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We define the notion of ideal convergence for sequences (xn) with values in topological spaces X
with respect to a family {Fη : η ∈ X} of subsets of X with η ∈ Fη. Each set Fη quantifies the
degree of accuracy of the convergence toward η. After proving that this is really a new notion,
we provide some properties of the set of limit points and characterize the latter through the ideal
cluster points and the ideal core of (xn).
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1. Introduction and main results

Let I ⊆ P(ω) be an ideal on the nonnegative integers ω, that is, a family closed
under subsets and finite unions. It is also assumed that the family of finite subsets
of ω, denoted by Fin, is contained in I and that and ω /∈ I.
Let also x = (xn) be a sequence taking values in a topological space (X, τ) (note
that it is not assumed to be Hausdorff). Lastly, let

F := {Fη : η ∈ X}

be a rough family, that is, a collection of subsets of X with the property that η ∈ Fη

for all η ∈ X. Rough families, as it will be clear from the following definition,
quantifies the “degree of accuracy” of sequences taking values in X toward their
limits η. In particular, they can change depending on η: smaller sets Fη can be
interpreted as smaller oscillations of the tail of sequence around its limit η.

Definition 1.1. A sequence x = (xn) is said to be I-convergent to η ∈ X with
roughness F , shortened as (I,F , τ)- limn xn = η, provided that

{n ∈ ω : xn /∈ U} ∈ I

for all τ -open sets U ⊆ X such that Fη ⊆ U . We denote by Lx(I,F , τ) the set of
all I-limits of x with roughness F , that is,

Lx(I,F , τ) := {η ∈ X : (I,F , τ)- limn xn = η} .

Notice that:
(i) if Fη = X for all η ∈ X, then I-convergence with roughness F corresponds to

ordinary convergence with respect to the trivial topology τ0 := {∅, X};
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(ii) if Fη = {η} for all η ∈ X, then I-convergence with roughness F simplifies to
the classical I-convergence with respect to the same topology τ ; in such case,
we simply speak about (I, τ)-convergence, see e.g. [10];

(iii) if Fη = {η} for all η ∈ X and, in addition, I = Fin, then I-convergence with
roughness F corresponds to ordinary τ -convergence;

(iv) special instances where X is a normed vector space and each Fη is chosen as
the closed ball with center η and fixed radius r ∈ [0,∞) have been studied in
several works, see e.g. [1, 2, 13] and references therein.

It is remarkable that Definition 1.1 may not correspond to (J , ν)-convergence, for
every ideal J on ω and for every topology ν on X:

Proposition 1.2. Suppose that X = R is endowed with the standard Euclidean
topology τ . Then there exists a rough family F such that, for each ideal I on ω,
there is no ideal J on ω and no topology ν on R for which the equivalence

(I,F , τ)- limn xn = η if and only if (J , ν)- limn xn = η (1)

holds for all real sequences (xn) and all η ∈ R.

This proves that the type of convergence stated in Definition 1.1 defines a new
notion which is not included in the classical one. Note that such preliminary result
is necessary to avoid unnecessary repetitions of known facts, as it already happened
in the literature with other variants of ideal convergence, see for instance the case
of “ideal statistical convergence” in [3, Theorem 2.3]. Hereafter, the dependence
on the underlying topology τ will be made implicit whenever it is clear from the
context, so that we will simply write (I,F )- limn xn = η or η ∈ Lx(I,F ).
The aim of this note is to prove some characterizations of I-convergence with rough-
ness F . For, we need to recall some definitions. A point η ∈ X is said to be an
I-cluster point of a sequence x if {n ∈ ω : xn ∈ U} /∈ I for all open sets U contain-
ing η. The set of I-cluster points of x is denoted by Γx(I). It is known that Γx(I)
is a closed subset of X, and it is nonempty provided that {n ∈ ω : xn /∈ K} ∈ I for
some compact K ⊆ X. Moreover, it follows readily from the definitions that

Lx(I,F ) ⊆ Γx(I).

We refer to [10] for basic properties and characterizations of I-cluster points.

