

Convexity of Generators of L^p -like Paranorms

Janusz Matkowski

Institute of Mathematics, University of Zielona Góra, Poland
J.Matkowski@wmie.uz.zgora.pl

Received: February 7, 2024

Accepted: April 7, 2025

Let (Ω, Σ, μ) be a measure space with at least two disjoint sets of finite and positive measure, and $S_+ = S_+(\Omega, \Sigma, \mu)$ denote the set of all μ -integrable simple functions $\mathbf{x} : \Omega \rightarrow \mathbb{R}_+$ having support $\Omega(\mathbf{x})$ of positive measure. Then, for an arbitrary bijection $\varphi : (0, \infty) \rightarrow (0, \infty)$, the functional $\mathbf{P}_\varphi : S_+ \rightarrow \mathbb{R}_+$ given by $\mathbf{P}_\varphi(\mathbf{x}) := \varphi^{-1}(\int_{\Omega(\mathbf{x})} \varphi \circ x d\mu)$ is well defined. The results presented support the conjecture that subadditivity of \mathbf{P}_φ implies the convexity of φ . The case of superadditivity of \mathbf{P}_φ is also discussed.

Keywords: Convex function, L^p -norm, Minkowski-type inequality, Mulholland inequality, Gauss-invariant mean.

2010 Mathematics Subject Classification: 26A51, 26B25, 26D15, 39B62.

1. Introduction

To describe the investigation, denote by (Ω, Σ, μ) an arbitrary measure space, by $S(\Omega, \Sigma, \mu)$ the set of all μ -integrable simple functions $\mathbf{x} : \Omega \rightarrow \mathbb{R}$, and put

$$S_+(\Omega, \Sigma, \mu) := \{\mathbf{x} \in S(\Omega, \Sigma, \mu) : \mathbf{x} \geq 0\}.$$

For an arbitrary bijection $\varphi : (0, \infty) \rightarrow (0, \infty)$, the functional

$$\mathbf{P}_\varphi : S(\Omega, \Sigma, \mu) \rightarrow [0, \infty), \quad \mathbf{P}_\varphi(\mathbf{x}) := \begin{cases} \varphi^{-1} \left(\int_{\Omega(\mathbf{x})} \varphi \circ |\mathbf{x}| d\mu \right) & \text{if } \mu(\Omega(\mathbf{x})) > 0 \\ 0 & \text{if } \mu(\Omega(\mathbf{x})) = 0 \end{cases},$$

where $\Omega(\mathbf{x}) := \{\omega \in \Omega : \mathbf{x}(\omega) \neq 0\}$ is the support of $\mathbf{x} \in S(\Omega, \Sigma, \mu)$, is well-defined.

If a bijection φ generating \mathbf{P}_φ is a power function such that $\varphi(t) = \varphi(1)t^p$ for some $p \geq 1$, then \mathbf{P}_φ , being the L_p -norm, satisfies the Minkowski triangle inequality, in particular it is subadditive in $S_+(\Omega, \Sigma, \mu)$:

$$\mathbf{P}_\varphi(\mathbf{x} + \mathbf{y}) \leq \mathbf{P}_\varphi(\mathbf{x}) + \mathbf{P}_\varphi(\mathbf{y}), \quad \mathbf{x}, \mathbf{y} \in S_+(\Omega, \Sigma, \mu), \quad (1)$$

and φ is convex.

Under rather weak regularity condition on φ (which can be omitted if the range of measure is enough rich), inequality (1) implies that φ is increasing (see Remark 1 and accompanying conjecture). Therefore, for the convenience, in this paper we can assume that φ is an increasing homeomorphism of $(0, \infty)$.

