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1. Introduction

In many applied problems, especially, but not restricted to, those in continuum me-
chanics, equilibrium configurations are obtained by minimizing interfacial energies.
One typically studies functionals of the form

U g(u_(x),u+(x),uu(x)) dH"(z), (1)

Ju

where v is an SBV-function with jump set J,, jump normal v,, and approximate
limits u~ and ™ on both sides of J,, and g: R" x R" x 8"~ — [0, 00) is a suitable
energy density. Such energies often appear in the context of fracture mechanics [4],
polycrystalline solids [8, 9, 10], liquid crystals [2, 3|, free discontinuity problems [5],
or the relatively recent theory of structured deformations, see [11, 13] or [21] and
the references therein.

While energies as in (1), defined on the set of piecewise constant functions (in the
sense of Caccioppoli), were first addressed in [1], a general variational theory to
handle existence of minimizers, relaxation, and I'-convergence has been developed
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later in [2, 3]. For bounded densities, it was proven in [3, 5] that lower semicontinuity
of the surface energy (1) is equivalent to BV -ellipticity of the corresponding density
g. This notion is the surface-density-analogue of quasiconvexity, the key convexity
notion in the bulk-case. One calls g BV-elliptic if

gli,j,m) < / gluut, ) A (2)

u

for every (i,7,m) € R" x R" x §"~! and every piecewise constant function u on @,
with {u # w;;,} € Q,; here, the set @), C R™ describes an open unit cube with a
face that is orthogonal to 7 and u; ;, is the elementary jump from j to ¢ along the
line {z - n = 0}.

Motivated by the setting of structured deformations, in which the energies account
for microscopic slips and separations and, generally, the direction in which they take
place, we assume that g has the shape

flai,n) =af(\n) for every a > 0,

3
(A, n) ER" x &" 1 )

subadditive and with linear growth in the first variable; via (7) below, the function
f can be viewed as positively 1-homogeneous also in the second variable. Since the
pair ([u],v,) with [u] = u™ — u~ is only unique up to a sign, it is natural to require
that f is even, i.e., f(=\,—n) = f(\,n) for every (\,n) € R® x S*~ 1.

Our assumption (3) on the surface density is, however, incompatible with bounded-
ness, which is why only partial characterization results for lower semicontinuity are
available. It is straightforward to show that the proof of [5, Theorem 5.14] can be
modified without relying on boundedness. Hence, BV-ellipticity is still necessary for
the lower semicontinuity of the corresponding energy. A partial sufficiency result,
on the other hand, follows as in [15, Corollary 2.5]; indeed, the BV-ellipticity of
the density yields lower semicontinuity of the energy along converging sequences of
piecewise constant functions that are bounded in L*(€2; R™).

Since BV-ellipticity is usually difficult to verify, one is interested in stronger no-
tions that are easier to handle. Such concepts have been analyzed and compared
extensively in the literature, for example, in [5] or [3, 8, 9, 10]. One such notion is
biconvezity, which requires that the surface density in (1) can be written as

g(i,7,m) = @((j —1)® 77) for every (i,j,n) € R® x R* x 8" 1,

with a convex, positively 1-homogeneous function ®: R"*™ — [0, 0o). This property
was introduced by Ambrosio & Braides [3] in a finite-valued setting. It turned out
that biconvexity does indeed imply BV-ellipticity [3, Proposition 2.2], but the reverse
has only been conjectured. Since every biconvex function is necessarily positively 1-
homogeneous in the first variable, this equivalence requires a type of 1-homogeneity
condition; indeed, one can easily construct a non-positively 1-homogeneous BV-
elliptic function by exploiting joint convexity, see [5, Definition 5.17, Theorem 5.20].
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The conjecture can thus only be true for densities of the form (3). As proposed in
[3], the inequality

g(i,3,m) <Y gli, je,me)  with Z =) @me=(—j)®n, (4
k=1 k=1

for all (4,7,7m), (ix, Je, k) € R® x R" x 8" ! and m € N, would verify that BV-
ellipticity reduces to biconvexity. The estimate (4) has been shown later in [22] by
Silhavy in the context of structured deformations, however, without establishing a
connection to [2, 3] or [5]. In this paper, we merge the complementary results of
the two communities and discuss different convexity and BV-ellipticity notions. Our
first contribution is the following equivalence:

Theorem 1.1. (Characterization of BV-ellipticity) If f: R" x 8" — [0,00) is
even and positively 1-homogeneous in the first variable, then f is BV -elliptic if and
only if f is biconvew.

Note that the definition of the two properties of f as above are canonically trans-
ferred from (3), see Definitions 3.1 and 3.2.

Among the recent advances in analyzing lower semicontinuity of energies like (1)
in the setting of functions with bounded deformation include [15, 16, 17, 18, 19].
In particular, Friedrich, Perugini & Solombrino (cf. [15]) carry the notions of BV-
ellipticity and biconvexity (as well as joint convexity) over to the BD-case. They
show for bounded densities that the energy functional (1), defined on the set of
piecewise rigid functions with skew-symmetric gradients is lower semicontinuous if
and only if g is BD-elliptic. The latter is similar to BV-ellipticity in the sense that
(2) holds for every (i,7,m) € R" x R" x S and every piecewise rigid function u
with {u # v, ;,} € Q,. It is evident that BD-elliptic functions are also BV-elliptic.

