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Let (Ω,Σ, µ) be a measure space with at least two disjoint sets of finite and positive measure,
and S+ = S+(Ω,Σ, µ) denote the set of all µ-integrable simple functions x : Ω → R+ having
support Ω(x) of positive measure. Then, for an arbitrary bijection φ : (0,∞) → (0,∞), the
functional Pφ : S+ → R+ given by Pφ (x) := φ−1

( ∫
Ω(x)

φ ◦ xdµ
)

is well defined. The results
presented support the conjecture that subadditivity of Pφ implies the convexity of φ. The case of
superadditivity of Pφ is also discussed.

Keywords: Convex function, Lp-norm, Minkowski-type inequality, Mulholland inequality, Gauss-
invariant mean.
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1. Introduction

To describe the investigation, denote by (Ω,Σ, µ) an arbitrary measure space, by
S (Ω,Σ, µ) the set of all µ-integrable simple functions x : Ω → R, and put

S+ (Ω,Σ, µ) := {x ∈ S (Ω,Σ, µ) : x ≥ 0} .

For an arbitrary bijection φ : (0,∞) → (0,∞), the functional

Pφ :S (Ω,Σ, µ) → [0,∞), Pφ (x) :=

{
φ−1

(∫
Ω(x)

φ ◦ |x| dµ
)

if µ (Ω (x)) > 0

0 if µ (Ω (x)) = 0
,

where Ω(x) := {ω∈Ω : x (ω) 6= 0} is the support of x∈S (Ω,Σ, µ), is well-defined.
If a bijection φ generating Pφ is a power function such that φ (t) = φ (1) tp for some
p ≥ 1, then Pφ, being the Lp-norm, satisfies the Minkowski triangle inequality, in
particular it is subadditive in S+ (Ω,Σ, µ):

Pφ (x+ y) ≤ Pφ (x) +Pφ (y) , x,y ∈ S+ (Ω,Σ, µ) , (1)

and φ is convex.
Under rather weak regularity condition on φ (which can be omitted if the range of
measure is enough rich), inequality (1) implies that φ is increasing (see Remark 1
and accompanying conjecture). Therefore, for the convenience, in this paper we can
assume that φ is an increasing homeomorphism of (0,∞).
ISSN 0944-6532 / $ 2.50 © Heldermann Verlag
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Recall the following converse of the Minkowski inequality: if (Ω,Σ, µ) is a measure
space such that for some A,B ∈ Σ we have

0 < µ (A) < 1 < µ (B) < ∞,

then (1) holds if and only if φ is a power function and φ (t) = φ (1) tp for some
p ≥ 1; so, if and only if Pφ is the Lp-norm [4]. If the measure space is such that,
for every A ∈ Σ,

µ (A) 6= 0 =⇒ µ (A) ≥ 1

(for instance, when (Ω,Σ, µ) a counting measure space), then inequality (1) is satis-
fied, if φ is convex (with respect to arithmetic mean) and geometrically convex, i.e.
convex with respect to geometric mean, which means that

φ
(√

st
)
≤

√
φ (s)φ (t), s, t > 0,

(see Mulholland [11], and [6]). In the remaining possible case, if (Ω,Σ, µ) is such
that, for every A ∈ Σ,

µ (A) 6= ∞ =⇒ µ (A) ≤ 1,

inequality (1) holds, if the two-variable function

(0,∞)2 3 (s, t) 7−→ φ
(
φ−1 (s) + φ−1 (t)

)
is concave, which implies the convexity of φ (see [4]).
In the present paper, assuming that (Ω,Σ, µ) is a measure space with at least two
disjoint sets of finite and positive measure (referred in the sequel nontrivial), we
prove that if φ satisfies inequality (1) that is sharp for all not proportional functions,
and

lim sup
r→∞

φ (r)

r
= ∞,

then φ is convex (Theorem 1). Moreover, without any additional conditions on φ,
if in the measure space there are two disjoint sets A,B ∈ Σ such that

min (µ (A) , µ (B)) ≤ 1 ≤ µ (A) + µ (B) ,

then φ is convex (Theorem 2). In the proof a method of Gauss-type invariant means
is applied.
Both results strongly support our conjecture: if (Ω,Σ, µ) is a nontrivial measure
space, then subadditivity of Pφ implies the convexity of φ.
The respective implication that superadditivity of Pφ implies the concavity of φ is
easier for research and it is discussed in Section 3.