Recall the following converse of the Minkowski inequality: *if (Ω, Σ, μ) is a measure space such that for some $A, B \in \Sigma$ we have*

$$0 < \mu(A) < 1 < \mu(B) < \infty,$$

then (1) holds if and only if φ is a power function and $\varphi(t) = \varphi(1)t^p$ for some $p \geq 1$; so, if and only if P_φ is the L^p -norm [4]. If the measure space is such that, for every $A \in \Sigma$,

$$\mu(A) \neq 0 \implies \mu(A) \geq 1$$

(for instance, when (Ω, Σ, μ) a counting measure space), then inequality (1) is satisfied, if φ is convex (with respect to arithmetic mean) and geometrically convex, i.e. convex with respect to geometric mean, which means that

$$\varphi(\sqrt{st}) \leq \sqrt{\varphi(s)\varphi(t)}, \quad s, t > 0,$$

(see Mulholland [11], and [6]). In the remaining possible case, if (Ω, Σ, μ) is such that, for every $A \in \Sigma$,

$$\mu(A) \neq \infty \implies \mu(A) \leq 1,$$

inequality (1) holds, if the two-variable function

$$(0, \infty)^2 \ni (s, t) \mapsto \varphi(\varphi^{-1}(s) + \varphi^{-1}(t))$$

is concave, which implies the convexity of φ (see [4]).

In the present paper, assuming that (Ω, Σ, μ) is a measure space with at least two disjoint sets of finite and positive measure (referred in the sequel nontrivial), we prove that *if φ satisfies inequality (1) that is sharp for all not proportional functions, and*

$$\limsup_{r \rightarrow \infty} \frac{\varphi(r)}{r} = \infty,$$

then φ is convex (Theorem 1). Moreover, without any additional conditions on φ , *if in the measure space there are two disjoint sets $A, B \in \Sigma$ such that*

$$\min(\mu(A), \mu(B)) \leq 1 \leq \mu(A) + \mu(B),$$

then φ is convex (Theorem 2). In the proof a method of Gauss-type invariant means is applied.

Both results strongly support our conjecture: if (Ω, Σ, μ) is a nontrivial measure space, then subadditivity of \mathbf{P}_φ implies the convexity of φ .

The respective implication that superadditivity of \mathbf{P}_φ implies the concavity of φ is easier for research and it is discussed in Section 3.

2. Results and proofs

Theorem 2.1. *Let (Ω, Σ, μ) be a measure space with at least two disjoint sets of finite and positive measure. Assume that an increasing bijection $\varphi : (0, \infty) \rightarrow (0, \infty)$ satisfies inequality (1). If inequality (1) is sharp for all not proportional functions $x, y \in S_+(\Omega, \Sigma, \mu)$, and*

$$\limsup_{r \rightarrow \infty} \frac{\varphi(r)}{r} = \infty,$$

then φ is convex.

Proof. By the assumption there are two disjoint Σ -measurable sets $A, B \in \Sigma$ of finite and positive measure. Setting

$$\mathbf{x} = x_1 \chi_A + x_2 \chi_B, \quad \mathbf{y} = y_1 \chi_A + y_2 \chi_B$$

in (1), where χ_A stands for the characteristic function of A , we get, for all positive real $x_1, x_2, y_1, y_2 > 0$,

$$\varphi^{-1}(a\varphi(x_1 + y_1) + b\varphi(x_2 + y_2)) \leq \varphi^{-1}(a\varphi(x_1) + b\varphi(x_2)) + \varphi^{-1}(a\varphi(y_1) + b\varphi(y_2)).$$

where $a = \mu(A)$, $b = \mu(B)$. Since $\varphi(0+) = \lim_{t \rightarrow 0} \varphi(t) = 0$, putting $\varphi(0) := 0$, we hence get

$$\varphi^{-1}(a\varphi(x_1 + y_1) + b\varphi(x_2 + y_2)) \leq \varphi^{-1}(a\varphi(x_1) + b\varphi(x_2)) + \varphi^{-1}(a\varphi(y_1) + b\varphi(y_2)) \quad (2)$$

for all $x_1, x_2, y_1, y_2 \geq 0$. Setting here

$$x_2 = y_1 = 0, \quad x_1 = \varphi^{-1}\left(\frac{s}{a}\right), \quad y_2 = \varphi^{-1}\left(\frac{t}{b}\right),$$

we get

$$\varphi^{-1}(s + t) \leq \varphi^{-1}(s) + \varphi^{-1}(t), \quad s, t \geq 0.$$