In [15], the authors also define the concept of symmetric biconvexity, for which g
satisfies

g(i,3,m) = \Il((j —i) O 77) for every (i,j,n) € R" x R" x 8", (5)

with a convex, positively 1-homogeneous W: RZX" — [0,00); here (i — j) © n is
short for the symmetric part of (i — j) ® n. Whereas [15, Proposition 4.10] already
establishes that symmetric biconvex functions with {¥ = 0} = {0}, where ¥ is as
in (5), are BD-elliptic, the question whether the two notions are equivalent (under
suitable conditions) remained open. Our second main result is the affirmation of

this issue for the choice (3).

Theorem 1.2. (Characterization of BD-ellipticity) If f: R" x S"! — [0,00) is
even and positively 1-homogeneous in the first variable, then f is BD-elliptic if and
only if f is symmetric biconvez.

Proving this equivalence involves several steps. We establish that symmetric bicon-
vex functions are BD-elliptic by providing an alternative proof of [15, Proposition
4.10] that does not require the assumption {¥ = 0} = {0} with ¥ as in (5) by
reorganizing results and arguments from [15]. To obtain the reverse implication,
we leverage the larger class of test functions, unveiling additional properties besides
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those inherited by their BV-ellipticity. Precisely, we show that BD-elliptic densities
(or rather their positively 1-homogeneous extensions, see (7) below) are symmet-
ric in the sense that their two arguments are interchangeable. This can be done
by combining techniques from [22], which are based on the positive 1-homogeneity,
classic arguments in [5], and the class of piecewise rigid functions. The final step is
to a prove a symmetric analogue of inequality (4) in the BD-setting, for which we
carefully adapt a construction in [22] from the BV-setting.

Organization of this paper. In Section 2, we cover the notation used in this article
as well as a few technical preliminaries. After that, we introduce and characterize
a number of BV-ellipticity notions, defined via different classes of test functions in
(2). While some of these properties coincide with biconvexity, see Theorem 3.7, we
also highlight that others become trivial if the class of test functions is too large
or small, see Propositions 3.5 and 3.6. We briefly discuss an alternative approach
to joint convexity and characterize the BV-elliptic envelopes of functions of the
form (3).

Section 4 is then devoted to the BD-setting, where we prove the equivalence of
BD-ellipticity and symmetric biconvexity in Theorem 4.6. Similarly to before, we
review the notion of symmetric joint convexity in our context of (3) and provide
characterizations of BD-elliptic envelopes. We round off the article with a curios
example of a biconvex function that is symmetric biconvex although it does not
appear to be so at first glance.

2. Preliminaries
2.1. Notation

Let n € N. We denote the standard basis vectors of R™ with eq,...,e,. For the
Euclidean scalar product of two vectors a,b € R", we write a - b and the length of
a is then given by |a| = /a-a. Their tensor product (or outer/ dyadic product)
a®b e R" " is defined componentwise as (a®0b);; := a;b; for every i, 5 € {1,...,n};
we denote its symmetric part 3a ® b+ 3b®a as a®b. The (n — 1)-dimensional unit
sphere S"~! consists of all vectors in R™ with unit length. Let € S"~! be given
and let (1,...,(o1 € 8! be such that the matrix S = (|| -+ [Cu1) € R
satisfies STS = SST = 1d and det S = 1, where ()7 stands for the transpose and
Id € R™™" is the identity matrix. With a little abuse of notation, we use the symbol
x -1t to indicate x - (; for every i = 1,...,n — 1. In particular, we write, for o > 0,

—a<z-n<a = —a<z-G<a, forallic{l,...,n—1}. (6)

The scalar product of two square matrices A, B € R™ "™ is defined as usual by
A: B =37 | AijBy; this product then induces the Frobenius norm |A| := VA : A
of A. For the set of symmetric and skew-symmetric matrices in R™*" we write R?*"

Sym
and R”*™: note that A: B=01if A € R*?*"™ and B € R»*"

skew Sym skew

The notation U € V for two sets U,V C R™ means that U is compactly contained
in V. Given n € 8", we define @, as the open unit cube in R" centered in the
origin such that two faces are orthogonal to 7.
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Moreover, we define uy, = Al {;.,>0y on (), as the elementary jump of A € R™ across
the midplane of @, perpendicular to n; here, 1y is the indicator function of set
U C R", which is 1 on U and vanishes on R™ \ U.

A function h: R" — R is called positively 1-homogeneous if h(a&) = ah(§) for all
¢ e R" and all a > 0.

We say that a function f: R" x 8" ! — R is even if f(—=\,—n) = f(\,n) for
all A € R" and n € 8"!. For such a function f, we introduce its positively 1-
homogeneous extension in the second variable as

n n
- () forme R (o),

[R*XR" >R, ()() (7)
0 for n = 0.

By H"~! we mean the (n—1)-dimensional Hausdorff measure and £" is the Lebesgue
measure in R™.

Let U C R™ be measurable and 1 < p < o0o; then we employ the standard notation
for the Lebesgue spaces LP(U;R™) and the spaces BV(U;R"™), SBV(U;R"), as well
as CH(U;R™).

