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We define the notion of ideal convergence for sequences (z,) with values in topological spaces X
with respect to a family {F, : n € X} of subsets of X with n € F,. Each set F,, quantifies the
degree of accuracy of the convergence toward 7. After proving that this is really a new notion,
we provide some properties of the set of limit points and characterize the latter through the ideal
cluster points and the ideal core of (z,).
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1. Introduction and main results

Let Z C P(w) be an ideal on the nonnegative integers w, that is, a family closed
under subsets and finite unions. It is also assumed that the family of finite subsets
of w, denoted by Fin, is contained in Z and that and w ¢ Z.

Let also « = (z,,) be a sequence taking values in a topological space (X, 7) (note
that it is not assumed to be Hausdorff). Lastly, let
F ={F,:neX}

be a rough family, that is, a collection of subsets of X with the property that n € F,
for all n € X. Rough families, as it will be clear from the following definition,
quantifies the “degree of accuracy” of sequences taking values in X toward their
limits 7. In particular, they can change depending on 7: smaller sets F;, can be
interpreted as smaller oscillations of the tail of sequence around its limit 7.

Definition 1.1. A sequence x = (z,,) is said to be Z-convergent to n € X with
roughness %, shortened as (Z, %, 7)-lim, x, = 7, provided that

{new:z,¢U}eZ

for all 7-open sets U C X such that F;, C U. We denote by L,(Z,.%,7) the set of
all Z-limits of & with roughness .%, that is,

Lo(Z,.7,7) = {ne X :(T,F, 1)lim,z, =n}. 0

Notice that:

(i) if F,, = X for all n € X, then Z-convergence with roughness .# corresponds to
ordinary convergence with respect to the trivial topology o := {0, X };
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(ii) if F,, = {n} for all n € X, then Z-convergence with roughness .# simplifies to
the classical Z-convergence with respect to the same topology 7; in such case,
we simply speak about (Z, 7)-convergence, see e.g. [10];

(iii) if F,, = {n} for all n € X and, in addition, Z = Fin, then Z-convergence with
roughness .% corresponds to ordinary 7-convergence;

(iv) special instances where X is a normed vector space and each F), is chosen as

the closed ball with center n and fixed radius r € [0, 00) have been studied in
several works, see e.g. [1, 2, 13] and references therein.

It is remarkable that Definition 1.1 may not correspond to (J,v)-convergence, for
every ideal J on w and for every topology v on X:

Proposition 1.2. Suppose that X = R is endowed with the standard Fuclidean
topology 7. Then there exists a rough family F such that, for each ideal T on w,
there is no ideal J on w and no topology v on R for which the equivalence

(Ia gza T)_hnln Tn =1 Zf and Only Zf (j, I/)-liﬂln Ty, =1 (1)
holds for all real sequences (x,) and all n € R.

This proves that the type of convergence stated in Definition 1.1 defines a new
notion which is not included in the classical one. Note that such preliminary result
is necessary to avoid unnecessary repetitions of known facts, as it already happened
in the literature with other variants of ideal convergence, see for instance the case
of “ideal statistical convergence” in [3, Theorem 2.3]. Hereafter, the dependence
on the underlying topology 7 will be made implicit whenever it is clear from the
context, so that we will simply write (Z,.%)-lim, x, =n or n € Lx(Z,.%).

The aim of this note is to prove some characterizations of Z-convergence with rough-
ness .%. For, we need to recall some definitions. A point n € X is said to be an
T-cluster point of a sequence x if {n € w: x, € U} ¢ T for all open sets U contain-
ing 7. The set of Z-cluster points of « is denoted by I'y(Z). It is known that I',(Z)
is a closed subset of X, and it is nonempty provided that {n € w: z, ¢ K} € Z for
some compact K C X. Moreover, it follows readily from the definitions that

Lo(Z, 7) C Ta(2).
We refer to [10] for basic properties and characterizations of Z-cluster points.

Theorem 1.3. Let x be a sequence taking values in a reqular topological space X
such that {n € w: x, ¢ K} € T for some compact set K C X. Also, let T be an
ideal on w, let F be a rough family, and pick n € X such that F, is closed. Then

(Z,7)-lim,z, =n  ifand only if Tx(Z)C F,.

Note that the hypothesis on « includes the case of relatively compact sequences
(which corresponds to the case Z = Fin). In addition, the claim does not hold
without any restriction of F: for, suppose that X = R, F,, = (n — /2,7 + 3) for
all n € R, Z = Fin and x is an enumeration of the rationals in [0,1]. Then it is
readily checked that L,(Z,.#) = {1/2} and, on the other hand, there are no 7 for
which [0,1] =T, (Z) C F,.
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The following corollary is immediate:

Corollary 1.4. Suppose, in addition to the hypotheses of Theorem 1.3, that every
F, is closed. Then
Lo(Z,#)={ne X :T',(Z) C F,}.

