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Let (Q,X, 1) be a measure space with at least two disjoint sets of finite and positive measure,
and S; = S(Q,%, 1) denote the set of all p-integrable simple functions x :  — Ry having
support € (x) of positive measure. Then, for an arbitrary bijection ¢ : (0,00) — (0,00), the
functional P, : Sy — Ry given by Py, (x) := @71(&2(}() ¢ o xdp) is well defined. The results

presented support the conjecture that subadditivity of P, implies the convexity of ¢. The case of
superadditivity of P, is also discussed.
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1. Introduction
To describe the investigation, denote by (€2, %, 1) an arbitrary measure space, by
S (Q,%, 1) the set of all p-integrable simple functions x : 2 — R, and put

Se (0,8, ) ={xeS(%,un x>0}

For an arbitrary bijection ¢:(0,00) — (0, 00), the functional

Y

-1 .
P,:S(Q,5,1) = [0,00), Py(x):=3 © (fﬂ(x) po x| d#) if p(Q(x)) >0
0 if 0 (Q(x)=0
where Q(x) :={weN : x(w) # 0} is the support of x€ S (2, X, ), is well-defined.

If a bijection ¢ generating P, is a power function such that ¢ (t) = ¢ (1) t* for some
p > 1, then P, being the L,-norm, satisfies the Minkowski triangle inequality, in
particular it is subadditive in S (€, 3, p):

PSO(X_I_Y)SPSO(X)_I_PSO(}’): X>y€S+ (Q,Z,,u), (1)

and ¢ is convex.

Under rather weak regularity condition on ¢ (which can be omitted if the range of
measure is enough rich), inequality (1) implies that ¢ is increasing (see Remark 1
and accompanying conjecture). Therefore, for the convenience, in this paper we can
assume that ¢ is an increasing homeomorphism of (0, c0).
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Recall the following converse of the Minkowski inequality: if (2,3, 1) is a measure
space such that for some A, B € ¥ we have

0<u(A) <l<p(B) <o,
then (1) holds if and only if ¢ is a power function and ¢ (t) = ¢ (1)t* for some
p > 1; so, if and only if P, is the LP-norm [4]. If the measure space is such that,
for every A € X,
W(A) £0 = p(4) > 1

(for instance, when (€2, ¥, 1) a counting measure space), then inequality (1) is satis-
fied, if ¢ is convex (with respect to arithmetic mean) and geometrically convex, i.e.
convex with respect to geometric mean, which means that

o (Vat) < Velsw M. sit>0,

(see Mulholland [11], and [6]). In the remaining possible case, if (€2, %, 1) is such
that, for every A € 3,
1 (A) # 00 = p(4) <1,

inequality (1) holds, if the two-variable function

(0,00)% 3 (s,8) = ¢ (7" (5) + ¢ (1))
is concave, which implies the convexity of ¢ (see [4]).

In the present paper, assuming that (€2, ¥, i) is a measure space with at least two
disjoint sets of finite and positive measure (referred in the sequel nontrivial), we
prove that if ¢ satisfies inequality (1) that is sharp for all not proportional functions,
and
lim sup plr) _ 00,
r—00 r

then ¢ is convex (Theorem 1). Moreover, without any additional conditions on ¢,
if in the measure space there are two disjoint sets A, B € X such that

min (p (A), 1 (B)) <1< p(A) + p(B),

then ¢ is convexr (Theorem 2). In the proof a method of Gauss-type invariant means
is applied.

Both results strongly support our conjecture: if (£2,%, 1) is a nontrivial measure
space, then subadditivity of P, implies the convexity of (.

The respective implication that superadditivity of P, implies the concavity of ¢ is
easier for research and it is discussed in Section 3.