If u € BV(U;R"), then we write J, for the jump set of u, v, € S*™™! for its normal,
and [u] := u* — u~, where u* and u~ are the approximate limits on both sides of
Jy; note that the pair ([u],1,,) is only unique up to a sign, which is why we always
work with even surface densities.

2.2. Auxiliary results

We first prove that rank-one matrices have a decomposition into tensor products of
two vectors in R™ and S"~! that is unique up to a sign.

Lemma 2.1. If (\,n),(N,n') € R" x 8" 1 with \, N # 0 satisfy A\@n = N @1/,
then it holds that (A, n) = (N, ') or (\,n) = (=X, —0).

Proof. Choose any ¢ € R" such that n- & = 0, then it holds that
(- ON =N@n)f=A@né=n I=0.
Since X' # 0, it holds that n’ - £ = 0 for any & € R™ with £ - n = 0 and thus 7’ is
a multiple of 1, which results in either ' = n or ' = —n because both vectors are
normalized. Then, for any x € R" we find that either
(z-A=X)np=0 or (z-(A+X\))n=0,

which means that A = X or A = =\. ]

Next, we briefly cover a few properties of one of the central functions in [22, Theorem
2.3], which will also be relevant in this work.
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Lemma 2.2. Let f: R" x 8" ! — [0,00) be even, positively 1-homogeneous in the
first variable, and continuous. Then, the function ®y: R™*"™ — [0, 00) given by

S N, (A, 1) € R x 8" for all
@;«(F)::mf{sz,m): m €N, (A, m) €R" x & for a } N
i=1

ie{l,...,m} with " N\ ®@n =F

for F' € R™ ™ s positively 1-homogeneous and convex and the integer m in (8) can
be chosen as m =n?+ 1.

Proof. Step 1: Auziliary function ¢y.

First, we define the function

fn) i F=X@nfor (\n) e R* x §" 1,

o0 otherwise,

¢r: R —[0,00), F — { 9)

and show that ¢, is well-defined. If F' = 0, then F = 0 x n for any n € S"..
Since f is continuous and positively 1-homogeneous in the first variable, it holds
that f(0,n7) = 0. The case F' # 0 can be handled via Lemma 2.1 and the evenness

of f.
Step 2: Convex envelope of ¢y.

As f is positively 1-homogeneous in the first variable the function ¢; is positively
1-homogeneous. Its convex envelope is then also positively 1-homogeneous and
coincides with @, since

. n’+1 p; >0, F; € R™" foralli € {1,...,n* +1}
inf Z :U/zd)f(Fz) o n2+1 n2+1

i—1 with > 00 =1 and 37 "l =F

. n?+1 i >0, (N\i,m) €ER* x 8"t forallie{1,...,n*+1}
= inf Z paf (i) = n2+1 n2+1
i1 with > " gy =1and Y " T puh@n =F

{”2“ (A, mi) ER™ x 8" for all i € {1,...,n2+1}}

= inf

f(/\z7 Th) :

o eN, (\,m) € R* x 8! for all
St ]S gy "E N Do) € RE ST dorall - L
— ie{l,...,m} with > " ®n =F

The last two equalities are a direct consequence of the positive 1-homogeneity of f
in the first variable and the proof of [12, Theorem 2.35]. O

For the reader’s convenience, we now state the result [22, Theorem 2.3|, which
provides different formulas for the function ®; in (8). This proposition will be
crucial for the proof of Theorem 3.7 below.
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Proposition 2.3. (Alternative representations of ®¢) Let f: R" x "1 — [0, 00)
be even, positively 1-homogeneous and subadditive in the first variable, and contin-
wous. In particular, f satisfies

fAn) <C|\  for every (\,n) € R* x §"* (10)

with C = maxgn-14gn-1 f. Then, the function ®y: R™"™ — [0,00) in (8) can
alternatively be expressed as

: for all (A\,n) € R" x S"~*

0 is subadditi R™™  G(\ < (N
‘bf(F):sup{H(F) 15 subadditive on , 0 @n) < f( 777)}

= lnf{ f([u] v )d%n_l : u € SBV(QWRH)7 Vu=0 on Qﬂ?}
Ju

u(x) = Fx for x € 0Q,
SBV(Q,; R"), Vudz =0,
= inf{ (], vy) dH" “e (@i R) IQ" R }
Ju

u(x) = Fa for x € 0Q,

for every F € R™™. Moreover, for every (\,n) € R" x 8"~! it holds that

u € SBV ‘R™), u=wuy, on dQ,,
Dp(h @) =infQ [ f([ul,v) dH"" (QuR"), u =1y on 0Qy )
Ju Vu=0 onQ,

Finally, we state the well-known fact that convexity and subadditivity are equivalent
for positively 1-homogeneous function. This result will be needed a few times in
Section 3.

Lemma 2.4. Let h: R™ — R be positively 1-homogeneous, then h is subadditive if
and only if h is convex. In this case, the function h is also continuous.