2. Results and proofs

Theorem 2.1. Let (Ω,Σ, µ) be a measure space with at least two disjoint sets of
finite and positive measure. Assume that an increasing bijection φ : (0,∞) → (0,∞)
satisfies inequality (1). If inequality (1) is sharp for all not proportional functions
x, y ∈ S+ (Ω,Σ, µ), and

lim sup
r→∞

φ (r)

r
= ∞,

then φ is convex.
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Proof. By the assumption there are two disjoint Σ-measurable sets A ,B ∈ Σ of
finite and positive measure. Setting

x = x1χA + x2χB, y = y1χA + y2χB

in (1), where χA stands for the characteristic function of A, we get, for all positive
real x1, x2, y1, y2 > 0,

φ−1 (aφ (x1 + y1) + bφ (x2 + y2)) ≤ φ−1 (aφ (x1) + bφ (x2))+φ−1 (aφ (y1) + bφ (y2)) .

where a = µ (A), b = µ (B). Since φ (0+) = limt→0 φ (t) = 0, putting φ (0) := 0, we
hence get

φ−1 (aφ (x1+y1)+bφ(x2+y2)) ≤ φ−1(aφ (x1)+bφ (x2))+φ−1 (aφ (y1)+bφ (y2)) (2)

for all x1, x2, y1, y2 ≥ 0. Setting here

x2 = y1 = 0, x1 = φ−1
(
s

a

)
, y2 = φ−1

(
t

b

)
,

we get φ−1 (s+ t) ≤ φ−1 (s) + φ−1 (t) , s, t ≥ 0.

Since φ is strictly increasing, it follows that φ is superadditive i.e. that

φ (s+ t) ≥ φ (s) + φ (t) , s, t ≥ 0.

Note that if s, t > 0 then the functions x = φ−1
(
s
a

)
χA, y = φ−1

(
t
b

)
χB are not

proportional, and in consequence, so are the vectors (x1, x2) =
(
φ−1

(
s
a

)
, 0
)

and
(y1, y2) =

(
0, φ−1

(
t
b

))
, and the above inequality is sharp, that is φ is strictly super-

additive:
φ (s+ t) > φ (s) + φ (t) , s, t > 0.

Setting y2 = 0 in (2) we have, for all x1, y1, x2 ≥ 0,

φ−1 (aφ (x1 + y1) + bφ (x2)) ≤ φ−1 (aφ (x1) + bφ (x2)) + φ−1 (aφ (y1)) . (3)

Take arbitrary s, t > 0, s < t. By the strict monotonicity of φ,

φ−1
(
s+ t

2

)
− φ−1 (s) > 0,

so y := φ−1
(
1

a
φ
(
φ−1

(
s+ t

2

)
− φ−1 (s)

))
> 0,

is a well defined positive number. Note that

φ (y) <
t− s

2a
. (4)

Indeed, by the definition of y and the strict superadditivity of φ, we have

φ (y) =
1

a
φ
(
φ−1

(
s+ t

2

)
− φ−1 (s)

)
<

1

a

[
φ
(
φ−1

(
s+ t

2

))
− φ

(
φ−1 (s)

)]
=

1

a

(
s+ t

2
− s

)
=

t− s

2a
.
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Note that there exists x > 0 such that

φ (x+ y)− φ (x) >
t− s

2a
. (5)

Indeed, in the opposite case we would have

φ (x+ y) ≤ φ (x) +
t− s

2a
,

and hence, for every x > 0,

φ (x+ 2y) = φ ((x+ y) + y) ≤ φ (x+ y) +
t− s

2a
≤ φ (x) + 2

t− s

2a
,

and, by the induction,

φ (x+ ny) ≤ φ (x) + n
t− s

2a
, x > 0, n ∈ N,

whence φ (x+ ny)

x+ ny
≤ φ (x)

x+ ny
+

n

x+ ny

t− s

2a
, x > 0, n ∈ N.