Since φ is strictly increasing, it follows that φ is superadditive i.e. that

$$\varphi(s + t) \geq \varphi(s) + \varphi(t), \quad s, t \geq 0.$$

Note that if $s, t > 0$ then the functions $\mathbf{x} = \varphi^{-1}\left(\frac{s}{a}\right) \chi_A$, $\mathbf{y} = \varphi^{-1}\left(\frac{t}{b}\right) \chi_B$ are not proportional, and in consequence, so are the vectors $(x_1, x_2) = (\varphi^{-1}\left(\frac{s}{a}\right), 0)$ and $(y_1, y_2) = (0, \varphi^{-1}\left(\frac{t}{b}\right))$, and the above inequality is sharp, that is φ is strictly superadditive:

$$\varphi(s + t) > \varphi(s) + \varphi(t), \quad s, t > 0.$$

Setting $y_2 = 0$ in (2) we have, for all $x_1, y_1, x_2 \geq 0$,

$$\varphi^{-1}(a\varphi(x_1 + y_1) + b\varphi(x_2)) \leq \varphi^{-1}(a\varphi(x_1) + b\varphi(x_2)) + \varphi^{-1}(a\varphi(y_1)). \quad (3)$$

Take arbitrary $s, t > 0$, $s < t$. By the strict monotonicity of φ ,

$$\varphi^{-1}\left(\frac{s+t}{2}\right) - \varphi^{-1}(s) > 0,$$

so

$$y := \varphi^{-1}\left(\frac{1}{a}\varphi\left(\varphi^{-1}\left(\frac{s+t}{2}\right) - \varphi^{-1}(s)\right)\right) > 0,$$

is a well defined positive number. Note that

$$\varphi(y) < \frac{t-s}{2a}. \quad (4)$$

Indeed, by the definition of y and the strict superadditivity of φ , we have

$$\begin{aligned} \varphi(y) &= \frac{1}{a}\varphi\left(\varphi^{-1}\left(\frac{s+t}{2}\right) - \varphi^{-1}(s)\right) \\ &< \frac{1}{a} \left[\varphi\left(\varphi^{-1}\left(\frac{s+t}{2}\right)\right) - \varphi\left(\varphi^{-1}(s)\right) \right] = \frac{1}{a} \left(\frac{s+t}{2} - s \right) = \frac{t-s}{2a}. \end{aligned}$$

Note that there exists $x > 0$ such that

$$\varphi(x+y) - \varphi(x) > \frac{t-s}{2a}. \quad (5)$$

Indeed, in the opposite case we would have

$$\varphi(x+y) \leq \varphi(x) + \frac{t-s}{2a},$$

and hence, for every $x > 0$,

$$\varphi(x+2y) = \varphi((x+y)+y) \leq \varphi(x+y) + \frac{t-s}{2a} \leq \varphi(x) + 2\frac{t-s}{2a},$$

and, by the induction,

$$\varphi(x+ny) \leq \varphi(x) + n\frac{t-s}{2a}, \quad x > 0, n \in \mathbb{N},$$

$$\text{whence } \frac{\varphi(x+ny)}{x+ny} \leq \frac{\varphi(x)}{x+ny} + \frac{n}{x+ny} \frac{t-s}{2a}, \quad x > 0, n \in \mathbb{N}.$$

By the superadditivity of φ (see the respective result for subadditive functions [2], p. 248, Theorem 7.8.3), we have

$$\kappa := \lim_{r \rightarrow \infty} \frac{\varphi(r)}{r} = \sup \left\{ \frac{\varphi(x)}{x} : x > 0 \right\}.$$

Hence, letting $n \rightarrow \infty$ in the previous inequality, we get

$$\frac{\varphi(x+ny)}{x+ny} \leq \frac{\varphi(x)}{x+ny} + \frac{n}{x+ny} \frac{t-s}{2a}, \quad x > 0, n \in \mathbb{N},$$

that is $\kappa \leq \frac{t-s}{2ay}$, which contradicts the assumption that $\limsup_{x \rightarrow \infty} \frac{\varphi(x)}{x} = \infty$. Consequently, inequality (5) holds true as desired.