2. Results and proofs

Theorem 2.1. Let (2,3, ) be a measure space with at least two disjoint sets of
finite and positive measure. Assume that an increasing bijection ¢ : (0,00) — (0, 00)
satisfies inequality (1). If inequality (1) is sharp for all not proportional functions
T,y € S+ (Q7 E,/L), and

¢ (r)

r

lim sup
T—00

= 00,

then ¢ is conver.
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Proof. By the assumption there are two disjoint ¥-measurable sets A, B € ¥ of
finite and positive measure. Setting

X =1x1XA + T2XB, Y = ¥1XAa T Y2XB

in (1), where x4 stands for the characteristic function of A, we get, for all positive
real 1, 29, y1,y2 > 0,

o~ (ap (21 +31) + b (22 + 12)) < 0" (ap (21) + b (22))+o " (ap (1) + by (12)) -

where a = 11 (A), b = p (B). Since ¢ (04) = lim; o ¢ (t) = 0, putting ¢ (0) := 0, we
hence get

o' (ap (z14y1) +bp(at12)) < 0 Hap (21)+bp (22))+o " (ap (Y1) +be (12)) (2)

for all xy, x9,y1,y2 > 0. Setting here

_ _ t
To=y1 =0, T1=0¢ 1<5>, Yo = 1(5),

a
we get e ts+t)<p ()t (), st>0.
Since ¢ is strictly increasing, it follows that ¢ is superadditive i.e. that
e(s+t)>p(s)+el(t), s,t > 0.

Note that if s,¢ > 0 then the functions x = ¢™' (2) x4, y = ¢~ (}) x5 are not
proportional, and in consequence, so are the vectors (xy,zs) = (gp‘l (2) ,O) and
(y1,92) = (O, ot (%)), and the above inequality is sharp, that is ¢ is strictly super-
additive:

e(s+t)>p(s)+pl(t), s,t > 0.

Setting yo = 0 in (2) we have, for all zq,y;, 25 > 0,
o~ (ap (21 +y) +bp (22)) < 07" (ap (21) + bp (22)) + 97" (ap (1)) . (3)
Take arbitrary s,t > 0, s < t. By the strict monotonicity of ¢,
() - ) >0
. e (o () - ) >0
is a well defined positive number. Note that

ply) < 5 (4)

Indeed, by the definition of y and the strict superadditivity of ¢, we have

o) = o (¢ (5F) - ¢ )
<l (55) el )] -

Q

SN

(s—l—t_s) _t—s
2 2
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Note that there exists z > 0 such that

pl@+y) @) > (5)

Indeed, in the opposite case we would have

t—s
2a '’

pr+y) <pr)+

and hence, for every x > 0,

pE+2) =p((+y) +y) Sty + o

and, by the induction,

gp(a:%—ny)ggp(:v)%—nt;—as, x>0, neN,

pletny) o o) n_ t—s
r+ny — xT+ny xT+ny 2a

whence , x>0, neN.

By the superadditivity of ¢ (see the respective result for subadditive functions [2],
p. 248, Theorem 7.8.3), we have

k= lim o (r) :sup{@:x>0}.

r—00 T

Hence, letting n — oo in the previous inequality, we get

T+n T n t—s
plztmy) o »)  esOneN
T+ ny r+ny x+ny 2a
that is k < L;Tys, which contradicts the assumption that lim sup # = 0o. Conse-
T—>00

quently, inequality (5) holds true as desired.
Since ¢(0)=0, the continuity of ¢ and inequalities (4) and (5) imply that thereisz,

0<z1 <y (6)

such that
_t—s

plort+y) —p (o) = 5~

Ty =" (% <s;t —ayp (951)))

is well defined, as, by the definition of x1, (6), and the monotonicity of ¢, we have

Note that

+1 +t +t _ +t —
T ap@) 2 —aply) = e (v (CF) — e () >0

Putting y; := y, and taking into account the above definitions of 1, 9, we have
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ap (r1 + Y1) + by (z2)
= alp(z1+y) — @ (@1)] + [ap (z1) + bp (22)]

o5t e (57 (5 o)

t—s s+t
= = + =

t,

s+t

and ap (1) + by (x9) = 5

Therefore, setting the numbers z1, x9, y; into inequality (3), we obtain

e < (E) et () -0 ),

-1 -1

which shows that ¢! is Jensen concave. Since ¢ is increasing, it follows that it is
continuous and convex. This completes the proof. O

Theorem 2.2. Let (2, %, 1) an arbitrary measure space with two disjoint sets
A, B € X such that

0 <min (u(A), 1 (B) <1< p(A)+pu(B).