By the superadditivity of φ (see the respective result for subadditive functions [2],
p. 248, Theorem 7.8.3), we have

κ := lim
r→∞

φ (r)

r
= sup

{
φ (x)

x
: x > 0

}
.

Hence, letting n → ∞ in the previous inequality, we get

φ (x+ ny)

x+ ny
≤ φ (x)

x+ ny
+

n

x+ ny

t− s

2a
, x > 0, n ∈ N,

that is κ ≤ t− s

2ay
, which contradicts the assumption that lim sup

x→∞

φ (x)

x
= ∞. Conse-

quently, inequality (5) holds true as desired.
Since φ(0)=0, the continuity of φ and inequalities (4) and (5) imply that there isx1,

0 < x1 < y (6)

such that
φ (x1 + y)− φ (x1) =

t− s

2a
.

Note that
x2 := φ−1

(
1

b

(
s+ t

2
− aφ (x1)

))
is well defined, as, by the definition of x1, (6), and the monotonicity of φ, we have

s+ t

2
− aφ (x1) ≥

s+ t

2
− aφ (y) =

s+ t

2
− φ

(
φ−1

(
s+ t

2

)
− φ−1 (s)

)
> 0.

Putting y1 := y, and taking into account the above definitions of x1, x2, we have
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aφ (x1 + y1) + bφ (x2)

= a [φ (x1 + y1)− φ (x1)] + [aφ (x1) + bφ (x2)]

= a
[
t− s

2a

]
+
[
aφ (x1) + bφ

(
φ−1

(
1

b

(
s+ t

2
− aφ (x1)

)))]
=

t− s

2
+

s+ t

2
= t,

and aφ (x1) + bφ (x2) =
s+ t

2
.

Therefore, setting the numbers x1, x2, y1 into inequality (3), we obtain

φ−1 (t) ≤ φ−1
(
s+ t

2

)
+ φ−1

(
s+ t

2

)
− φ−1 (s) ,

that is φ−1
(
s+ t

2

)
≥ φ−1 (s) + φ−1 (t)

2
,

which shows that φ−1 is Jensen concave. Since φ is increasing, it follows that it is
continuous and convex. This completes the proof.

Theorem 2.2. Let (Ω,Σ, µ) an arbitrary measure space with two disjoint sets
A,B ∈ Σ such that

0 < min (µ (A) , µ (B)) ≤ 1 ≤ µ (A) + µ (B) .

If φ : (0,∞) → (0,∞) is an increasing bijection satisfying inequality (1), then φ is
convex.

Proof. Assume first that

min (µ (A) , µ (B)) < 1 < µ (A) + µ (B) .

By the converse Minkowski inequality [4] (see also [5]), there is p ≥ 1 such that
φ (t) = φ (1) tp for all t > 0. Consequently, φ is convex.
To simplify the notations in two remaining cases

min (µ (A) , µ (B)) = 1 and µ (A) + µ (B) = 1,

we put a := µ (A) and b := µ (B)

and note that, similarly as in the previous proof, inequality (1) implies (2).
Consider the case min (a, b) = 1.
Without any loss of generality, we can assume a = 1. Setting a = 1 and y2 = 0 in
(2), we have

φ−1 (φ (x1 + y1) + bφ (x2)) ≤ φ−1 (φ (x1) + bφ (x2)) + y1, x1, x2, y1 > 0. (7)

Take arbitrary fixed s, t > 0, s < t. The numbers

x1 = φ−1 (s) , x2 = φ−1
(
t− s

2b

)
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are positive and, by the assumed monotonicity of φ, so is the number

y1 = φ−1
(
s+ t

2

)
− φ−1 (s) .

