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1. Non-exposed faces and dual convex bodies

Duality of faces of a dual pair of closed convex cones was studied in [2] with regard
to the lattice of the inclusion ordering. This duality corresponds to the conjugate
face map between faces of a polar pair of convex bodies. In this article we study
the restriction of the conjugate face map to non-exposed faces. E.g. it will become
clear that a face which is conjugate to a non-exposed face is singular (its normal
cone has at least dimension two). We prove that such faces are fully characterized
by a so-called incomplete normal cone.

Incomplete normal cones of planar convex bodies have a simple description by so-
called mized and free corners. Examples are given in Figure 2.1 and 2.2. The
conjugate face map restricts to a surjective map from the non-exposed points of a
planar convex body onto the mixed and free corners of the polar convex body

{non-exposed points} ——— {mixed corners and free corners}. (1)

The idea underlying this article is to use (1), and its generalization in any dimension,
to study non-exposed faces of a projection of the state space of the matrix algebra
Mat(N,C). The polar convex body of a projection is an affine section of that
state space, see §2.4 in [17]. Its singular points (with incomplete normal cone) may
be studied by analyzing an associated determinantal variety, using techniques of
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algebraic geometry. Our interest in non-exposed points of projected state spaces
lies in quantum information theory, they seem to cause discontinuities in certain
information measures [8].

Planar projections of state spaces are studied in operator theory under the name of
numerical range, see e.g. [5] and the references therein. The question when numeri-
cal range has non-exposed points was solved in [13] for N = 3. Recently, numerical
range was studied in [6] from the point of view of convex algebraic geometry whose
aim is to use techniques from algebraic geometry for studying convex semialgebraic
sets. Important examples of such sets are spectrahedra which generalize the state
space of Mat(N,C) and which are popular in optimization. Current questions in
the field are concerned with convex duality and non-exposed faces, see e.g. [11, 14].
Our interest in self-dual convex bodies is influenced by the present discussion of
self-duality in the axiomatic foundations of quantum theory [7, 10, 18].

This article is organized as follows. Constructions for dual convex bodies and a
general construction for planar self-dual convex bodies are explained in §2. A Galois
connection between touching cones and faces of a convex set is defined in §3. In §4
we study conjugate faces of any polar pair of convex bodies. We demonstrate our
results in §5 with planar convex bodies. In particular we give a general construction
for planar self-dual convex bodies without non-exposed points.

2. Constructions of dual convex bodies

We introduce constructions for dual and self-dual convex bodies (mainly in dimen-
sion two). They are used to generate examples to demonstrate non-exposed points
and their relation to the singular points studied in §5.

In the n-dimensional Euclidean vector space (R, (-,-)) we denote the norm of u €
R™ by |u| := /{u,u). In R™ we shall use the standard scalar product. The polar
of a subset C C R" is C° := {u € R" | (u,v) < 1 Vv € C} and the dual of C
is C* :=={u e R" | 1+ (u,v) > 0 Vv € C} = —C°. The subset C C R" is
self-dual if C* = C. We denote the interior of C' by int(C') and its boundary by
o(C) :=C\ int(C).

The first construction is Corollary 16.5.2 in [12]:

Construction 2.1. For any family {C;}icr of convez sets in R™ (I is an index set)
we have

(convex hull of {C; |i € I})* = ﬂ{C’Z* liel}. (2)

Example 2.2. The convex set C' C R? depicted in Figure 2.1 c) is the convex hull
of the unit disk D := {u € R? | |u| < 1} and of the point (9). We have D* = D
(e.g. using (2)) and {(9)}* = {(z,y) € R? | y > —3}. The dual C* = D*N{(9)}*
is depicted in Figure 2.1 d).

In the sequel let K C R™ denote a conver body, i.e. a convex and compact subset,
and let 0 € int(K). By Theorem 1.6.1 in [15] the polar K° is a convex body
with 0 € int(K°) and (K°)° = K. Obviously the dual K* is a convex body with
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a) b) c) d)

Figure 2.1: The convex sets a) and b) likewise ¢) and d) are duals of each other.
Markings indicate non-exposed points (*), polyhedral corners (+), mixed corners
(@) and free corners (0). The drawings have equal scaling and their origin is aligned
vertically.

0 € int(K™*) and (K*)* = K. A second construction for the dual convex body arises
from the support function of a convex C' C R™ in the direction u € R™,

he(u) := sup{{z,u) | z € C}.
The radial function of the convex body K is
pr(u) :=sup{A\ >0 | \u e K}.
Theorem 1.7.6 in [15] shows for all u € R™ that pgo(u) = 1/hk(u) holds, hence

prc+(u) = 1/hg(—u). (3)
This equation includes pg+(0) = oo and hg(0) = 0 with the convention of 1/0 = oco.

Construction 2.3. The boundary of the dual convex body K* is parametrized from
the unit sphere by the support function of K,

Srli={ueR"||ul=1} — IK*, u = pre-(uu = u/hr(—u).

Proof. The map u — px+(u)u defined on the unit sphere S"~! extends to a pos-
itively homogeneous function R" — R™ by setting 0 — 0 and u — pK(ﬁ)u for

u # 0. The Theorem of Sz. Nagy (see e.g. §VIII.1 in [3]) shows that this function,
called radial projection, is a homeomorphism between the unit ball and K*. In
particular, S"! — K*, u — pg-(u)u is a parametrization of the boundary of K*.
The radial function of K* is expressed by the support function of K in (3). U

Example 2.4. The convex body in Figure 2.1 a) appears at a = b = % in a family
of convex bodies K C R? defined for a,b > 0. The dual convex body K* is depicted

in Figure 2.1 b) for a = b = 1. We denote u(a) := (COS(O‘)) for « € R. The

2 sin(a)
boundary of K consists of the segment between (~f) and (%), one half arc and
two quarter arcs

(a+bula) for0<a<m,

c: [0,21) — B>, aw— { (@) +bu() forr<a<ir,
(§) +bu(e) for 3 < a < 2.
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By Construction 2.3 we have for o € [0, 27)

(acos(a) +b)~"  for0<a<Z,
pr-(u(a)) = ¢ (—acos(a) +b)~' for Z <a<m,
(a+b)~! form <a <2rm.