Since $\varphi(0)=0$, the continuity of φ and inequalities (4) and (5) imply that there is x_1 ,

$$0 < x_1 < y \quad (6)$$

such that

$$\varphi(x_1+y) - \varphi(x_1) = \frac{t-s}{2a}.$$

Note that

$$x_2 := \varphi^{-1} \left(\frac{1}{b} \left(\frac{s+t}{2} - a\varphi(x_1) \right) \right)$$

is well defined, as, by the definition of x_1 , (6), and the monotonicity of φ , we have

$$\frac{s+t}{2} - a\varphi(x_1) \geq \frac{s+t}{2} - a\varphi(y) = \frac{s+t}{2} - \varphi \left(\varphi^{-1} \left(\frac{s+t}{2} \right) - \varphi^{-1}(s) \right) > 0.$$

Putting $y_1 := y$, and taking into account the above definitions of x_1, x_2 , we have

$$\begin{aligned}
& a\varphi(x_1 + y_1) + b\varphi(x_2) \\
&= a[\varphi(x_1 + y_1) - \varphi(x_1)] + [a\varphi(x_1) + b\varphi(x_2)] \\
&= a\left[\frac{t-s}{2a}\right] + \left[a\varphi(x_1) + b\varphi\left(\varphi^{-1}\left(\frac{1}{b}\left(\frac{s+t}{2} - a\varphi(x_1)\right)\right)\right)\right] \\
&= \frac{t-s}{2} + \frac{s+t}{2} = t,
\end{aligned}$$

and

$$a\varphi(x_1) + b\varphi(x_2) = \frac{s+t}{2}.$$

Therefore, setting the numbers x_1, x_2, y_1 into inequality (3), we obtain

$$\varphi^{-1}(t) \leq \varphi^{-1}\left(\frac{s+t}{2}\right) + \varphi^{-1}\left(\frac{s+t}{2}\right) - \varphi^{-1}(s),$$

that is

$$\varphi^{-1}\left(\frac{s+t}{2}\right) \geq \frac{\varphi^{-1}(s) + \varphi^{-1}(t)}{2},$$

which shows that φ^{-1} is Jensen concave. Since φ is increasing, it follows that it is continuous and convex. This completes the proof. \square

Theorem 2.2. *Let (Ω, Σ, μ) an arbitrary measure space with two disjoint sets $A, B \in \Sigma$ such that*

$$0 < \min(\mu(A), \mu(B)) \leq 1 \leq \mu(A) + \mu(B).$$

If $\varphi : (0, \infty) \rightarrow (0, \infty)$ is an increasing bijection satisfying inequality (1), then φ is convex.

Proof. Assume first that

$$\min(\mu(A), \mu(B)) < 1 < \mu(A) + \mu(B).$$

By the converse Minkowski inequality [4] (see also [5]), there is $p \geq 1$ such that $\varphi(t) = \varphi(1)t^p$ for all $t > 0$. Consequently, φ is convex.

To simplify the notations in two remaining cases

$$\min(\mu(A), \mu(B)) = 1 \text{ and } \mu(A) + \mu(B) = 1,$$

we put

$$a := \mu(A) \text{ and } b := \mu(B)$$

and note that, similarly as in the previous proof, inequality (1) implies (2).

Consider the case $\min(a, b) = 1$.

Without any loss of generality, we can assume $a = 1$. Setting $a = 1$ and $y_2 = 0$ in (2), we have

$$\varphi^{-1}(\varphi(x_1 + y_1) + b\varphi(x_2)) \leq \varphi^{-1}(\varphi(x_1) + b\varphi(x_2)) + y_1, \quad x_1, x_2, y_1 > 0. \quad (7)$$