3. BV-ellipticity and related notions

3.1. Basic definitions and properties

First, we provide the reader with a few classes of functions that appear in the
literature, though often without explicit notation, in the context of BV-ellipticity
and lower semicontinuity of surface energy functionals. For n € 8"~ !, we introduce

SBV,(Q,; R™) :{go € SBV(Q,;R") : ¢ =0 on GQW},

VA (Q,; R™) :{gp € SBV(Q,;; R") : Vedr =0, =0 on OQU},

Qn
VGo(Qy; R™) :{90 € SBV(Q,;;R™") : Vo =0o0n Q,,p =0 on (%277},

Y = ZkGN)\kILPk with )\kERn, (Pk)k is a}

PCo(@n;R") = § 9 €SBV(Qy; R") :
0(@n; R") {90 (@ RY) Caccioppoli partition and supp ¢ € @,

SJo(Q:R™) ={p € SBV(Q,;;R") : ¢ = A1p with A e R", P € @, }. (11)
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The space SBV(Q,,; R™) appears in [6, Theorem 4.2.2], the subset VA (Q,; R") with
vanishing average of the gradient and VG (Q,;R") with vanishing gradient can be
found in [11, Theorem 2.16, Theorem 2.17]. The set of piecewise constant functions
PCy(Q,; R™) (in the sense of Caccioppoli) is the standard class of test functions
for BV-ellipticity and appears in, for instance, [5, Definition 5.13]. Single jumps
in SJo(Q,; R™) are an addition of ours to round off the discussion about different
BV-ellipticity notions.

Clearly, it holds that
SJo(@; R™) C PCo(Qy; R™) C VGo(Q,; R™) C VA(Q,; R"™) C SBV(Q,; R"). (12)

All inclusions above are also strict: while the first and last one are obvious, the
other other two might not be as easy to see.

For the second inclusion, we refer to the construction in [22, Lemma 5.2]. As for

VGo(Qp; R™) C VA(Q,; R™), we choose A € R™™\ {0} and € "', define
Qf ={reQy:z-n>0} and Q, :={reQ,:z-n<0}, (13)

{o if v €Q,\ 10,

and x) =
A I

€ @y,

and observe that ¢ € VAo(Q,; R") \ VGo(Q,; R™).

Now, we introduce several BV-ellipticity notions with varying classes of test func-
tions.

Definition 3.1. (BV-ellipticity) Let f: R" x S"! — [0,00) be an even function.
We say that f is BV-elliptic if for any A € R® and n € S*! it holds that

fOu) < / £ ([, ) A= (14)

for all u € uy, +PCo(Q,; R™).

More generally, we say that f is BV-elliptic with respect to SBVy/ VGo/ VAq/
SJo when (14) holds with PCy(Q,; R™) replaced by one of the corresponding sets
introduced in (11). O

In Section 3.2, we provide characterizations of all these BV-ellipticity notions. While
BV-ellipticity with respect to the extreme cases SJy and SBV| result in trivial state-
ments, BV-ellipticity with respect to PCy, VGg, and VAj are all equivalent and
coincide, under suitable conditions, with biconvexity. In general, the latter is a
stronger notion and is much easier to verify. We introduce this concept in the next
definition and adapt it from [3, Section 2.2].

Definition 3.2. (Biconvexity) We call f: R" x 8"!' — [0,00) biconvez if there
exists a convex, positively 1-homogeneous function ®: R"*" — [0, 00) such that

fOun) =®(A®n) forevery (A\,n) € R" x S*". n
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Naturally, any biconvex map has to be positively 1-homogeneous in the first argu-
ment. It was already conjectured in [3, p. 9] that BV-ellipticity with respect to PCy
and biconvexity are equivalent concepts. This conjecture can, however, not be true
in general. To see this, one needs to construct a BV-elliptic function that is not
a positively 1-homogeneous in the first variable. This can be done with the help
of a jointly convex one with said property, cf. Remark 3.10 or [5, Definition 5.17],
as every jointly convex function is BV-elliptic with respect to PCqy in view of [5,
Theorem 5.20]. If one amends this question by requiring positive 1-homogeneity
in the first variable, then the two definitions are indeed equivalent, as is shown in
Theorem 3.7 below.

We now gather a few properties emanating from BV-ellipticity with respect to SJp.
This statement can be drawn from combining and adapting the proofs of Theo-
rem 5.11 and Theorem 5.14 in [5]. The benefit of our argument is a direct proof
which does not rely on lower semicontinuity arguments.

Proposition 3.3. If f: R" x 8! — [0, 00) is even and BV -elliptic with respect to
SJo, then the following statements hold true.

(i)  For anyn € 8", the function f(-,n): R™ — [0,00) is subadditive.
(ii)  For any A € R™, the function f(\,): R" — [0,00) (cf. (7)) is conver.

Figure 1. (a) the function ¢, and (b) the function u in dimension n = 2
(here pictured for k = 4), the dashed lines marking the jump set .J,,. For
the purpose of illustration, here we have taken \,¢ € R? with vanishing
first component.

Proof. (i) For fixed A\, € R" and n € 8" !, we use the single-jump test functions
(Yr)k C SJo(Qy; R™) defined by

, for k > 2,

see Figure 1(a); recall also the notation (6).