We define faces and conjugate faces and we prove technical assertions for §5.

Definition 2.5.

1.

A face of a convex subset C' C R” is a convex subset F' C C' such that
r,y,z € Coy € Fand y €z, z[:= {1 =Nz + Xz | 0 < A < 1} implies
r,z € F.
If u € R™ is non-zero then we define Ho(u) := {z € R" | (x,u) = he(u)}. If
CNHeg(u) # 0 then He(u) is an affine hyperplane called supporting hyperplane
and C' N He(u) is an exposed face of C'. By definition () and C' are exposed
faces of C. A face which is not an exposed face is called a non-exposed face.
If {«} is a face of C for x € C then x is an extremal point. In the following
we will identify extremal points with their faces. If the extremal point z € C'
is an exposed face then x is an exposed point, otherwise x is a non-exposed
point.
The conjugate face C(F) of a subset F' C K is a subset of the polar convex
body:

C(F)=Ckg(F):={ve K°| (v,u)=1Yu e F}. (4)

Remark 2.6. Exposed faces of a convex subset C' C R" are faces of C, see e.g.
§18 in [12]. Tt is a common practice to use the conjugate face mapping C without
reference to the convex body K and write e.g. C*(F'), see §2.2 in [15].

We denote H* := {(z,y)” € R? | y > 0}.
Lemma 2.7. Let L C R? be a convex body.

1.

2.

A point x € L'\ HT is an extremal point of L if and only if x is an extremal

point of L N H*.

Let pr(£(3)) = ho(£(})), i.e. L has mazimal z-extension on the x-axis.

a) The support functions satisfy hr|p+ = hpnm|g+-

b) For every u € R*\ HT the supporting hyperplanes satisfy Hp(u) =
Hinp+(u).

c¢) Ifp e L\ HT is an exposed point of L then there is u € R*\ HT such
that {p} = L N Hp(u).

d) If0 e int(L) and F C L such that F\ HT #0, then C1,(F) C H*.

Fori=1,2 let L; C R? be a convex body with 0 € int(L;) and let c+ > 0 such

that pr,(£(§)) = hr,(£(})) =cx. Then L .= (LiNHT)U(LeNH™) is a

convex body with 0 € int(L) and L* = (LyNHT)U (LN H™).

Proof. The proof of 1. and 2. is written for (£,F) = (+,—), (£, F) = (—,+) is
analogous. To show part 1. let x € L'\ H~. If z is an extremal point of L then it
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is trivially an extremal point of L N H*. Conversely let x be an extremal point of
LN H" and let y,z € L with = €]y, z[. The case y,z € L'\ H* is impossible since
xe€ H". Ify,z€ LNH" then y = z = x follows as desired. Finally, if y € LN H™*
and z € L'\ HT, then ]y, z[ intersects the z-axis in a point p # x. Then as before
y = p = x and this implies z = z.

To prove part 2a) we show for u = (uy,u,) € HT that (-,u) is maximized on L

at a point in LN H*. Let p = (ps,py) € LN H~. Assuming +u, > 0 we show
(pyu) < (£(§) pr(£(4)),u). Since L satisfies hr(£()) = pr(£(})) we have

tp. = (P, £ (0)) < he(£(5)) = pr(E(5))

and

(P, u) = patiz + pytty < prtte = (£p2)(Fuz) < pr(+ () (Fus) (5)
= (£ (o) p(E(5)),w) -

The assertion 2b) holds because v ¢ H~ and p ¢ H" imply p,u, < 0 and then a
strict inequality follows in (5).

We show 2¢). Since p is an exposed point of L, there exists a non-zero vector u
with {p} = L N Hy(u). By contradiction we show u ¢ H~. By 2a) there is point
q € LN H~ that lies on the hyperplane Hy (£ (})). Since p ¢ H~ the vector u is
not aligned with the z-axis. If we assume u ¢ H™ then 2b) shows p & Hp(u).

For 2d) we show that F'\ H~ # ) implies C(F) C H* by proving p ¢ C(F) for
every p = (pz, py)T in L°\ HT. We have p, < 0 and there exists u = (ug, u,)’ € F
such that w, > 0. Since 0 € int(L) the polar L° is a convex body and by
(3) it satisfies pro(£(§)) = hre(£(§)). Assuming u, > 0 the strict inequal-
ity (p,u) < (£(})pre(£(})),u) follows from (5) with L replaced by L°. Since
+(§) pre(£(})) € L° and u € L we have (£ () pro(£({)),u) < 1 hence (p,u) <1
shows p & C(F).

We show part 3. Clearly L is compact and 0 € int(L). To show convexity let
r,y € Land [z,y] :={(1 =Nz + Xy | A€ [0,1]}. If z,y € H* then [z,y] C L by
convexity of L; and Ly Otherwise [z, y] intersects the x-axis in a point p and the
pairs {z, p} and {p,y} satisfy the previous assumption. Using (3) and 2b) we have

pr-(w) = hi(—u)™" = hp,(—u)™" = prs(u)
for all w € H*. Similarly for u € H~ we have p-(u) = pr:(u). O
The following construction of planar self-dual convex bodies joins half of a convex
body with half of its dual convex body. By part b) the construction is general.