Take arbitrary fixed $s, t > 0$, $s < t$. The numbers

$$x_1 = \varphi^{-1}(s), \quad x_2 = \varphi^{-1}\left(\frac{t-s}{2b}\right)$$

are positive and, by the assumed monotonicity of φ , so is the number

$$y_1 = \varphi^{-1} \left(\frac{s+t}{2} \right) - \varphi^{-1} (s).$$

Setting them into inequality (7), we obtain

$$\begin{aligned} & \varphi^{-1} \left(\varphi \left(\varphi^{-1} (s) + \left(\varphi^{-1} \left(\frac{s+t}{2} \right) - \varphi^{-1} (s) \right) \right) + b \varphi \left(\varphi^{-1} \left(\frac{t-s}{2b} \right) \right) \right) \\ & \leq \varphi^{-1} \left(\varphi \left(\varphi^{-1} (s) \right) + b \varphi \left(\varphi^{-1} \left(\frac{t-s}{2b} \right) \right) \right) + \varphi^{-1} \left(\frac{s+t}{2} \right) - \varphi^{-1} (s) \end{aligned}$$

which simplifies to

$$\varphi^{-1} (t) + \varphi^{-1} (s) \leq 2 \varphi^{-1} \left(\frac{s+t}{2} \right)$$

and shows that φ^{-1} is Jensen concave in $(0, \infty)$. Since φ is increasing, it follows that φ is Jensen convex. The continuity of φ implies its convexity (see, for instance, Kuczma [3]).

Now assume that $a + b = 1$.

Take arbitrary $s, t > 0$. Setting $x_1 = y_2 = \varphi^{-1} (s)$, $x_2 = y_1 = \varphi^{-1} (t)$ in the inequality (2), and taking into account that $b = 1 - a$, we get

$$\varphi^{-1} (s) + \varphi^{-1} (t) \leq \varphi^{-1} (as + (1-a)t) + \varphi^{-1} ((1-a)s + at)$$

(that is φ^{-1} is a -Wright convex). Putting

$$M(s, t) = as + (1-a)t, \quad N(s, t) = (1-a)s + at, \quad s, t > 0,$$

we can write this inequality as follows:

$$\varphi^{-1} (s) + \varphi^{-1} (t) \leq \varphi^{-1} (M(s, t)) + \varphi^{-1} (N(s, t)), \quad s, t > 0. \quad (8)$$

Note that M and N are strict continuous means, and that the arithmetic mean $A(s, t) = \frac{s+t}{2}$ is Gauss-invariant with respect to the mean-type mapping (M, N) , i.e. that $A \circ (M, N) = A$. It follows that (see [10], also [1]) the sequence $(M_n, N_n) := (M, N)^n$, $n \in \mathbb{N}$, of iterates of (M, N) converges (uniformly on compact subsets) to the mean-type mapping (A, A) , that is

$$\lim_{n \rightarrow \infty} M_n(s, t) = \lim_{n \rightarrow \infty} N_n(s, t) = \frac{s+t}{2}, \quad s, t > 0.$$

From (8), by induction, we have

$$\varphi^{-1} (s) + \varphi^{-1} (t) \leq \varphi^{-1} (M_n(s, t)) + \varphi^{-1} (N_n(s, t)), \quad s, t > 0, \quad n \in \mathbb{N}.$$

Hence, by the continuity of φ^{-1} , letting $n \rightarrow \infty$, we obtain

$$\varphi^{-1} (s) + \varphi^{-1} (t) \leq 2 \varphi^{-1} \left(\frac{s+t}{2} \right), \quad s, t > 0,$$

which shows that φ^{-1} is Jensen concave. Consequently, similarly as in the preceding case, φ is convex. This completes the proof. \square

Theorem 1 and Theorem 2 imply that an increasing bijection φ of $(0, \infty)$ satisfying inequality (1) can be not convex only if

$$\min(a, b) > 1 \quad \text{or} \quad a + b < 1$$

and

$$\lim_{r \rightarrow \infty} \frac{\varphi(r)}{r} \text{ is finite.}$$

Example 2.3. Let (Ω, Σ, μ) be such that for every $A \in \Sigma$,

$$\mu(A) \neq \infty \implies \mu(A) \leq 1.$$

If $\varphi(t) = \frac{t^2}{t+1}$ or $\varphi(t) = t \exp(-\frac{1}{t})$, then the two variable function