If we define wy, := uy, + ¢ (see Figure 1(b)), then the BV-ellipticity with respect
to SJo(Q,; R™) gives
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fFOum) < [ fllus] v, dH™

Ty

= (1- ;)n_l(f(A —&m)+ f(&m)

+11€<1_11€>n_2(2f)\77 +Z —&.G) + f(= é,—Cz)))-

Letting k — oo yields f(A,n) < f(A =& n) + f(&,n)-
Substituting A by A + £ implies

FA+&En) < fun) + f(&n)  for A, e R,
which means that f(-,n) is subadditive for any fixed n € "'

(ii) In view of Lemma 2.4, we can equivalently show that n — f()\,n) is subadditive
on R"™. We illustrate the proof in the case n = 2 for clarity and indicate how to
modify it for general dimensions n € N.

Let 1,12 € R? and set 1 := ny + 12 and 7; := n;/|n;| for every j € {0,1,2}. On the
“upper” side of the square @, we build a triangle 7° with side lengths Lo = p > 0,
Ly = plm|/|no|, and Ly = p|na|/|no| and normals 7y, —7;, and —1, respectively.

Notice that the triangle “closes” because of the definition of 7. Setting p = ﬁ, we let
T* be the corresponding triangle, and we denote by T} the union of 2k — 2 triangles
given by shifting 7" along the upper side of Q;, so that dist(T}, 0Q,) > i Let now
i € SJo(Qy; R™) be the function taking the value —\ on T}, and use uy = uy ;, + @

as a test function for the BV-ellipticity of f with respect to SJy. We have

Fi0) = ol £ o) < [l / F([ua], vy) dH! (15)

= (2% — 2 [f(A,nn;k P PO ) g 2 = PO + O )

as k — 00, so that f is subadditive.

To deduce the statement for arbitrary dimensions, it suffices to use the previous
construction on a thin cuboid whose base is a 2-dimensional section of the cube Qj,,
and whose thickness is = in the remaining n—2 dimensions. In doing so, the bracket

2k
n (15) must be modified to

1

(1= 1) ol2k = 2) [0 ) e 2L 4 p i) 2] () Il R
k 0 2k o) 2k ol 2k OIS 2
which reduces to the right-most term in (15) in the limit as & — oo. O

Remark 3.4. Let f: R" x 8! — [0, 00) be even, positively 1-homogeneous in the
first variable, and BV-elliptic with respect to SJg, then f is separately convex, in
view of Lemma 2.4. In particular, it follows that f, and thus also f, is continuous
and satisfies (10).

These properties will be useful for proving the characterization result in Theorem
3.7 as they provide the remaining assumptions for [22, Theorem 2.3], see also Propo-
sition 2.3. [
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3.2. Characterization results

In this section we show that, under suitable assumptions, BV-ellipticity with respect
to the extreme sets SJy and SBV, turn out to be rather trivial and that all other
BV-ellipticity notions introduced in Definition 3.1 coincide.

Proposition 3.5. If f: R" x S" ! — [0,00) is even and positively 1-homogeneous
in the first argument, then [ is BV-elliptic with respect to SBV if and only if f = 0.

Proof. For any (\,n) € R" x 8" ! and k € N, let ¢ € C°(Q,; R") such that
Yp=—Ain (1 - )@, and suprkHoo < C < +o0,

for some positive constant C'. We define ¢, = wkﬂQ;, with Q; as in (13) and
observe that ¢, € SBV(Q,; R"™) by design. The only jumps of uj appear on the set

Ne={r€Q:z-n=0—5+5 <z n <j—5}

Since f is BV-elliptic with respect to SBV(, one obtains with the test fields u; :=
Uy, + ¢ and in view of Proposition 3.3(i) that

f()\,n)g/J f([uk],yuk)dH"‘lz/N FN+ g, m) AR

Uk

< H"YN)F(M 7))+ C ,n) ‘ dH"!

NN {70} )f<||7/}k||L0°
< (1+C) max, |f(&n)H" (M) = 0.

The second step exploits that f(0,7) = 0 for all n € S"!, noting that f(-,n) is
continuous by Lemma 2.4, and the third one makes use of the subadditivity in
combination with the positive 1-homogeneity of f; for the final two steps, we have
used that f is continuous in its first variable, and hence, f(-,7) is uniformly bounded
on 8" ! and that
M N) <1 (1 1)

tends to zero as k — 0. This shows that f < 0, from which we conclude that f =0
since f is non-negative by assumption. [

The next theorem shows that separate convexity of the positively 1-homogeneous
extension of f: R" x 8”1 — [0, 00) in the second variable is sufficient for the BV-
ellipticity of f with respect to SJg.

Proposition 3.6. If f: R" x §"! — [0,00) is even and positively 1-homogeneous
in the first variable, then f is separately convex if and only if f is BV-elliptic with
respect to SJy.

Proof. The necessity follow immediately from Remark 3.4. We now turn to the
proof of sufficiency. Let (A\,n) € R" x 8" ! and ¢ € SJo(Q,; R") with ¢ = £1p for
£ € R" and P € @, a set of finite perimeter. Moreover, take P* := PN Q; and
P~ :=PNQ, with Q; as in (13).
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In the following, we take OP as the reduced boundary of P in the measure-theoretic
sense and let vp: P — 8" ! be the generalized outer normal to P according to [5,
Section 3.5]; and analogously for P*.