Theorem 1.3. Let x be a sequence taking values in a regular topological space X
such that {n ∈ ω : xn /∈ K} ∈ I for some compact set K ⊆ X. Also, let I be an
ideal on ω, let F be a rough family, and pick η ∈ X such that Fη is closed. Then

(I,F )- limn xn = η if and only if Γx(I) ⊆ Fη.

Note that the hypothesis on x includes the case of relatively compact sequences
(which corresponds to the case I = Fin). In addition, the claim does not hold
without any restriction of Fη: for, suppose that X = R, Fη = (η − 1/2, η + 1

2
) for

all η ∈ R, I = Fin and x is an enumeration of the rationals in [0, 1]. Then it is
readily checked that Lx(I,F ) = {1/2} and, on the other hand, there are no η for
which [0, 1] = Γx(I) ⊆ Fη.
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The following corollary is immediate:
Corollary 1.4. Suppose, in addition to the hypotheses of Theorem 1.3, that every
Fη is closed. Then

Lx(I,F ) = {η ∈ X : Γx(I) ⊆ Fη} .

Hereafter, if X is a metric space with metric d, we denote the closed ball with center
η ∈ X and radius r ∈ [0,∞] by

Br(η) := {x ∈ X : d(x, η) ≤ r}.

In particular, B0(η) = {η} and B∞(η) = X.
As a [non-]linear property of (I,F )-convergence, we obtain the following:

Proposition 1.5. Let X be a normed vector space, let I be a nonmaximal ideal on
ω, and fix a rough family F for which the sets Fη are uniformly bounded. Then the
family of (I,F )-convergent sequences is a vector space if and only if Fη = {η} for
all η ∈ X.

We remark that, if I is maximal (that is, if its dual filter I⋆ := {S ⊆ ω : ω \S ∈ I}
is a free ultrafilter on ω), then all relatively compact sequences are I-convergent
(hence also (I,F )-convergent, for each rough family F ).
Given a topological space X, we endow the hyperspace

H(X) := {F ⊆ X : F nonempty closed}.

with the upper Vietoris topology τ̂ , that is, the topology generated by the base of
sets {F ∈ H(X) : F ⊆ U}, with U ∈ τ open. Moreover, we recall that a metric
space X is said to have the UC-property if nonempty closed sets are at a positive
distance apart, that is, for all F, F ′ ∈ H(X) with F ∩F ′ = ∅, there exists ε > 0 such
that d(x, x′) > ε for all x ∈ F and x′ ∈ F ′, where d is the metric on X. See [11, 12]
and references therein. (It is remarkable that a metric space X has the UC-property
if and only if the ordinary Vietoris topology is weaker than the Hausdorff topology
on H(X), if and only if every continuous real-valued function on X is uniformly
continuous. In particular, all compact metric spaces X have the UC-property by
the Heine-Cantor’s theorem.)

Theorem 1.6. Let x be a sequence taking values in a topological space X, let I be
an ideal on ω, and pick a rough family F made by closed sets. Also, suppose that
the map η 7→ Fη is τ̂ -continuous. Then Lx(I,F ) is closed.

The result above does not hold, similarly, without any restriction on the rough
family F . Indeed, suppose that X = R, Fη = (η − 3, η + 3) for all η ∈ R, I = Fin,
and that x is defined by xn = (−1)n for all n ∈ ω. Then Lx(I,F ) = (−2, 2). In
particular, together with the example given after Theorem 1.3, if every Fη is open
then Lx(I,F ) is not necessarily closed, nor open.
In the special case where X is a metric space with the UC-property and each Fη is
a closed ball Br(η)(η), for some function r(·), we obtain the following:
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Corollary 1.7. Let x be a sequence taking values in a metric space X with the
UC-property, let I be an ideal on ω, and fix an upper semicontinuous function
r : X → [0,∞) such that Fη = Br(η)(η) for all η ∈ X. Then Lx(I,F ) is closed.

In the case that X has a linear structure on X, we can show that Lx(I,F ) is convex:

Theorem 1.8. Let x be a sequence taking values in a normed vector space X with
the UC-property, let I be an ideal on ω, and fix a concave function r : X → [0,∞)
such that Fη = Br(η)(η) for all η ∈ X. Then Lx(I,F ) is convex.