If o : (0,00) — (0,00) is an increasing bijection satisfying inequality (1), then ¢ is
conver.

Proof. Assume first that
min (x4 (A), 1 (B)) <1< p(A)+p(B).

By the converse Minkowski inequality [4] (see also [5]), there is p > 1 such that
©(t) = (1)t? for all £ > 0. Consequently, ¢ is convex.

To simplify the notations in two remaining cases
min (4 (A) 5 (B) = 1 and 1 (4) + o (B) = 1,
we put a:=p(A) and b:= p(B)
and note that, similarly as in the previous proof, inequality (1) implies (2).
Consider the case min (a,b) = 1.

Without any loss of generality, we can assume a = 1. Setting a = 1 and y, = 0 in
(2), we have

O (o (v +y1) + b (22) < o (o (1) + bep (22)) + v, x1, o, y1 > 0. (7)

Take arbitrary fixed s,t > 0, s < t. The numbers

_ 1 (t—
n=¢(s),  m= ()
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are positive and, by the assumed monotonicity of ¢, so is the number
w=¢" (S5) -9 ).
Setting them into inequality (7), we obtain
o0 (2 (59 - ) (o (57)
< e (e +oe (¢ (50)) +e () -t (s)

which simplifies to

e () + o (s) <207 (%)

and shows that ¢! is Jensen concave in (0,00). Since ¢ is increasing, it follows
that ¢ is Jensen convex. The continuity of ¢ implies its convexity (see, for instance,
Kuczma [3]).

Now assume that a + b = 1.
Take arbitrary s, ¢ > 0. Setting 71 = y» = ¢ (s), 29 = y1 = ¢! (¢) in the inequality
(2), and taking into account that b = 1 — a, we get
o) e () <o (as+ (L)1) 407 (1 a) s+

(that is ¢! is a-Wright convex). Putting

M (s,t)=as+(1—a)t, N(s,t)=(1—a)s+at, s,t>0,
we can write this inequality as follows:

e s) e () ST (M (s, )+ (N (s,1), st >0. 8)

Note that M and N are strict continuous means, and that the arithmetic mean
A(s,t) = =t is Gauss-invariant with respect to the mean-type mapping (M, N),
i.e. that Ao(M,N) = A. It follows that (see [10], also [1]) the sequence (M,,, N,,) :=
(M,N)", n € N, of iterates of (M, N) converges (uniformly on compact subsets) to
the mean-type mapping (A, A), that is

lim M, (s,t) = lim N, (s,) = 25, 5.t >0.

n—00 n—oo

From (8), by induction, we have
e ()t () <N (M, (s,8) + ¢ (N (s,t),  s,t>0, neN,

Hence, by the continuity of =1, letting n — oo, we obtain

e <207 (), s>,

which shows that ¢! is Jensen concave. Consequently, similarly as in the preceding
case, @ is convex. This completes the proof. O
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Theorem 1 and Theorem 2 imply that an increasing bijection ¢ of (0, c0) satisfying
inequality (1) can be not convex only if

min (a,b) >1  or a+b<1

and lim e(r)

r—00 r

is finite.