Construction 2.8.

a) Let K C R? satisfy pr(+ () = hx(£(})) = e for some A € R. Then
(KNHY)U(K*N H™) is a self-dual convex body.

b)  For every planar self-dual convex body K exists a rotation ¢» € SO(2) such
that ¥(K) satisfies the assumptions in a).
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a) b) c) d)

Figure 2.2: The depicted convex sets are self-dual. Markings are explained in
Figure 2.1. Drawings a)—c) have equal scaling and their origin is aligned vertically.

Proof. Assertion a) follows from (3) and Lemma 2.7.3 applied to the convex bodies
Ly == K and Ly := K*. To show b) let u be an element of K with maximal
norm |u| in K and put v := n- Then pr(v) = |u| and hg(v) = max,ex (w,v) <
maxyecx |w||[v] = |u| by the Cauchy-Schwarz inequality. On the other hand, hg(v) >
(u,v) = |u| shows pg(v) = hg(v). Since K is self-dual we get from (3) and with
(K*) =K

pr(—v) = pr=(—v) = hg(v) ™" = pr(v) ™" = hge(—v) = hr(—v),

that is px(£v) = hg(£v) = e for some A € R. For all ¢ € SO(2) and v € R?
the equalities pyx) (¢ (v)) = pr(v) and hyx) (¥ (v)) = hg(v) hold. The choice of 1)
such that ¥ (v) = (§) completes the proof. O

The self-dual convex body a) resp. b) in Figure 2.2 is generated by Construction 2.8
from the convex body b) resp. ¢) and its dual convex body a) resp. d) in Figure 2.1.
We consider a less symmetric example.

Example 2.9. Let a > 0 and K C R? have the upper part K N H' defined
as the convex hull of (§) and of the quarter arc consisting of all points (§) +
%u(a) for a € [3,7]. Without specifying the lower part of K, Construction 2.3,
Lemma 2.7.2a) and Construction 2.8 provide a self-dual convex body X := (K N
H*)U (K* N H™) with radial function

px(u(@)) = pr-(u(@)) = hx(—u(a)) ™

) —a(a*(cos(a) + sin()) + sin(a)) ™! for 7 < o < 2,
a(a*(1 — cos(a)) + 1)1 for 37 < o < 2m.

For a = % the self-dual convex body X is shown in Figure 2.2 ¢).

3. A Galois connection

We define a Galois connection between touching cones and faces of an arbitrary
convex subset C' C R™ which has not cardinality one. We will study two lattices of
faces and two lattices of cones associated to C. We refer to [4] for general lattice
theory and to [1, 9, 16] for the lattice theory of convex sets.
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The normal cone at a point € C' is the set N(z) of all vectors u € R™ such that
(u,y —x) < 0 holds for all y € C, i.e. u does not make an acute angle with y — z for
any y € C. The whole space R™ is a normal cone by definition. A touching cone is
any non-empty face of any normal cone of C'. (Touching cones were first introduced
in [15] by a different but equivalent definition).

The set of faces, exposed faces, touching cones resp. normal cones of C' is denoted
by Fe, Ec, 1o resp. No. We have
Ec CFe and Ng C e

Each of these sets is a poset ordered by inclusion and a complete lattice of finite
length where the infimum is the intersection, see e.g. §1.1 and §1.2 in [16]. We write
these lattices in the form

(f07§.7:7\/.7:7/\]:)7 (807§57v57/\5)7
(7e, <7,V1,NT), (Nes <wvs Vv, Av) -

The infimum (supremum) of a subset S C F¢ is denoted by A-S (V£95), the
analogue notation is used for other lattices.

We consider a mapping 6 : L — M between two lattices (L, <p,Vp, Ar) and (M, <p,
Var, Aar). The mapping 6 is

wsotone if x <py = 0z

() <m
antitone if x <py = 0(x) >p 0(y),
a join-morphism if 0(x vV y) = 0(x) V 0(y),
a meet-morphism if 6(z AL y) = 0(x) Ay 0(y) ,
a dual join-morphism if 0(x VvV y) = 0(x) Ay 0(y)
and a dual meet-morphism if 0(x AL y) = 0(x) Vr 0(y) .

Join- and meet-morphisms are isotone, see [4] Chap. I1.3. Hence dual join- and
meet-morphisms are antitone. A (dual) lattice-morphism is a (dual) meet-morphism
which is also a (dual) join-morphism.

The relative interior of C', denoted by ri(C') is the interior of C' in the topology of
the affine hull aff(C') of C. If C' # () then the translation vector space of the affine
hull of C' is denoted by lin(C') := aff(C') — aff(C).

Definition 3.1.

1. To every touching cone we associate an exposed face
d . TC — SC .

We put ®(lin(C)*) = C, ®(R") := () and for touching cones T € 7 \
{lin(C)*,R"} Lemma 7.2 a) in [16] shows that the exposed face

(I)(T) =CnN Hc(u)

is well-defined for an arbitrary non-zero vector u in the relative interior of 7.
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2. To every face we associate a normal cone
W fo — Nc.
We put U(()) := R™. For faces F' € F¢ \ {0} a normal cone is well-defined by
the arguments provided in Definition 4.3 in [16]: We put
U(F):= N(x)
for an arbitrary point x in the relative interior of F'.
Remark 3.2.
1. The map @ : 7o — &E¢ is antitone, this follows from an intersection represen-
tation: If T' € 7¢ is a touching cone and T # lin(C)+, R™ then by Lemma 7.2
a) in [16] we have
O(T) = Nuer\(o} (€ N He(u)) .
2. That ¥ : Fr — N is antitone is discussed in the paragraph following Defi-
nition 4.3 in [16]. For the sake of completeness we notice for faces F' € Fe,
F #:
V(F) = Naer N(z).-
This follows from the inclusion N(y) C N(x) valid for all y in the relative
interior riF" and z € F, see (15)(ii) in [16], while U(F) = N(y) holds by
Definition 3.1.2.
3. It is proved in Proposition 4.7 in [16] that the restrictions ®|y;, and ¥|g. are

dual lattice isomorphisms, inverse to each other. The diagram

Ne ==== & (6)

commutes.