Setting them into inequality (7), we obtain

φ−1
(
φ
(
φ−1 (s) +

(
φ−1

(
s+ t

2

)
− φ−1 (s)

))
+ bφ

(
φ−1

(
t− s

2b

)))
≤ φ−1

(
φ
(
φ−1 (s)

)
+ bφ

(
φ−1

(
t− s

2b

)))
+ φ−1

(
s+ t

2

)
− φ−1 (s)

which simplifies to
φ−1 (t) + φ−1 (s) ≤ 2φ−1

(
s+ t

2

)
and shows that φ−1 is Jensen concave in (0,∞). Since φ is increasing, it follows
that φ is Jensen convex. The continuity of φ implies its convexity (see, for instance,
Kuczma [3]).
Now assume that a+ b = 1.
Take arbitrary s, t > 0. Setting x1 = y2 = φ−1 (s), x2 = y1 = φ−1 (t) in the inequality
(2), and taking into account that b = 1− a, we get

φ−1 (s) + φ−1 (t) ≤ φ−1 (as+ (1− a) t) + φ−1 ((1− a) s+ at)

(that is φ−1 is a-Wright convex). Putting

M (s, t) = as+ (1− a) t, N (s, t) = (1− a) s+ at, s, t > 0,

we can write this inequality as follows:

φ−1 (s) + φ−1 (t) ≤ φ−1 (M (s, t)) + φ−1 (N (s, t)) , s, t > 0. (8)

Note that M and N are strict continuous means, and that the arithmetic mean
A (s, t) = s+t

2
is Gauss-invariant with respect to the mean-type mapping (M,N),

i.e. that A◦ (M,N) = A. It follows that (see [10], also [1]) the sequence (Mn, Nn) :=
(M,N)n, n ∈ N, of iterates of (M,N) converges (uniformly on compact subsets) to
the mean-type mapping (A,A), that is

lim
n→∞

Mn (s, t) = lim
n→∞

Nn (s, t) =
s+ t

2
, s, t > 0.

From (8), by induction, we have

φ−1 (s) + φ−1 (t) ≤ φ−1 (Mn (s, t)) + φ−1 (Nn (s, t)) , s, t > 0, n ∈ N.

Hence, by the continuity of φ−1, letting n → ∞, we obtain

φ−1 (s) + φ−1 (t) ≤ 2φ−1
(
s+ t

2

)
, s, t > 0,

which shows that φ−1 is Jensen concave. Consequently, similarly as in the preceding
case, φ is convex. This completes the proof.
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Theorem 1 and Theorem 2 imply that an increasing bijection φ of (0,∞) satisfying
inequality (1) can be not convex only if

min (a, b) > 1 or a+ b < 1

and lim
r→∞

φ (r)

r
is finite.

Example 2.3. Let (Ω,Σ, µ) be such that or every A ∈ Σ,

µ (A) 6= ∞ =⇒ µ (A) ≤ 1.

If φ (t) = t2

t+1
or φ (t) = t exp

(
−1

t

)
, then the two variable function

(0,∞)2 3 (s, t) 7−→ φ
(
φ−1 (s) + φ−1 (t)

)
is concave, so Pφ is subadditive in S+(Ω,Σ, µ). In both cases φ we have

lim
r→∞

φ (r)

r
= 1,

and φ is a convex increasing bijection of (0,∞).

Since we doubt the existence of an example of a nonconvex increasing bijection
φ of (0,∞) satisfying (1) for a nontrivial measure space (Ω,Σ, µ), and such that
limr→∞

φ(r)
r

is finite, the following is our:

Conjecture 2.4. If (Ω,Σ, µ) is a nontrivial measure space and φ is a bijection of
(0,∞) satisfying (1), then φ is convex.

The following remarks support admitting in this conjecture all bijections.