Example 2.3. Let (2, %, 1) be such that or every A € X,
1 (A) # 00 = p(4) <1
If p(t)= ti—gl or ¢ (t) =texp (—1), then the two variable function

(0,00)* 3 (5,8) = @ (07" (s) + 71 (1)

is concave, so P, is subadditive in S; (€2, %, 1t). In both cases ¢ we have

lim 2 — 1
r—oo T ’
and ¢ is a convex increasing bijection of (0, 00). N

Since we doubt the existence of an example of a nonconvex increasing bijection
@ of (0,00) satisfying (1) for a nontrivial measure space (€2, %, 1), and such that

lim, oo @ is finite, the following is our:

Conjecture 2.4. If (Q,%, p) is a nontrivial measure space and ¢ is a bijection of
(0, 00) satisfying (1), then ¢ is convex.

The following remarks support admitting in this conjecture all bijections.

Remark 2.5. The assumption in Theorem 1 and Theorem 2 that the bijection ¢
is increasing can be replaced by each of the following conditions:

(i) lim;_o@1(t) = 0;
(ii) ([9], Theorem 6) there is a set C' C (0, 00) such that
. -1 o
lim ™o (t) = 0
and the density of C' at the point 0 with respect to the Lebesgue measure A, defined
b (€0 (0.1)

Ac(0) := liminf A

h—0+ h ’

is positive;

(iii) [7] there exist n € N, n > 1, and A, B € ¥ such that

ANB=1, M(A)Z%, w(B) =mn;
(iv) [7] there exist m,n € N, n#m, n > 1, and A, B,C € ¥ such that

ANB=0, p(A)==, u(B)=
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Remark 2.6. Let ¢ be an arbitrary monotonic bijection of (0,00), and (£2,%, u)
be a measure space with at least two disjoint sets A, B € ¥ of a positive and finite
measure a = i (A) and b= p (B). If P, satisfies (1), then ¢ is increasing. O

Indeed, setting the functions x,y € S, (€, %, ),

X =x1XA + T2XB, Y = Y1XA T Y2XB

into (1), we get the inequality (2) for all 1,29, y1,y2 > 0. If ¢ were decreasing,
letting yo — 0, by the continuity of ¢, we would get

o ap (x1+ 1) + b (22)) < 0 (ap (z1) + bo (22)), @1, 22,51 > 0,
which, letting z; — 0, would give
! (ap (y1) + b (22)) <0, a2,5 >0,

which is a contradiction.

3. Superadditivity of P,

Research of the class of all bijections ¢ satisfying the converse inequality (1) is much
simpler, because we have the following (see [§]).

Remark 3.1. Let (€, %, 1) be a measure space with at least two disjoint sets of
finite and positive measure, and ¢ be an arbitrary bijection of (0, 00). If

PSD(X+Y) ZPQD(X)—I_PSO(Y)a X7y€S+ (Q&H)a (9)
than ¢ is increasing. O

Proof. Let A, B € ¥ such that AN B =0 and a = p(A4), b= p(B) are finite and
positive. For arbitrary s,¢ > 0, the functions

e (v (s
=y a A = b B
belong to Sy (2, X, ). Setting them into (9), by the definition of P, we get
P+t 2T ()T (1), st >0,

so ¢! is superadditive. Since ¢! is positive, it follows that it is increasing. It

follows that ¢ is increasing. [

Using this remark, and arguing similarly as in the proofs of Theorems 1 and Theorem
2, we obtain two results and formulate a conjecture.

Theorem 3.2. Let (2,3, 1) be a measure space with at least two disjoint sets of
finite and positive measure. Assume that a bijection ¢ : (0,00) — (0,00) satisfies
inequality (9). If (9) is sharp for all not proportional functions x,y € S; (2,3, u)
p(r)

r

and lim sup
r—00

:OO’

then ¢ is concave.
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Theorem 3.3. Let (2,X, 1) an arbitrary measure space with two disjoint sets
A, B € ¥ such that

0 <min (p(A4),n(B)) <1< pu(A)+pu(B).

If 1 (0,00) — (0,00) is an arbitrary bijection satisfying inequality (9), then ¢ is
concave.

Conjecture 3.4. If (2, %, 1) is a nontrivial measure space and ¢ is a bijection of
(0,00) satisfying (9), then ¢ is concave.
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