To study ® and ¥ we use the concepts of closure operation and of Galois connection,

see e.g. §V.1 and §V.8 in [4].
Definition 3.3.

1.

A closure operation on a set [ is an operator X — cl(X) on the subsets of I
such that for all X,Y C I we have

X C c(X) (Extensive)

cl(X) = cl(cl(X)) (Idempotent)

if X C Y, then cl(X) C cl(Y) (Isotone)
Subsets X C I with X = cl(X) are called closed sets with respect to cl.
Let (L,<p) and (M, <j;) be any posets and let 6 : L — M, ¢ : M — L be
maps such that for all [1,ly € L and mq, mo € M we have

ll SL lg 1mphes 9([1) ZM 9([2) s
my <p my implies ¢(my) >1 ¢(my)

i <p ¢(0(l)) and  my <p 0(¢(ma)).

Then 6 and ¢ are said to define a Galois connection between L and M.
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3. We define the normal closure as the operation on touching cones
CIN : TO — Nc, T — ﬂNeNc N (7)
TCN

and the exposed closure as the operation on faces

ce: Fo — &, F +— Naes, G- (8)
FCG

Since Ng and &c are complete lattices with the intersection as the infimum, the
normal closure and the exposed closure are closure operations in the sense of Defi-
nition 3.3.1. The closed sets of cly are the normal cones and the closed sets of clg
are the exposed faces.

These closures can equivalently be defined by the mappings ® and ¥ between
touching cones and faces.

Lemma 3.4.

1. Ewvery touching cone T € T has normal closure cly(T) = Vo &(T). In
particular T <7 W o ®(T') holds.

2. EBvery face F' € Fo has exposed closure clg(F) = ® o W(F). In particular
F <z ®oV(F) holds.

Proof. We prove part 1. Let T € 7¢ be a touching cone and let N € N¢ be a
normal cone. By Remark 3.2.1 and 2 the maps ® : 7 — ¢ and ¥ : Fo — Ng
are antitone hence the composition ¥ o ® is isotone. Its restriction ¥ o ®|y., is the
identity mapping by (6) hence

TCN = Uod(T)CVod(N)=N.

This implication has two consequences. Firstly, the inclusion W o ®(7T") C cly(T)
into the normal closure (7) follows. Secondly we have

v (T) = Nyene N €N vene N =0od(T)
TCN Vod(T)CN

where the last equality holds because Wo®(T') € N¢. This shows Wod(T') = cly(T).
The inclusion T' C cly(7') is obvious. The proof of part 2 is analogous. O

Their link to the closure operations enables us to analyze ® and W.
Lemma 3.5.

1. The assignment of exposed faces to touching cones ® : To — E¢ is a dual
join-morphism. For all touching cones T,U € 1o we have ®(T Ny U) >¢
O(T) Ve ®(U) and (T) = (clp(T)).

2. The assignment of normal cones to faces V : Fo — Ng is a dual join-
morphism. For all faces F,G € Fe we have V(F Ag G) >x V(F) Va Y(G)
and VU(F) = Y(cleg(F)).
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Proof. We prove part 1. in five steps. As ® is antitone by Remark 3.2, for all
touching cones T, U € 7. follows

TArU<s T,U =  O(T A U) >e O(T), d(U)

—  O(T A7 U) > ®(T) Ve P(U) and secondly
TV U>r T.U =  O(T Vg U) <e ®(T),d(U)

— (T V7 U) < ®(T)Ne ().

Thirdly, by (6) and Lemma 3.4.1 we have
O(T)=PoVod(T)=d(cly(T)) .
Fourthly, as N¢ is a complete lattice with the restricted partial order from 7,
TN U <7 cly(T) Vr cp(U) <7 cly(T) Var clp(U) .

Finally, by step two, step three, since ®|r. : No — E¢ is a dual lattice isomorphism
and by step four we have
STV U) <g P(T) Ne D(U) = O(clp(T)) Ne D(clpn(U))
= O(clp(T) Vacly(U)) <g (T V7 U).

This completes the proof of part 1., part 2. is analogous. O
Example 3.6. The dual join morphisms in Lemma 3.5 are no dual lattice mor-
phisms in general. A counterexample for ¥ is given by the two non-exposed faces of
the convex set in Figure 2.1 a) or ¢) which is also a counterexample against a lattice
morphism of the exposed closure in Lemma 3.7. The convex bodies in Figure 2.1

b) or d) are counterexamples for ® and for the normal closure, because b) is dual
to a) and d) is dual to c), see Proposition 4.1.

The closure operations inherit properties from ¢ and W.

Lemma 3.7.

1. The normal closure cly : Tc — Ng is a join morphism such that for all
touching cones T, U € 1o we have cly (T A U) <pr cly(T) Ay ey (T).
2. The exposed closure clg : Fo — E¢ is a join morphism such that for all faces

F,G € Fo we have clg(F A G) <g cleg(F) Ne cle(G).

Proof. We prove part 1. and choose touching cones T, U € 7. By Lemma 3.4.1,
Lemma 3.5.1, (6) and Lemma 3.4.1 we have
cn(TVrU)=Vod(TVrU)=V(P(T) Ne D(U))
=Vod(T)VayVodU)=cly(T) Va clp(U) .
The same arguments as above prove
(T A7 U) =V od(TArU) <p VY(P(T) Ve (U))
=Vod(T)VaVodU)=cly(T) Va clp(U),
except the inequality <,r follows because W is antitone by Remark 3.2.2 and because

Lemma 3.5.1 shows ®(T'ArU) >¢ ®(T) Ve ®(U). The proof of part 2. is analogous.
U
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We summarize a part of our results as follows.