Setting N, := {z € @, : x-n = 0}, by the measure-theoretic Gauf-Green formula
(see e.g. [5]),

/ vps dH" Tt = — / vpe dH" ' = £H" 1 (OP* N N,)n. (16)
OPE\N, APENN,

By Jensen’s inequality, exploiting the convexity of f in its second variable, we find
together with (16) that

/ (=& vpr) AH™ > HHOPT\ N,) (¢, vps dH)
N IPH\N, (17a)

=H"OPT\ N, f(=¢&m),

and similarly,
[ feem)aut = 0P AN (-6 (1)
OP=\N,
Further, let u = u,, + ¢ and invoke (17) and the evenness of f to obtain

s = [ e oy [ g

OP—\N,
+ / (=€ = A, —n) A 4 / FO\ = €,m) dHn?
OPF\OP—NN, BP—\OP+NN,
+ / FOm) dHr 4 / FO ) dH!
N,\OP dP+NOP—NN,

> H'HOPT\ Ny f(=&m) +H"H(OP™ \ Ny) f(&,m)
+HTHOPT\OPT NN f(E+ A n) +HHOP™ \OPT NN, f(A—&,1m)
+H"H (N, \OP)f(Nn) + H(OPT NOP™ NN, f(An). (18)
The measures in (18) can be estimated via
H*HOPT\ N,) > 1" H(0PF\ OPT N N,) (19)
in light of (16), while the values of f can be treated via
Fum) < FAEEn) + f(FE,m), (20)

which follows from the subadditivity of f in the first variable, considering that f is
separately convex and positively 1-homogenous in the first variable, cf. Lemma 2.4.
Combining (18)—(20) then yields

/S o Flul,va) dH™1 > HYHOPT\ OP™ N Ny (£(€+ Am) + f(=€,m))

+H"THOPT\IPT NN (f(A =& m) + f(&m)
+HTHN, \OP)f(\ ) + HOPT NOP™ NNy f(An) = f(Am),
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since  H" (N, \ OP) + H" H(OPT\OP N N,) +H" (0P~ \OPT N N,)
+H(OPTNOP NN,)
=H""YN,\ OP) +H" ' (OP\ N,) = H" ' (N,) = 1. O

Since the set (R™\{0}) xS~ modulo the equivalence relation (A7) ~ (=X, —7) can
be identified with the set of rank-one matrices, every function f : R*x 8"~ — [0, 00)

can be written as
fun) =2(\@n)

for some @ : R™*" — [0, 00), see also [7, p. 305]. If f is additionally 1-homogeneous
in the first variable and BV-elliptic with respect to the smallest class SJg, then ® is
1-homogeneous and rank-one convex, due to Proposition 3.6. In the next theorem,
we show with the help of [22, Lemma 6.2 and Lemma 6.3] that if f is BV-elliptic with
respect to VAg, VGq or PCy, then @ is also convex and coincides with ®; (see (8))
on rank-one matrices. Note that, in contrast to [22] we do not require the additional
assumptions of subadditivity and continuity of f, since they are given automatically
by its BV-ellipticity and 1-homogeneity in the first variable, see Remark 3.4.

Theorem 3.7. (Characterization of BV-ellipticity) Let f: R" x "1 — [0, 00)
be even and positively 1-homogeneous in the first argument. Then the following
statements are equivalent:

(1) f is BV-elliptic with respect to VAy;

(2)  f is BV-elliptic with respect to VGy;

(3)  f is BV-elliptic with respect to PCy;

(4)  f is biconvex and f(\,n) = ®(A®n) for every (A\,n) € R" x 8", ¢f. (8).
Proof. The implications “(1) = (2)”, “(2) = (3)” are trivial in light of (12). It
remains to prove “(3) = (4)” and “(4) = (1)”. Let (\,n) € R" x 8" ! now be
arbitrary.

~_

“(3) = (4)”. As a consequence of Remark 3.4, the function f is separately convex,
continuous and satisfies (10). Then, the assumptions of Remark 2.3 are satisfied in
view of Lemma 2.4 and it holds that

o 0hem) = int{ [ ful) O €y + VGU(@ R |
Ju

= inf{ f(lu),vy) AR i u € uyy + PCO(QU;R”)};
Ju

the latter equality follows from the proofs in [22, Section 6] where only test functions
in PCy instead of VGy are employed. Due to the BV-ellipticty with respect to PC
of f, we then conclude that ®;(A ® n) > f(A,n). On the other hand, by choosing
u = uy, as a test function, one immediately finds that (A ®n) < f(A\, 7).
“(4) = (1)". Let ¢ € VA((Q,;R™) and u = uy,, + ¢. Then, we infer by Jensen’s
inequality and by exploiting the positive 1-homogeneity of ®; (see Lemma 2.2) that
f([u], v,) dH™ ! :/ Dp([u] @ v,) dH" ' > @, (/ [u] ® v, dH”A)
Ju u u

=dos(A@n) = f(\n).
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To see the equality before the last, we argue that

/u [u] @ v, dH" " = /N A+ [p]) @n dH" ™ + /Ju 0] ® v, dH"

n \ Ny

:)\®77+/ (] ® v, dH" ' = @7,
J

due to 7

/ [QD] ® v, T DQO(QU) — Vpdr = / ¢ @ Vg, Ayt = 0,
Je Qn aQn

where we have exploited that the mean value of Vo on @), is zero and that ¢ has
zero boundary conditions on 0@),. Moreover, we used the fine properties of SBV
functions (see [5]) and