Using the above results, we provide a relationship between (I,F )-convergence and
the I-core of a sequence x, see [6, 8]. For, given an ideal I on ω and a sequence x
taking values in a topological vector space X, we define

corex(I) :=
⋂

E∈I⋆

co({xn : n ∈ E}).

In other words, the I-core of x is the smallest closed convex set containing the
closure of the convex hull of {xn : n ∈ E} for all E ∈ I⋆ (where co stands for the
closed convex hull operator). In the case where I = Fin, we obtain the so-called
Knopp core, see [4, 5, 7] and references therein.

Theorem 1.9. Let x be a sequence taking values in a locally convex space X such
that {n ∈ ω : xn /∈ K} ∈ I for some compact K ⊆ X. Also, let I be an ideal on ω
and pick a rough family F such that every Fη is closed and convex. Then

Lx(I,F ) = {η ∈ X : corex(I) ⊆ Fη} . (2)

We remark that the hypothesis on x cannot be removed. Indeed, if X = ℓ∞ is
the Banach space of bounded real sequences, endowed with the supremum norm,
Fη = B1(η) for all η ∈ ℓ∞ and x = (e0,−e0, e1,−e1, . . .), where ek stands for the
kth unit vector (so that x is not relatively compact), then it is readily seen that

corex(Fin) = {0} and Lx(Fin,F ) = c00.

(Here, c00 represents the Banach subspace of eventually zero sequences.) However,
(1, 1, . . .) ∈ {x ∈ ℓ∞ : 0 ∈ B1(x)} \ c00. To sum up, x is a nonconvergent bounded
sequence, its Knopp core is a singleton, it is (Fin,F )-convergent to every sequence
η ∈ c00, and the claimed equality (2) fails.
Lastly, we prove that the above properties coincide for relatively compact sequences:

Corollary 1.10. Let x be a sequence taking values in a metric vector space X such
that {n ∈ ω : xn /∈ K} ∈ I for some compact K ⊆ X. Also, let I be an ideal on ω,
fix r ∈ [0,∞), and define F by Fη = Br(η) for all η ∈ X.
Then the following are equivalent:

(i) x is I-convergent to some η ∈ X;
(ii) corex(I) contains a unique vector η′ ∈ X;
(iii) Lx(Fin,F ) = Br(η

′′) for some η′′ ∈ X.
In addition, in such case, η = η′ = η′′.

The proofs follow in the next section.
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2. Proofs

Proof of Proposition 1.2. Let F be the rough family defined by Fη := [η−1, η+1]
for all η ∈ R. Fix also an ideal J on ω and a topology ν on R, and suppose for the
sake of contradiction that equivalence (1) holds for all x and η. We divide the proof
in two cases.
Case (i): I not maximal. If I is not maximal, there exists a partition {A,B} of
ω such that A,B /∈ I. For each r ∈ R and h ∈ (0, 1], let x(r,h) be the real sequence
defined by x

(r)
n = r if n ∈ A and x

(r)
n = r + h otherwise. Define similarly y(r,h) such

that y
(r)
n = r + h if n ∈ A and x

(r,h)
n = r otherwise. If follows that

Lx(r,h)(I,F , τ) = Ly(r,h)(I,F , τ) = [r + h− 1, r + 1]

for each r ∈ R and h ∈ (0, 1]. Now, let V be a nonempty ν-open set and fix a point
r∈V . Fix also h∈ (0, 1]. By the equivalence (1), we obtain {n∈ω : x

(r,h)
n /∈V }∈J

and {n ∈ ω : y
(r,h)
n /∈ V } ∈ J . If r + h /∈ V , this can be rewritten as B ∈ J and

A ∈ J , respectively, which is impossible because it would imply ω = A ∪B ∈ J .
Hence r+h ∈ V . By the arbitrariness of h, we obtain [r, r+1] ⊆ V . However, since
r is arbitrary, we conclude that V = R, therefore ν stands for the trivial topology
τ0. This is a contradiction because Lx(r,h)(I,F , τ) 6= R.
Case (ii): I maximal. If I is maximal, then either A := {2n : n ∈ ω} or
B := {2n + 1 : n ∈ ω} belong to I. Suppose without loss of generality B ∈ I (the
remaining case is symmetric). With the same notations above, it follows that