Theorem 3.8. Let C' C R™ be any convex subset of cardinality not one. Then the
map ® : T — Ec from touching cones to exposed faces and the map ¥V : Fo — N¢
from faces to normal cones define a Galois connection between the touching cone
lattice Tc and the face lattice Fe.

Proof. This follows from Lemma 3.4 and Lemma 3.5. O

We recover the dual lattice isomorphism (6) from an abstract theorem:

Remark 3.9. If 0: L — M, ¢ : M — L is a Galois connection between complete
lattices L and M, then the maps ¢ o6 and 0o ¢ are closure operations. Moreover, 6
and ¢ restricts to a dual lattice isomorphism between the complete lattices of closed
sets of ¢ o 6 and 6 o ¢. This is proved in §V.8 in [4].

4. Conjugate faces of a convex body

We study conjugate faces of a polar pair of convex bodies in a lattice theoretic
perspective. This pair will be given by the convex body K C R™ with 0 € int(K)
and by its polar convex body K° C R™ with 0 € int(K°).

In the following we consider the conjugate face map (4) in the restriction to the
face lattice Fx of K,
CK . fK - gKo .

It is obvious by definition that Cx (Fk) is included in the exposed face lattice Exo.
Similarly we consider the conjugate face map Cgo : Fro — Ek.

It is well-known that the two conjugate face maps Cx and Cg. define a Galois
connection, see Definition 3.3, between the face lattices Fx and Fgo. The corre-
sponding closure operations, see Remark 3.9, are the exposed closure operations (8)

CKo o CK = Clg‘}-K and CK o CKo = Clg‘}-Ko . (9)

A proof of these statements is given in Theorem 2.1.4 in [15]. Equation (9) brings
the Galois connection (9) in contact with the Galois connection in Theorem 3.8, once
for K and once for K°. The latter consists of ® assigning exposed faces to touching
cones and ¥ assigning normal cones to faces. The arguments in this paragraph
already integrate all solid and dashed arrows into the diagram in Proposition 4.1.

The dotted arrows in the diagram arise from the positive hull operator. The positive
hull of X C R™ is pos(X) := {Az|]A > 0,2 € X} unless X = () where pos(0) := {0}.
Lemma 2.2.3 in [15] proves for faces F' € Fk (indeed for non-empty convex subsets
of K)

U(F) =posoCk(F), (10)

i.e. the normal cone W(F') is the positive hull of the conjugate face. It follows from
(10), (9) and the dual lattice isomorphism (6) that we have a lattice isomorphism

pos|e,o : Exe — N (11)



826 S. Weis / Duality of Non-Ezxposed Faces

Theorem 8.3 in [16] uses (11) and an elementary analysis of sections of normal cones
to prove the lattice isomorphism

pos|ro : Fro — Tk . (12)
The inverse isomorphism is defined for T' € Tx with T # R" by
T—oK°NT (13)

and by R" +— K°. Here 0K° denotes the boundary of K°.

Proposition 4.1. The following diagram commutes. The closure operations cly
and clg are isotone join morphisms satisfying

flanb) < f(a) A f(b) Va.b,

their restrictions to normal cones resp. exposed faces is the identity map. The
mappings ©, U and the conjugate face maps Cx and Cko are antitone dual join
morphism satisfying

flanb) = f(a)V f(b) Va.b,

their restrictions to normal cones resp. exposed faces define dual lattice isomor-
phisms. The positive hull operator pos defines lattice isomorphisms in the diagram.

Proof. The commuting diagram was introduced in the above discussion except we
have to show the equality of functions cly o pos = pos o clg on the domain of the
two face lattices Fx or Fgo. We will carry out the proof for F' € Fgo, the proof
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for faces of K is analogous. By (7), (12), (11), (11) and (8) we have

cly o pos(F) = ApAN € Nk | pos(F) <7 N}
= pos o pos™ ! (AN € Nk | F <z pos '(N)})
= pos (Ag{pos ™' (N) € Exo | F <z pos~}(N)})
= pos (A{G € Eko | F <5 G})
= pos o clg(F).

Lemma 3.7 shows that the closure operations have the claimed properties. This is
shown for ® and ¥ in Lemma 3.5. Since the conjugate face map Cx = ® o pos is a
composition of ® with the positive hull lattice isomorphism (12) it has the claimed

properties. The argument for Cg. is analogous. U
Remark 4.2.
1. The convex bodies in Figure 2.1 a) or ¢) show that the conjugate face map

is not a dual lattice morphism (see Example 3.6 for the other mappings.)
Equality conditions of a dual join morphism in the inequality

fland) > f(a)V f(b) Va,b

were studied in [2] for face lattices of closed convex cones in relation to mod-
ularity of face lattices.

2. Although the exposed face lattices £ and Eko are dually isomorphic by the
conjugate face map, the face lattices Fx and Fgo are not dually isomorphic
in general. Examples are the dual pairs of convex bodies in Figure 2.1.

We notice two restricted isomorphisms of the conjugate face map. For their discus-
sion we introduce further concepts. We call a non-empty face F' € Fx singular if
its normal cone has dimension at least two, dim W(F') > 2. A non-empty face F is
a corner of K if dim W (F') = n. A face F of K is a facet if codim(F) = 1. Finally,
we call a point x € K smooth if its normal cone has dimension one, dim N(z) = 1.

Corollary 4.3. The conjugate face Cx : Fx — Exo restricts to a bijection

{smooth exposed points of K} — {smooth exposed points of K°} .
Proof. The bijection is immediate from Proposition 4.1. O

For completeness we include the following well-known proposition.