DQD(QH) = / QO ® VQn dHn_la
oQy

which follows from the trace theorem for BV functions, see e.g. [14, Section 5.3,
Theorem 1]. O

Remark 3.8. It is known (see [20, Proposition 4]) that SBV-functions cannot gen-
erally be approximated by piecewise constant ones. Proposition 3.5 and Theorem
3.7 provide an additional confirmation of this fact: if such an approximation existed,
then SBV-elliptic functions could be approximated by PCy-elliptic ones, but this
cannot be the case since the former class only contains the zero function. Il

To close this section, we briefly discuss two closely related topics. We first cover a
relaxation result in the BV-setting. Here, Theorem 3.7 is the key to characterizing
BV-elliptic envelopes of even functions f: R" x S"~! — [0, 00). Two versions of such
envelopes could be defined as follows:

BV (A, n) :==sup {h(\,n) : h is BV-elliptic and h < f},
fev(An) = inf{ f(lul,vy) dH" ™ s € uy, + PCO(Qn;R”)} :
Ju

In the following, we prove that they both suitably coincide with ®; under the as-
sumptions in Theorem 3.7.

Proposition 3.9. (BV-elliptic envelope) Let f: R™ x S"' — [0,00) be even and
positively 1-homogeneous in the first variable. Then, it holds that

FPV () = fev(An) = @A @n),
for every (A\,n) € R™ x S"1. In particular, the BV-elliptic envelope of f is BV-
elliptic, and f is BV-elliptic if and only if it coincides with its BV -elliptic envelope.
Proof. The function f: R™ x 8" ! — [0,00), (A7) — ®;(A ®n) is BV-elliptic
due to Theorem 3.7. Hence, it follows that

oA @n) = f(An) < V()

for every (\,n) € R" x S"1.
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The inequality fgy < f has been shown in [22, Lemma 6.2], so it remains to show
that fPV < fgy. To this end let u € uy, + PCo(Q,; R™) be any test function and
let ¢ > 0. By definition of fBY, we find a BV-elliptic function h with A < f such
that

2O <hOvn) +e < [ ) dn e < [ ) dre e
u Ju

Since u and € are arbitrary, we conclude the remaining inequality. [

Lastly, we mention another closely related notion of convexity.

Remark 3.10. (Joint convexity) We say that an even function
fiR® xS —[0,00)

is jointly convez if there exist Lipschitz continuous functions g; € C'(R™;R") for
every ¢ € N such that

f(A,n) =sup (gi()\) — gi(O)) -n  for every (\,n) € R® x S" 1.

ieN
This definition differs slightly from the literature [5, Definition 5.17] in the sense

that we do not require the functions g; to be defined on compact sets. We also do

not necessitate uniform continuity and boundedness when extending the functions
in [5, Definition 5.17] to all of R™.

It turns out that this convexity notion is also equivalent to BV-ellipticity if f is
positively 1-homogeneous in the first variable. Indeed, any jointly convex function
is BV-elliptic and the proof can be handled exactly as in [5, Theorem 5.20].

On the other hand, any biconvex function is jointly convex since any convex function
®: R™" — [0,00) with ®(0) = 0 can be approximated from below by linear func-
tions g;: R™*™ — R, which can be expressed as ¢;(F') = A, : F for some A; € R"*"
and every F € R™™", Il

4. BD-ellipticity and related notions
4.1. Basic definitions

First, we introduce the primary set of test functions relevant for BD-ellipticity. For
n € 8", we define the set of piecewise rigid functions with compact support in Q,,

as
gp(x) = ZkeN(Akx + bk)ﬂpk ($) for x € Qn,
PRo(Qn;R") = ¢ p€SBV(Q;R") + Ay € RILY, by € R™, (), a Caccioppoli o,

skew?
partition of @,, and supp ¢ € @,
cf. [15, Section 2.1], and give the following definition of BD-ellipticity:

Definition 4.1. (BD-ellipticity) We call an even function f: R™ x 8"~! — [0, o)
BD-elliptic if, for every u € uy, + PRo(Q,; R"),

fwmsﬂﬂm%mwf 0

Several examples of BD-elliptic functions can be found in Section [15, Section 4].
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The next definition is the BD-analogue of biconvexity, taken from [15, Definition
4.8], and tailored to our setting.

Definition 4.2. (Symmetric biconvexity) An even function f: R" xS"~! — [0, )
is said to be symmetric biconvex, if there exists a convex and positively 1-homoge-

neous function ¥ : REX" — [0, 00) such that

fOun) =¥(Aen) forall (\,n) eR"xS" . O

Before we prove our second main theorem, we briefly summarize a few properties of
BD-elliptic functions as a direct consequence of their BV-ellipticity.

Remark 4.3. Let f: R" x S"! — [0,00) be even, positively 1-homogeneous and
BD-elliptic. In view of PCy(Q,; R") C PRo(Q,; R™) and the chain of inclusions in
(12), it follows from Proposition 3.3 and Remark 3.4 that f as in (7) is separately
convex, continuous and satisfies (10). O

4.2. Characterization result

First, we prove that BD-elliptic functions that are positively 1-homogeneous in the
first variable are symmetric in the sense that the two variables can be switched.