Lx(r,h)(I,F , τ) = [r − 1, r + 1] and Ly(r,h)(I,F , τ) = [r + h− 1, r + h+ 1]

for each r ∈ R and h ∈ (0, 1]. Since r ∈ Lx(r,h)(I,F , τ) ∩ Ly(r,h)(I,F , τ), we obtain
by the equivalence (1) that (J , ν)- limn x

(r,h)
n = (J , ν)- limn y

(r,h)
n = r. Hence the

sequence x(r,h) + y(r,h), which is constantly equal to 2r + h, is (J , ν)-convergent to
2r. Since r and h are arbitrary, it follows that ν is the trivial topology τ0, reaching
the same contradiction as in the nonmaximal case above.

Proof of Theorem 1.3. If part. Suppose that every I-cluster point belongs to
Fη. Fix an open set U ⊆ X containing Γx(I). We need to show that the set
S := {n ∈ ω : xn /∈ U} belongs to I. For, notice that Γx(I) is a nonempty compact
subset of K, see [10, Lemma 3.1]. Suppose by contradiction that S /∈ I and define
I := {n ∈ ω : xn /∈ K}, which belongs to I by assumption. Considering that
{n ∈ ω : xn ∈ K \U} = S \ I /∈ I and that K \U is compact, we conclude, again by
[10, Lemma 3.1], that Γx(I)∩ (K \U) 6= ∅, which contradicts the hypothesis S /∈ I.
Therefore (I,F )- limn xn = η.
Only If part. Suppose for the sake of contradiction that there exists an I-cluster
point η0 ∈ X \ Fη. Since X is regular, one can pick disjoint open sets U0, Uη ⊆ X
such η0 ∈ U0 and Fη ⊆ Uη. However, this is impossible because {n ∈ ω : xn ∈ U0},
which does not belong to I since η0 is an I-cluster point of x, is contained in
{n ∈ ω : xn /∈ Uη}, which belongs to I because (I,F )- limn xn = η.
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Remark 2.1. It is clear from the proof above that the If part of Theorem 1.3
holds for arbitrary topological spaces X and arbitrary rough families F .
On the same line, the Only If part holds also for arbitrary sequences.

Proof of Proposition 1.5. If part This is a folklore fact, by the linearity of the
I-limit.
Only If part. Since I is not maximal, there exists a partition {A,B} of ω such
that A,B /∈ I. Suppose also that there exists η ∈ X such that Fη 6= {η}, hence it
is possible to fix a point η′ ∈ Fη \ {η}. Let x be the sequence such that xn = η
if η ∈ A and xn = η′ otherwise. It follows by the definition of (I,F )-convergence
that {η, η′} ⊆ Lx(I,F ). Pick also r ∈ (0,∞) such that diam(Fη) ≤ r for all
η ∈ X. If the claim were false, the sequence kx would be (I,F )-convergent for
all k ∈ ω. Notice that Γkx(I) = kΓx(I) = {kη, kη′}, see e.g. [9, Proposition
3.2]. However, the distance between the latter two I-cluster points can be made
arbitrarily large as k → ∞, which contradicts the hypothesis that the sets Fη are
uniformly bounded.

Proof of Theorem 1.6. If Lx(I,F ) = ∅, the claim is obvious. Otherwise, pick a
τ -convergent net (ηi)i∈I with values in Lx(I,F ) and define η := limi ηi. Since the
map η 7→ Fη is τ̂ -continuous, then the net (Fηi)i∈I is τ̂ -convergent to Fη.
Fix an arbitrary open set U ⊆ X which contains Fη and define the τ̂ -open set
Û := {F ∈ H(X) : F ⊆ U}. By the convergence of (Fηi)i∈I , there exists j ∈ I such
that Fηj ∈ Û , i.e., Fηj ⊆ U . Since ηj∈Lx(I,F ), it follows that {n∈ω : xn /∈U}∈I.
Therefore (I,F )- limn xn = η.