Lemma 4.4. All facets of K are exposed faces of K, all corners of K are exposed
points of K.

Proof. Indirectly, if a face F' of K is not exposed, then F' C clg(F'). Now dim(F') <
dim clg(F) < n follows by [12] Corollary 18.1.3 and Lemma 4.6 in [16]. This shows
that F'is not a facet.

Let F be a corner of K. First, the face F' is exposed: Its normal cone is V(F) =
Woclg(F')) by Proposition 4.1. By contradiction, if F' C clg(F'), then clg (F') contains
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a segment and its normal cone has dimension < n — 1. This shows that F' is an
exposed face. Second, let = belong to the relative interior of F, then F' = {z}: By
Definition 3.1.2 of ¥ we have N(z) = W(F') and the proper inclusion {x} C F leads

to a contradiction as before. O

Corollary 4.5. The conjugate face map Cx : Fx — Ego restricts to a bijection
{facets of K} — {corners of K°}. The inverse map is the restriction of Cgo :
Fro — Ek to the bijection {corners of K°} — {facets of K}.

Proof. Since facets and corners are exposed faces by Lemma 4.4, we can use the
decomposition of Cx e, : Ex — Exo into the bijections Ck g, = Popos|e, in Propo-
sition 4.1. Now it suffices to notice from (13) that pos|e, restricts to a bijection
between the facets of K and the normal cones (# R") of K° of dimension n. 0

We arrive at our main results. Let (L, <p) be a poset with greatest element 1. An
element © € L, v # 1 is a coatom of L if for all y € L the two conditions = < y
and y # 1 imply y = x. We consider for normal cones N € Ny the principal ideal

It is clear that 7x () is a complete sublattice of the touching cone lattice 7x and
that N is the greatest element in 7x(N). We call the normal cone N complete if
all coatoms of the ideal 7x(/N) are normal cones of K. Otherwise N is incomplete.
We also consider for exposed faces F' € Fi the principal ideal

Fr(F) ={G e Fx |G <z F},

which is the face lattice of F.

Theorem 4.6. The conjugate face map Cx : Fx — Ego restricts to a surjective
map Fx\Ex — {F € Exo | F has an incomplete normal cone }. It restricts further
to a surjective map with range Cx(Fk \ Ek) and with domain equal to those non-
exposed faces of K which are coatoms of Fi (F') for some exposed face F of K. The
preimage of F € Exo under Cy is Ci' (F) = clg' (Ceo (F)).

Proof. We use Proposition 4.1 extensively in the proof. About the preimage of an
exposed face F' € Eo we notice for faces G € Fi that

Ch(G)=F <= CrooCr(G)=Cko(F) <= cle(G)=Cxo(F).

We prove that the conjugate face of any non-exposed face has an incomplete normal
cone. For a non-exposed face F' € Fx we consider the touching cone 7" := pos(F') €
Tyo and we consider the normal cone of its conjugate face

N :=VoCk(F)=clyopos(F)=cly(T).

Since F' < clg(F) the lattice isomorphism F — 7xo of the positive hull operator
pos implies T' <7 cly(T) = N. By Hausdorff’s Mazimal Principle there exists a
maximal chain C' in the ideal 7xo(N) including T and N, see Chap. VIIL.7 in [4].
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A proper inclusion F} C Fy of faces of K implies a dimension difference dim(F}) <
dim(F,) by Corollary 18.1.3 in [12]. Hence every chain in the face lattice Fy is
finite and hence every chain in the touching cone lattice 7x. is finite. So the
penultimate element P in C exists and P is a coatom in 7xo(N) because C is a
maximal chain. By contradiction, if N is a complete normal cone, then P € Ngo.
Then T' <7 P <7 N implies cly(T') <pr P and this contradicts cly(7") = N.

We prove surjectivity for the second, smaller, restriction. It suffices to find for
every exposed face F' € Exo with incomplete normal cone N := V(F') a coatom G
of Fr(Cko(F')) which is a non-exposed face of K and to show Cx(G) = F. There
exists a coatom T € Tgo(V(F)) such that T & Ngo and we put G := pos™(T).
Since pos is a lattice isomorphism Fx — Txo, the face G is a coatom of Fr (Cre (F)).
Since pos restricts to a bijection pos : £ — Ngo from the exposed faces to the
normal cones, GG is a non-exposed face of K. Finally

Ci(G) = ® 0 pos(G) = B(T) = G o cly(T) = B(N) = F

follows because cly(7') = N holds as T' is a coatom of Tx.(N). O
Remark 4.7.
1. A face with an incomplete normal cone is a singular face (with normal cone

of dimension > 2). Indeed, a one-dimensional normal cone is a closed ray r
and its two non-empty faces {0} and r are both normal cones.

2. If we apply the dual lattice isomorphism Cgo to the second restriction in
Theorem 4.6 then it says that the preimage clgl(F ) of an exposed face F of
K under the exposed closure clg contains a coatom of the face lattice of F'
whenever clz'(F) 2 {F}.
In higher dimensions n > 4, of course, Clgl(F ) can contain non-exposed faces,
which are not coatoms of the face lattice of F. An example is the direct sum
of two copies of the convex body in Figure 2.1 a) or c).

5. Conjugate faces in dimension two

We study conjugate faces of a polar pair of planar convex bodies, in particular
we study the conjugate faces of non-exposed points and we count special points
of the two convex bodies. We characterize self-dual planar convex bodies without
non-exposed faces and we provide a general construction for them.

Let K C R? be a convex body with 0 € int(K) and polar convex body K°. For
extremal points € K there are two alternatives. They have a normal cone N(z)
of dimension dimN (z) = 1 resp. dimN(x) = 2,

x is smooth resp. x is a corner.