$$(0, \infty)^2 \ni (s, t) \mapsto \varphi(\varphi^{-1}(s) + \varphi^{-1}(t))$$

is concave, so \mathbf{P}_φ is subadditive in $S_+(\Omega, \Sigma, \mu)$. In both cases φ we have

$$\lim_{r \rightarrow \infty} \frac{\varphi(r)}{r} = 1,$$

and φ is a convex increasing bijection of $(0, \infty)$. \square

Since we doubt the existence of an example of a nonconvex increasing bijection φ of $(0, \infty)$ satisfying (1) for a nontrivial measure space (Ω, Σ, μ) , and such that $\lim_{r \rightarrow \infty} \frac{\varphi(r)}{r}$ is finite, the following is our:

Conjecture 2.4. *If (Ω, Σ, μ) is a nontrivial measure space and φ is a bijection of $(0, \infty)$ satisfying (1), then φ is convex.*

The following remarks support admitting in this conjecture all bijections.

Remark 2.5. The assumption in Theorem 1 and Theorem 2 that the bijection φ is increasing can be replaced by each of the following conditions:

- (i) $\lim_{t \rightarrow 0} \varphi^{-1}(t) = 0$;
- (ii) ([9], Theorem 6) there is a set $C \subset (0, \infty)$ such that

$$\lim_{t \rightarrow 0} \varphi^{-1}|_C(t) = 0$$

and the density of C at the point 0 with respect to the Lebesgue measure λ , defined by

$$\lambda_C(0) := \liminf_{h \rightarrow 0^+} \frac{\lambda(C \cap (0, h])}{h},$$

is positive;

- (iii) [7] there exist $n \in \mathbb{N}$, $n > 1$, and $A, B \in \Sigma$ such that

$$A \cap B = \emptyset, \quad \mu(A) = \frac{1}{n}, \quad \mu(B) = n;$$

- (iv) [7] there exist $m, n \in \mathbb{N}$, $n \neq m$, $n > 1$, and $A, B, C \in \Sigma$ such that

$$A \cap B = \emptyset, \quad \mu(A) = \frac{m}{n}, \quad \mu(B) = \frac{n}{m}, \quad \mu(C) = n. \quad \square$$

Remark 2.6. Let φ be an arbitrary monotonic bijection of $(0, \infty)$, and (Ω, Σ, μ) be a measure space with at least two disjoint sets $A, B \in \Sigma$ of a positive and finite measure $a = \mu(A)$ and $b = \mu(B)$. If \mathbf{P}_φ satisfies (1), then φ is increasing. \square

Indeed, setting the functions $\mathbf{x}, \mathbf{y} \in S_+(\Omega, \Sigma, \mu)$,

$$\mathbf{x} = x_1 \chi_A + x_2 \chi_B, \quad \mathbf{y} = y_1 \chi_A + y_2 \chi_B$$

into (1), we get the inequality (2) for all $x_1, x_2, y_1, y_2 > 0$. If φ were decreasing, letting $y_2 \rightarrow 0$, by the continuity of φ , we would get

$$\varphi^{-1}(a\varphi(x_1 + y_1) + b\varphi(x_2)) \leq \varphi^{-1}(a\varphi(x_1) + b\varphi(x_2)), \quad x_1, x_2, y_1 > 0,$$

which, letting $x_1 \rightarrow 0$, would give

$$\varphi^{-1}(a\varphi(y_1) + b\varphi(x_2)) \leq 0, \quad x_2, y_1 > 0,$$

which is a contradiction.

3. Superadditivity of \mathbf{P}_φ

Research of the class of all bijections φ satisfying the converse inequality (1) is much simpler, because we have the following (see [8]).