Proof of Corollary 1.7. Denote by d the metric on X. Thanks to Theorem 1.6,
it is sufficient to show that the map η 7→ Fη is τ̂ -continuous. Pick a convergent net
(ηi)i∈I with limit η ∈ X, hence limi d(ηi, η) = 0. We claim that the net of closed
balls (Br(ηi)(ηi))i∈I is τ̂ -convergent to Br(η)(η). For, pick an open set U containing
Br(η)(η). In particular, η ∈ U . As in the previous proof, set

Û := {F ∈ H(X) : F ⊆ U}.
If U = X then {n ∈ ω : xn /∈ U} = ∅ ∈ I. Otherwise U is a proper subset of X,
hence X \U is a nonempty closed set disjoint from Fη. Since X has the UC-property,
it follows that there exists ε > 0 such that d(x, y) ≥ ε for all x ∈ Fη and y ∈ X \U .
At this point, set

G := {x ∈ X : d(x, η) < r(η) + ε } .

It follows by construction that Fη ⊆ G ⊆ U . By the upper semicontinuity of r and
the convergence of (ηi)i∈I , there exists an index i0 ∈ I such that r(ηi) < r(η) + ε/2
and d(ηi, η) < ε/2 for all i ≥ i0. Therefore

∀i ≥ i0,∀x ∈ Fηi0
, d(x, η) ≤ d(x, ηi) + d(ηi, η) ≤ r(ηj) + ε/2 < r(η) + ε.

This shows that Fηi ⊆ G ⊆ U (hence, Fηj ∈ Û) for all i ≥ i0, concluding the
proof.
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Proof of Theorem 1.8. If Lx(I,F ) = ∅, the claim is obvious. Otherwise, fix two
vectors η, η′ ∈ Lx(I,F ), a weight α ∈ (0, 1), and define γ := αη + (1 − α)η′. We
claim that γ ∈ Lx(I,F ). For, pick an open set U containing Fγ. If U = X then
{n ∈ ω : xn /∈ U} = ∅ ∈ I. If U 6= X, then by the UC-property of X, there exists
ε > 0 such that Fγ ⊆ V ⊆ U , where V is the open ball with center γ and radius
r(γ) + ε. Lastly, set

S := {n ∈ ω : ‖xn − η‖ ≥ r(η) + ε or ‖xn − η′‖ ≥ r(η′) + ε} .

Since η, η′ ∈ Lx(I,F ), it follows that S ∈ I. At this point, for each n ∈ ω \ S,

‖xn − γ‖ = ‖α(xn − η)− (1− α)(xn − η′)‖
≤ α‖xn − η‖+ (1− α)‖xn − η′‖
< α(r(η) + ε) + (1− α)(r(η′) + ε) ≤ r(γ) + ε.

Therefore {n ∈ ω : xn /∈ U} ⊆ {n ∈ ω : xn /∈ V } ⊆ S ∈ I. Since U is arbitrary, we
conclude that γ ∈ Lx(I,F ).

Remark 2.2. It is worth noting that the analogue of Theorem 1.8 holds in metriz-
able vector spaces X with a compatible metric d which is translation invariant and
for which d(αx, 0) ≤ αd(x, 0) for all x ∈ X and α ∈ (0, 1).

Proof of Theorem 1.9. Since every topological vector space is regular, it follows
by Corollary 1.4 and the hypothesis that each Fη is closed and convex that

Lx(I,F ) = {η ∈ X : co(Γx(I)) ⊆ Fη} .

The conclusion follows by [8, Theorem 2.2] and [6, Theorem 3.4], which state that
corex(I) coincides with co(Γx(I)).

Proof of Corollary 1.10. (i) ⇐⇒ (ii). See [8, Proposition 3.2].
(i) =⇒ (iii). Suppose that I- limn xn = η. Pick γ ∈ Br(η) and an open set U
containing Br(γ). Since η ∈ U , it follows that {n ∈ ω : xn /∈ U} ∈ I. Therefore
x is (I,F )-convergent to γ. Conversely, if γ /∈ Br(η), then η /∈ Br(γ). Since X
is regular, there exists disjont open sets U,Uγ such that η ∈ U and Br(γ) ⊆ Uγ.
However, this implies that {n ∈ ω : xn /∈ Uγ} ⊇ {n ∈ ω : xn ∈ U} ∈ I⋆. By the
arbitrariness of γ in both cases, we conclude that Lx(Fin,F ) = Br(η).
(iii) =⇒ (ii). Thanks to Theorem 1.9, we obtain necessarily that corex(I) = {η}.
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