The normal cone of a corner z € K is a salient' convex cone i.e. a convex cone such
that N(x) N (=N(z)) = {0}. It follows that N(z) has two distinct one-dimensional
rays ri,ry as its faces. Three types of corners can be distinguished:

'Tf N(x) contains a line, then K is included in a hyperplane in R?, see e.g. (15)(iv) in [16], and
int(K) = @ follows.
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x is a polyhedral corner if 1y, 7y € N,
x is a mized corner if r1 € Ng or ry € Nk but not both,
x is a free corner if ri,ro € Nx.

All facets of K are one-dimensional, we call them segments. If an extremal point
x € K lies on a segment s C K we call x and s incident. Any non-empty face
of K is either an extremal point, a segment or K itself. The extremal points and
relative interiors of segments are a partition of the boundary 0K, see Theorem 18.2
in [12]. The boundary 0K is homeomorphic to the unit circle S* under a positively
homogeneous map (see the Theorem of Sz. Nagy in Construction 2.3).

Remark 5.1 (Local classification of extremal points).

1.

Segments and corners are exposed faces by Lemma 4.4 and the proof that
every non-exposed point is incident with a unique segment is given in Remark
1.1 in [16]. This shows

Fk \ Ex = {non-exposed points}
= {smooth extremal points incident with a unique segment }

except the inclusion “O” in the second equality. This follows by contradiction
from the dual lattice isomorphism W|g,. : Ex — Nk between exposed faces
and normal cones in (6): If z is an exposed point incident with a segment s,
then z C s shows N(z) 2 U(s). Then dimN(x) = 2 so x is not smooth.

By the dual lattice isomorphism ¥|e. : Ex — Nk, exposed points x € Ex
split into the three types of corners above and into smooth exposed points:
x is a polyhedral corner <= 1z is the intersection of two segments,
x is a mixed corner <= 1z is incident with a unique segment,
x is a free corner or <= 1z is not incident with a segment.

a smooth exposed point

(We have seen in part 1. that a smooth exposed point is not incident with
any segment.) Examples are depicted in Figure 2.1 and 2.2.

To understand the conjugate face map we divide the non-exposed points in

and

Frixed . — Lo € Fi \ €k | Cx(2)is a mixed corner of K°}

Flree .— {1 € Fx \ Ek | Ck(z)is a free corner of K°} .

We show that {Fmixed  Fleel jg o partition of the non-exposed points Fi \ Ex.

Lemma 5.2. The conjugate face map Cx : Fx — Eio restricts to the surjection

Fr \ Ex — {mized corners of K°} U {free corners of K°}.

The restriction of Cx to Fi*°d js 1-1 and the restriction to Fie is 2-1.

Proof. All one-dimensional normal cones of K° are complete. This shows

{F € Eko | F has an incomplete normal cone}

= {mixed corners in K°} U {free corners in K°}
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so Theorem 4.6 proves the first claim. Proposition 4.1 and the positive hull isomor-
phism pos : Fx — Txo show for mixed and free corners x € K°

{N,T} if x is a mixed corner,

{N,T1,T5} if zis a free corner,

pos o Cil(z) = eI} (N) = {

where N := N(z) is the normal cone and T, T}, T, are rays such that T} # T5. The
inverse (13) of pos gives

Cl(x) = {NNOK, TNOK} if x is a mixed corner,
" | {NNOK, Ty NOK, T,NOK} if z is a free corner.

As pos : Ex — Nxo is a bijection between exposed faces and normal cones, N NOK
is an exposed face and TNOK and T} NOK # T, NJK are non-exposed points. [

We use a 10-tuple to label the cardinalities (possibly oo) of special points and
segments:

convex body K | K°
non-exposed points | n | n°
polyhedral corners | p | p°
mixed corners m | m°
free corners f ©
segments s | s°

The following linear equations hold for all planar convex bodies K with 0 € int(K).
From Lemma 5.2 follow the equations

n=m°+2f°, n°=m+2f. (14)
By Corollary 4.5 we have
s=p°+m°+ f°, s=p+m+ f. (15)
Counting endpoints of segments, we get from Remark 5.1
2s=n+2p+m, 25° =n°+2p° +m°. (16)

These equations span a five-dimensional space of linear functionals and on the other
hand the examples in Figure 2.1 plus the example of a triangle provide five linearly
independent data vectors.

If K is self-dual then five cardinalities (n,p,m, f,s) suffice to count the special
points. If they are finite, then (14)—(16) reduce to

s—p=n—f="4ntm) (17)

while three linearly independent data vectors are available from Figure 2.2 a)—c).

In the following proposition the necessary condition of an odd number of segments
is likely to be well-known. For completeness we include a proof.
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Lemma 5.3. If K is self-dual and has no non-exposed points (n = 0), then all
corners of K are polyhedral (m = f = 0) and s = p. FEither K is strictly convex
(s =0), a polytope with s = 3,5,7,... segments or s = 0.

Proof. If n = 0 then Lemma 5.2 implies m = f = 0 and (16) shows s = p. A
two-dimensional convex body without boundary segments (s = p = 0) is strictly
convex i.e. all boundary points are smooth exposed points.

We consider 0 < s < oo. Any endpoint of a segment is an exposed point (since
n = 0) hence it is a polyhedral corner (since m = 0). As the number of segments s
is finite, they are connected in a polygonal circuit. So K is a polytope, which must
have at least three segments. We show that p is odd.

Like in Construction 2.8 b) we rotate the polytope K about the origin such that
z_ = —(}) pr (= (})) maximizes the Euclidean norm on K. Then z_ is an exposed
point of K, hence a polyhedral corner of K and the normal cone N(z_) is a two-
dimensional salient convex cone. The segments incident with x_ lie in the ball of
radius |x_| about the origin, so N(x_) meets R* \ H~ and R*\ H*. By (10) we
have

N(z_) =posoCk(z_),

so the conjugate face Cr(z_) is a segment meeting R?* \ H~ and R?* \ HT. If
r: R? — R? is the reflection a — (—a), then for some y € R*\ H~ and 2z € R*\ H™
ro CK(‘/L.*) = [y7 Z]

is a segment of K* = K. In particular, the boundary point (}) px((§)) of K is not
a corner since it lies in the relative interior of [y, z].