Remark 2.5. The assumption in Theorem 1 and Theorem 2 that the bijection φ
is increasing can be replaced by each of the following conditions:
(i) limt→0 φ

−1(t) = 0;
(ii) ([9], Theorem 6) there is a set C ⊂ (0,∞) such that

lim
t→0

φ−1|C(t) = 0

and the density of C at the point 0 with respect to the Lebesgue measure λ, defined
by

λC(0) := lim inf
h→0+

λ (C ∩ (0, h])

h
,

is positive;
(iii) [7] there exist n ∈ N, n > 1, and A,B ∈ Σ such that

A ∩B = ∅, µ (A) =
1

n
, µ (B) = n;

(iv) [7] there exist m,n ∈ N, n 6= m, n > 1, and A,B,C ∈ Σ such that

A ∩B = ∅, µ (A) =
m

n
, µ (B) =

n

m
, µ (C) = n.



300 J. Matkowski / Convexity of Generators ...

Remark 2.6. Let φ be an arbitrary monotonic bijection of (0,∞), and (Ω,Σ, µ)
be a measure space with at least two disjoint sets A,B ∈ Σ of a positive and finite
measure a = µ (A) and b = µ (B). If Pφ satisfies (1), then φ is increasing.

Indeed, setting the functions x,y ∈ S+(Ω,Σ, µ),

x = x1χA + x2χB, y = y1χA + y2χB

into (1), we get the inequality (2) for all x1, x2, y1, y2 > 0. If φ were decreasing,
letting y2 → 0, by the continuity of φ, we would get

φ−1 (aφ (x1 + y1) + bφ (x2)) ≤ φ−1 (aφ (x1) + bφ (x2)) , x1, x2, y1 > 0,

which, letting x1 → 0, would give

φ−1 (aφ (y1) + bφ (x2)) ≤ 0, x2, y1 > 0,

which is a contradiction.

3. Superadditivity of Pφ

Research of the class of all bijections φ satisfying the converse inequality (1) is much
simpler, because we have the following (see [8]).

Remark 3.1. Let (Ω,Σ, µ) be a measure space with at least two disjoint sets of
finite and positive measure, and φ be an arbitrary bijection of (0,∞). If

Pφ (x+ y) ≥ Pφ (x) +Pφ (y) , x,y ∈ S+ (Ω,Σ, µ) , (9)

than φ is increasing.

Proof. Let A,B ∈ Σ such that A ∩B = ∅ and a = µ (A), b = µ (B) are finite and
positive. For arbitrary s, t > 0, the functions

x := φ−1
(
s

a

)
χA, y := φ−1

(
t

b

)
χB

belong to S+ (Ω,Σ, µ). Setting them into (9), by the definition of Pφ, we get

φ−1 (s+ t) ≥ φ−1 (s) + φ−1 (t) , s, t > 0,

so φ−1 is superadditive. Since φ−1 is positive, it follows that it is increasing. It
follows that φ is increasing.

Using this remark, and arguing similarly as in the proofs of Theorems 1 and Theorem
2, we obtain two results and formulate a conjecture.

Theorem 3.2. Let (Ω,Σ, µ) be a measure space with at least two disjoint sets of
finite and positive measure. Assume that a bijection φ : (0,∞) → (0,∞) satisfies
inequality (9). If (9) is sharp for all not proportional functions x, y ∈ S+ (Ω,Σ, µ)

and lim sup
r→∞

φ (r)

r
= ∞,

then φ is concave.
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Theorem 3.3. Let (Ω,Σ, µ) an arbitrary measure space with two disjoint sets
A,B ∈ Σ such that

0 < min (µ (A) , µ (B)) ≤ 1 ≤ µ (A) + µ (B) .

If φ : (0,∞) → (0,∞) is an arbitrary bijection satisfying inequality (9), then φ is
concave.

Conjecture 3.4. If (Ω,Σ, µ) is a nontrivial measure space and φ is a bijection of
(0,∞) satisfying (9), then φ is concave.
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