Remark 3.1. Let (Ω, Σ, μ) be a measure space with at least two disjoint sets of finite and positive measure, and φ be an arbitrary bijection of $(0, \infty)$. If

$$\mathbf{P}_\varphi(\mathbf{x} + \mathbf{y}) \geq \mathbf{P}_\varphi(\mathbf{x}) + \mathbf{P}_\varphi(\mathbf{y}), \quad \mathbf{x}, \mathbf{y} \in S_+(\Omega, \Sigma, \mu), \quad (9)$$

then φ is increasing. \square

Proof. Let $A, B \in \Sigma$ such that $A \cap B = \emptyset$ and $a = \mu(A)$, $b = \mu(B)$ are finite and positive. For arbitrary $s, t > 0$, the functions

$$\mathbf{x} := \varphi^{-1}\left(\frac{s}{a}\right) \chi_A, \quad \mathbf{y} := \varphi^{-1}\left(\frac{t}{b}\right) \chi_B$$

belong to $S_+(\Omega, \Sigma, \mu)$. Setting them into (9), by the definition of \mathbf{P}_φ , we get

$$\varphi^{-1}(s + t) \geq \varphi^{-1}(s) + \varphi^{-1}(t), \quad s, t > 0,$$

so φ^{-1} is superadditive. Since φ^{-1} is positive, it follows that it is increasing. It follows that φ is increasing. \square

Using this remark, and arguing similarly as in the proofs of Theorems 1 and Theorem 2, we obtain two results and formulate a conjecture.

Theorem 3.2. Let (Ω, Σ, μ) be a measure space with at least two disjoint sets of finite and positive measure. Assume that a bijection $\varphi : (0, \infty) \rightarrow (0, \infty)$ satisfies inequality (9). If (9) is sharp for all not proportional functions $x, y \in S_+(\Omega, \Sigma, \mu)$

and

$$\limsup_{r \rightarrow \infty} \frac{\varphi(r)}{r} = \infty,$$

then φ is concave.

Theorem 3.3. Let (Ω, Σ, μ) an arbitrary measure space with two disjoint sets $A, B \in \Sigma$ such that

$$0 < \min(\mu(A), \mu(B)) \leq 1 \leq \mu(A) + \mu(B).$$

If $\varphi : (0, \infty) \rightarrow (0, \infty)$ is an arbitrary bijection satisfying inequality (9), then φ is concave.

Conjecture 3.4. If (Ω, Σ, μ) is a nontrivial measure space and φ is a bijection of $(0, \infty)$ satisfying (9), then φ is concave.

Acknowledgement. The author is grateful to the referee for valuable remarks

References

- [1] J. M. Borwein, P. B. Borwein: *Pi and the AGM*, Monographies et Études de la Société Mathématique du Canada, John Wiley & Sons, Toronto (1987).
- [2] E. Hille, R. S. Phillips: *Functional Analysis and Semigroups*, AMS Publications Vol. 31, American Mathematical Society, Providence (1957).
- [3] M. Kuczma: *An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality*, P.W.N., Uniwersytet Śląski, Warszawa-Kraków-Katowice (1985).
- [4] J. Matkowski: *The converse of the Minkowski's inequality theorem and its generalization*, Proc. Amer. Math. Soc. 109 (1990) 663–675.
- [5] J. Matkowski: *L^p -like paranorms*, in: *Selected Topics in Functional Equations and Iteration Theory*, Proc. Austrian-Polish Seminar, Universität Graz 1991, D. Gronau et al. (eds.), Grazer Math. Ber. 316 (1992) 103–138.
- [6] J. Matkowski: *On a generalization of Mulholland's inequality*, Abh. Math. Sem. Univ. Hamburg 63 (1993) 97–103.
- [7] J. Matkowski: *On a characterization of L^p -norm and a converse of Minkowski's inequality*, Hiroshima Math. J. 26 (1996) 277–287.
- [8] J. Matkowski: *The converse theorem for the Minkowski inequality*, J. Math. Anal. Appl. 348 (2008) 315–323.
- [9] J. Matkowski: *Results of Tadeusz Świątkowski on algebraic sums of sets and their applications in the theory of subadditive functions*, J. Appl. Analysis 18 (2012) 97–116.
- [10] J. Matkowski: *Iterations of the mean-type mappings and uniqueness of invariant means*, Ann. Univ. Sci. Budapest. Sect. Comput. 41 (2013) 145–158.
- [11] H. P. Mulholland: *On generalizations of Minkowski's inequality in the form of a triangle inequality*, Proc. London Math. Soc. 51 (1950) 294–307.