We consider the polygonal chain C' in the boundary 0K from x_ to y which lies
in H*. Its segments are in bijection to its vertices distinct from x_ (by assigning
endpoints in the direction from x_ to y). As x_ is a corner, the segments of C' are
the segments s # r o Cx(z_) of K meeting K \ H~. Asy € K\ H™ the vertices of
C' distinct from x_ are the corners of K lying in K \ H~. This gives a bijection

{corners in K \ H~} = {segments s # r o Cx(x_) meeting K \ H™} (18)
between a subset of corners of K and a subset of segments of K. Similarly we have
{corners in K\ H*} = {segments s # r o Cx(x_) meeting K \ H*}. (19)

By Corollary 4.5 the map r o Cx restricts to a bijection between the segments and
the corners of K, one pair of corresponding faces being

{z—roCr(z)}. (20)

The corners and segments (18), (19) and (20) of K are a complete list. Hence,
according to Lemma 2.7.2 d) the map roCy is a bijection between (18) and (19). O

We provide a construction for planar self-dual convex bodies without non-exposed
points. Part b) shows that the construction is general.
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Construction 5.4.

(a) Let K satisfy pr(£(3)) = hx(£(§)) = e for some X € R. Let K have
no non-exposed points and let all corners of K be polyhedral. We assume that
z_ = —(§) pr(=(})) is a smooth extremal point of K if and only if x, :=
(3) P ((})) is a smooth extremal point of K. Then L := (KNHT)U(K*NH™)
is a self-dual convex body without non-exposed points.

(b)  For every planar self-dual convex body K without non-exposed points ezists a

rotation in ¢ € SO(2) such that ¥ (K) satisfies the assumptions in a).

Proof. To prove b) we consider a rotated convex body K according to Construc-
tion 2.8 b). As rotation is an isometry, K is self-dual and has no non-exposed faces.
All corners of K are polyhedral by Lemma 5.3. Since K has maximal x-extension
on the z-axis we have z, € r o Cg(z_). If x_ is a smooth exposed point then
Corollary 4.3 shows that 2, = roCk(x_) is a smooth exposed point and vice versa.

We prove a). Construction 2.8 a) already shows that L is a self-dual convex body.
We show that L has no non-exposed points. First we show that any extremal point
x of Lin L\ H™ is an exposed point of L (the case x € L\ H* is analogous).
By Lemma 2.7.1 x is an extremal point of K, hence an exposed point of K. By
Lemma 2.7.2¢) there exists v € R? \ H~ such that {z} = K N Hg(u). Then
Lemma 2.7.2b) shows that {x} = L N Hy(u) is an exposed point of L.

We show that a non-exposed point z_ in L leads to a contradiction, the proof
for x, is analogous. We will use that all corners of K* are polyhedral and (since
(K*)* = K) that K* has no non-exposed points (this is proved in Lemma 5.2). By
Remark 5.1 any extremal point of K or K* is either a smooth exposed point or a
polyhedral corner.

Since L has maximal x-extension on the z-axis we have x4 € roCr(z_). If z_ is
a non-exposed point then Lemma 5.2 shows that r o Cp(z_) is a mixed or a free
corner of L so

xy =roCr(z_). (21)
The contradiction that z is incident with two segments in L completes the proof.

If 2_ is a non-exposed point of L then x_ is incident with a segment [z_,y] of L
say fory € L\ H- = K\ H™ (the case y € L'\ H" is analogous by arguing with K*
in place of K). Since z_ is incident with a unique segment, the smallest exposed
face (8) of L containing z_ is the segment

e(e) = [o_,y]. (22)

We show that x, is incident with a segment of L in H~. The extremal point y of
L is an extremal point of K by Lemma 2.7.1. Hence y is a polyhedral corner of K
and also of L. Corollary 4.5 shows that the face s := r o C(y) is a segment of L.
By (21), by the equation Cp(x_) = Cr, o clg(x_) from Proposition 4.1, by (22) and
since r o Cy, is antitone, we obtain that x, is incident with the segment s,

xy=roCr(z_)=roCr(lz_,y]) Cs.
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Lemma 2.7.2d) shows s C H™.

We find a segment of L in H" incident with z,. If 2, is a smooth exposed point
of K then x_ is a smooth exposed point of K by Corollary 4.3. This is wrong as
x_ is incident with the segment [z_,y] of L hence is included in a segment of K.
Otherwise if x, is not a smooth exposed point of K it is a polyhedral corner of K
or lies in the relative interior of a segment of K. In both cases x, is included in a

segment of K meeting K \ H~, hence is incident with a segment of L included in
HT. O

We give an example of a planar self-dual convex body with n =0 and s = p = oo.

Example 5.5. Let E := {u(a) | a = (§£27™)7, k € {1,3},m € N}UW{a(Z), a(37)}

for u(a) := (COS(Q) ) It follows from Carathéodory’s theorem, see e.g. Theorem 17.2

sin(a)
in [12], that the convex hull K of F is compact. Since E C S', the convex body K
has no non-exposed points. The two accumulation points a(%) and a(37) of E are
approximated by points of £ both counterclockwise and clockwise on S*, hence they
are smooth exposed points of K. This shows that all corners of K are polyhedral.
The convex body (K NH')U(K*NH") is self-dual and has no non-exposed points
by Construction 5.4 a), it is depicted in Figure 2.2 d).
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