Hereafter, if X is a metric space with metric d, we denote the closed ball with center
n € X and radius 7 € [0, 0] by

B,(n) ={x € X : d(z,n) <r}.

In particular, By(n) = {n} and B (n) = X.

As a [non-]linear property of (Z,.%)-convergence, we obtain the following:

Proposition 1.5. Let X be a normed vector space, let I be a nonmaximal ideal on
w, and fix a rough family F for which the sets F,, are uniformly bounded. Then the
family of (Z,.7)-convergent sequences is a vector space if and only if F, = {n} for
alln e X.

We remark that, if Z is maximal (that is, if its dual filter 7* :=={S Cw:w\ S € I}
is a free ultrafilter on w), then all relatively compact sequences are Z-convergent
(hence also (Z,.%)-convergent, for each rough family 7).

Given a topological space X, we endow the hyperspace
H(X) :={F C X : F nonempty closed}.

with the upper Vietoris topology 7, that is, the topology generated by the base of
sets {F' € H(X) : F C U}, with U € 7 open. Moreover, we recall that a metric
space X is said to have the UC-property if nonempty closed sets are at a positive
distance apart, that is, for all F, F’ € H(X) with FNF’' = (), there exists € > 0 such
that d(z,2') > e for all x € F and 2’ € F’, where d is the metric on X. See [11, 12]
and references therein. (It is remarkable that a metric space X has the UC-property
if and only if the ordinary Vietoris topology is weaker than the Hausdorff topology
on H(X), if and only if every continuous real-valued function on X is uniformly
continuous. In particular, all compact metric spaces X have the UC-property by
the Heine-Cantor’s theorem.)

Theorem 1.6. Let x be a sequence taking values in a topological space X, let T be
an ideal on w, and pick a rough family % made by closed sets. Also, suppose that
the map n — F, is T-continuous. Then Ly(Z,.F) is closed.

The result above does not hold, similarly, without any restriction on the rough
family .#. Indeed, suppose that X =R, F,, = (n — 3,7+ 3) for all n € R, Z = Fin,
and that « is defined by z,, = (—1)" for all n € w. Then L4x(Z,.7) = (-2,2). In
particular, together with the example given after Theorem 1.3, if every F;, is open
then L, (Z,.%) is not necessarily closed, nor open.

In the special case where X is a metric space with the UC-property and each Fj, is
a closed ball B, (n), for some function r(-), we obtain the following:
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Corollary 1.7. Let x be a sequence taking values in a metric space X with the
UC-property, let T be an ideal on w, and fix an upper semicontinuous function
r: X = [0,00) such that F, = By, (n) for alln € X. Then Ly(Z, %) is closed.

In the case that X has a linear structure on X, we can show that L, (Z,.#) is convex:

Theorem 1.8. Let @ be a sequence taking values in a normed vector space X with
the UC-property, let T be an ideal on w, and fix a concave function r: X — [0,00)
such that F, = By, (n) for alln € X. Then Ly(Z, F) is convex.

Using the above results, we provide a relationship between (Z,.%)-convergence and
the Z-core of a sequence x, see [6, 8]. For, given an ideal Z on w and a sequence x
taking values in a topological vector space X, we define

coreg(Z) := (] @({z, :n € E}).

Eecl*

In other words, the Z-core of x is the smallest closed convex set containing the
closure of the convex hull of {z,, : n € E} for all E € Z* (where €0 stands for the
closed convex hull operator). In the case where Z = Fin, we obtain the so-called
Knopp core, see [4, 5, 7] and references therein.

Theorem 1.9. Let x be a sequence taking values in a locally convex space X such
that {n € w:x, ¢ K} € T for some compact K C X. Also, let T be an ideal on w
and pick a rough family F such that every F, is closed and convex. Then

Lo(Z, #) ={ne X :core,(Z) C F,}. (2)
We remark that the hypothesis on @ cannot be removed. Indeed, if X = / is
the Banach space of bounded real sequences, endowed with the supremum norm,
F, = Bi(n) for all n € {y and & = (eg, —€g, €1, —€1,...), where e, stands for the
kth unit vector (so that & is not relatively compact), then it is readily seen that

coregy(Fin) = {0} and Ly (Fin, . #) = cy.

(Here, cqo represents the Banach subspace of eventually zero sequences.) However,
(1,1,...) €e{z €l : 0 € By(2)} \ coo. To sum up, x is a nonconvergent bounded
sequence, its Knopp core is a singleton, it is (Fin, .#)-convergent to every sequence
N € coo, and the claimed equality (2) fails.

Lastly, we prove that the above properties coincide for relatively compact sequences:

Corollary 1.10. Let x be a sequence taking values in a metric vector space X such
that {n € w: x, ¢ K} € T for some compact K C X. Also, let T be an ideal on w,
fixr € [0,00), and define F by F,, = B.(n) for alln € X.
Then the following are equivalent:
(i) = is Z-convergent to some n € X;
(ii) coreg,(Z) contains a unique vector n' € X;
(i) Lg(Fin, #) = B.(1") for some " € X.

In addition, in such case, n=n"=1n".

The proofs follow in the next section.
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2. Proofs

Proof of Proposition1.2. Let .# be the rough family defined by F}, := [n—1,7n+1]
for all n € R. Fix also an ideal J on w and a topology v on R, and suppose for the
sake of contradiction that equivalence (1) holds for all « and . We divide the proof
in two cases.

CASE (1): Z NOT MAXIMAL. If 7 is not maximal, there exists a partition {A, B} of
w such that A, B ¢ Z. For each r € R and h € (0,1], let ™" be the real sequence

defined by 2 = r if n € A and 2 = r + h otherwise. Define similarly y™" such

that y\” =7 + h if n € A and 2" = r otherwise. If follows that

Lyo (Z,F,7) = Lyen (L, F,7) = [r+h— 1,7 +1]

for each » € R and h € (0,1]. Now, let V' be a nonempty v-open set and fix a point

reV. Fix also h€(0,1]. By the equivalence (1), we obtain {n€w : ) ¢VieJg

and {n € w: ylrh ¢ Ve J. lf r4+h ¢V, this can be rewritten as B € J and
A € J, respectively, which is impossible because it would imply w =AU B € J.

Hence r+h € V. By the arbitrariness of h, we obtain [r,r + 1] C V. However, since
r is arbitrary, we conclude that V' = R, therefore v stands for the trivial topology
7o. This is a contradiction because L,un (Z, F,7) # R.

CASE (11): Z MAXIMAL. If 7 is maximal, then either A := {2n : n € w} or
B:={2n+1:n € w} belong to Z. Suppose without loss of generality B € Z (the
remaining case is symmetric). With the same notations above, it follows that

Lyom(Z,#,7)=[r—1,r+1] and Lyew(Z,F,7)=+h—1r+h+1]

for each » € R and h € (0,1]. Since r € Lyon)(Z, #,7) N Lyea (Z,-F,7), we obtain

by the equivalence (1) that (7,v)-lim, 20" = (J,v)-lim, y&™ = r. Hence the
sequence ™" + y(™") which is constantly equal to 2r + h, is (J, v)-convergent to
2r. Since r and h are arbitrary, it follows that v is the trivial topology 7y, reaching
the same contradiction as in the nonmaximal case above. [

Proof of Theorem 1.3. IF PART. Suppose that every Z-cluster point belongs to
F,. Fix an open set U C X containing I';(Z). We need to show that the set

:={n €w:x, ¢ U} belongs to Z. For, notice that I';(Z) is a nonempty compact
subset of K, see [10, Lemma 3.1]. Suppose by contradiction that S ¢ Z and define
I :={n € w:x, ¢ K}, which belongs to Z by assumption. Considering that
{new:z, € K\U} =S\1¢7Zand that K\ U is compact, we conclude, again by
[10, Lemma 3.1], that T'y(Z) N (K \ U) # 0, which contradicts the hypothesis S ¢ Z.
Therefore (Z,.%)-lim, x, = 7.

ONLY IF PART. Suppose for the sake of contradiction that there exists an Z-cluster
point 19 € X \ F,,. Since X is regular, one can pick disjoint open sets Uy, U, € X
such ny € Uy and F,, C U,. However, this is impossible because {n € w : z,, € Uy},
which does not belong to Z since 7y is an Z-cluster point of «, is contained in
{new:x, ¢U,}, which belongs to Z because (Z, #)-lim,, z,, = 1. O
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Remark 2.1. It is clear from the proof above that the IF PART of Theorem 1.3
holds for arbitrary topological spaces X and arbitrary rough families .%.

On the same line, the ONLY IF PART holds also for arbitrary sequences.

Proof of Proposition 1.5. Ir pPART This is a folklore fact, by the linearity of the
Z-limit.

ONLY IF PART. Since Z is not maximal, there exists a partition {A, B} of w such
that A, B ¢ Z. Suppose also that there exists n € X such that F, # {n}, hence it
is possible to fix a point ' € F, \ {n}. Let @ be the sequence such that z, = 7
if n € A and x,, = 1 otherwise. It follows by the definition of (Z,.%)-convergence
that {n,n'} C L.(Z,.#). Pick also r € (0,00) such that diam(F,) < r for all
n € X. If the claim were false, the sequence kx would be (Z,.%)-convergent for
all k € w. Notice that I'v,(Z) = kI'x(Z) = {kn,kn'}, see e.g. [9, Proposition
3.2]. However, the distance between the latter two Z-cluster points can be made
arbitrarily large as & — oo, which contradicts the hypothesis that the sets F;, are
uniformly bounded. O

Proof of Theorem 1.6. If L. (Z,.%) = 0, the claim is obvious. Otherwise, pick a
T-convergent net (1;);e; with values in L, (Z,.%) and define n := lim; n;. Since the
map 7 — F, is T-continuous, then the net (F,);cs is T-convergent to F;,.

Fix an arbitrary open set U C X which contains F, and define the T-open set
U:={F e H(X): F CU}. By the convergence of (Fy,)ier, there exists j € I such
that F,, el, iec., F,, CU. Since n; €L(Z,.%), it follows that {ncw: 2, ¢U}cZ.

Therefore (Z,.%)-lim, z, = 7. O

Proof of Corollary 1.7. Denote by d the metric on X. Thanks to Theorem 1.6,
it is sufficient to show that the map n — F, is T-continuous. Pick a convergent net
(1:)ier with limit n € X, hence lim; d(n;,7) = 0. We claim that the net of closed
balls (B, ,)(1:))icr is T-convergent to B, (n). For, pick an open set U containing
B, ((n). In particular, n € U. As in the previous proof, set

U:={FecH(X):FCU}.

IfU =X then {n€w:x, ¢ U} =0¢€Z Otherwise U is a proper subset of X,
hence X \U is a nonempty closed set disjoint from F,. Since X has the UC-property,
it follows that there exists € > 0 such that d(z,y) > e forallz € F,, and y € X \ U.
At this point, set

G:={zxeX:dzn) <r(n+e}.

It follows by construction that F,, C G C U. By the upper semicontinuity of r and
the convergence of (7;);cr, there exists an index iy € I such that r(n;) < r(n) + ¢/2
and d(n;,n) < ¢/2 for all i > iy. Therefore

Vi >dg, Ve € Fy, , d(x,n) < d(x,m) +d(ni,n) <r(ny) +22<r(n) +e.

This shows that F;,, € G C U (hence, F},, € U ) for all ¢ > iy, concluding the
proof. [
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Proof of Theorem 1.8. If L,(Z,.%) = (), the claim is obvious. Otherwise, fix two
vectors 1,1 € Lp(Z, F), a weight a € (0,1), and define v := an + (1 — a)n’. We
claim that v € L,(Z,.#). For, pick an open set U containing F,. If U = X then
new:x,¢U}=0€Z IfU +# X, then by the UC-property of X, there exists
e > 0 such that I, C V C U, where V is the open ball with center v and radius
r(y) + €. Lastly, set

S={new:|z,—nl>r(n)+ecor |z, -7 >r()+e}.
Since 0,1 € L(Z, F), it follows that S € Z. At this point, for each n € w\ S,

lzn = Al = lle(zn —n) = (1 = a)(zn — 7|
< afzn —nll+ (1 = a)llzn =7
<a(r() +e)+ (1 =a)(r(n) +¢) <r(7) +e.

Therefore {n € w:x, ¢ U} C{new:z, ¢V} CSeZ Since U is arbitrary, we
conclude that v € L, (Z,.%). O

Remark 2.2. It is worth noting that the analogue of Theorem 1.8 holds in metriz-
able vector spaces X with a compatible metric d which is translation invariant and
for which d(ax,0) < ad(z,0) for all z € X and « € (0,1).

Proof of Theorem 1.9. Since every topological vector space is regular, it follows
by Corollary 1.4 and the hypothesis that each F}, is closed and convex that

Lo(Z, F) = {n € X : c0(T4(Z)) C F,} .

The conclusion follows by [8, Theorem 2.2] and [6, Theorem 3.4], which state that
coreg(Z) coincides with ¢o(I'(Z)). O

Proof of Corollary 1.10. (i) <= (ii). See [8, Proposition 3.2].

(i) = (iii). Suppose that Z-lim, z, = n. Pick v € B,(n) and an open set U
containing B, (7). Since n € U, it follows that {n € w : x,, ¢ U} € Z. Therefore
x is (Z,.F)-convergent to . Conversely, if v ¢ B,.(n), then n ¢ B,(y). Since X
is regular, there exists disjont open sets U, U, such that n € U and B,(y) C U,.
However, this implies that {n € w: z, ¢ U;} 2 {n € w: x, € U} € T*. By the
arbitrariness of v in both cases, we conclude that L, (Fin, #) = B,.(n).

(iii) = (ii). Thanks to Theorem 1.9, we obtain necessarily that core,(Z) = {n}. O
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