Proposition 4.4. (Symmetry of BD-elliptic functions) If f: R" x §"! — [0, o)
is even, positively 1-homogeneous in the first variable, and BD-elliptic, then

fOun) = f(m,\) forall (\,n) € R" x R", with f as in (7). (21)

Proof. Since f is positively 1-homogeneous in both variables, it suffices to establish
(21) for unit vectors. For n = 1, the statement is clear, which is why first consider
the case n = 2. We detail the generalization to higher dimensions in Step 3.

Without loss of generality, we may assume that A € 8" ! is arbitrary and n = e,.
The goal is then to show
f()‘7€2) < f(627/\)'

Our proof strategy relies on the construction of suitable test functions that generate
many small jumps by multiples of e; in the direction A, and at the same time
compensate the elementary jump wuy.,. To establish the above inequality for any
given n € 8”1, we simply rotate the construction. The desired equality (21) can be
obtained by exchanging the roles of A\ and n. If A = +e,, there is nothing to prove,
which is why we exclude this case in the following calculations.

Step 1: Construction on a single triangle (n = 2).

Let k € N with k£ > 2. In this step, we consider the unique matrix A, € R2*? with

skew
the property that
Akel == —k)262. (22)

We define a small triangle A with vertices 0, %el and &, := %61 + ,f—zw, where w € St
is the vector with .

For now, we assume that w - ey > 0; the case w - e; < 0 is detailed at the end of this
step.
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We intersected the triangle by k* — 1 parallel lines with normal A in such a way
that their intersection points with [0, 1) x {0} are equidistant with distance 5. The
resulting geometric figures inside Ay (a single triangle and k? — 1 trapezoids) are
denoted by M}, ..., M,fQ, counting from left to right. For an illustration of the
geometric setup, see Figure 2. ¢

k

Ay

18]
k2

2
gy 1,

o 7 kf/l

1

k3
Figure 2. An illustration of the triangle Ay, including £* — 1 parallel
lines with normal A\ that intersect the bottom line equidistantly. All
other lengths are uniquely determined as a consequence of the intercept
theorem.

A + %62 ifz e Mi for some j € {1,.. -,k2}7
u)\762(;(}) lf x ¢ Ak,

for v € Q).,. The task is now to carefully estimate the jumps of u; on 0Ay as well
as those within A,. Along the bottom edge D,i of Ay in direction e;, we compute
with (22) that

We now set  ug(z) = {

K2 %
k .
f([tg], vg,) dH™ ! = Z/ f((—K°z1 + L)ea, e2) day
Dy, =
K2
k3 9 .
:Z/ (—k‘xl-i-%) dwy f(e, e2)
=17
k‘2
:Zif(e e):if(e e)<i max f;  (24)
= 2k4 2 2k2 D2 = 42 gnorggn1

note that —k%z, + % > 0 on (Jk:,,l, kS) which allows us to exploit the positive 1-

homogeneity of f in the first variable. With similar arguments, we estlmate with
the help of (22) and (23), along the top edge D? of Ay, in direction & := i |§k (and

outer normal ()
k2 J'\€2k\

e S (], va, ) dH" ™ = ; /(J_kl;gk FON— B tAG: — %627 (k) dt
slgy|
- Z/J lw |§—i|t mtx 62, G) dt
ilegl

<Z L e [0 D06 = Gt = DI en ]

8w e 5k e s 0D

n—1ygSn—1 - kQ Sn—1lygn—1



46 D. Engl et al. / Characterizing BV- and BD-Ellipticity ...

On the shortest edge D3, in direction w € 8"~ !, we observe the total jump energy

(], va,) AP = / FON+ ey — KA — key, A) dt
D} 0
= f(\ A ﬁl—k2 d -\ A pkz —1)d
f( >/0< ) dt + £ >/,:2(t ) dt

(FON) + F(=AN) € 5 max_ f, (26)

Sn—1ySn—1

2k2

due to (23). T he parallel lines inside the triangle A, which we denote by L7 and
have length for j =1,...,k* — 1, yield the jumps

k2—1 k2—1
Z f ), vg, ) dH" Z k4f 762, A
2 k4 — k2 1
= D ifle2A) = (e, N) < L f(e2, V). (27)
j=1
If w- ey <0, then we redefine A as having the vertices 0, 61, and ——61 kgw;

the parallel lines L{C for j = 1,...,k* — 1 inside A, are drawn analogously. The
function @y is now set to be

e — Az — Ley if z € M} for some j € {1,...,k%},
Up\T) = .
U ep (T) if © & Ay,

for x € ().,. Using the evenness of f, it is evident that the previous estimates still
hold.

Step 2: FEztending the construction to multiple triangles (n = 2).

We now choose k = 2N for N € N and place k — 2 = 2N — 2 copies of Ay next to
each other, i.e., we set A} := Ay + 5%e; for i € {1 — .., N =2} cf. Figure 3.

et T o ‘

—— = \
2N 2N

Figure 3. An illustration of the translated copies A} of Ay.

Moreover, we define for x € Q.,

(z) up(z — 55e1) ifxe Al forsomeie{l—N,...,N—2},
u(z) =
. Upe, () otherwise.
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In light of (24)-(27) and Figure 3, we then obtain

/J F([ur), v ) AR =

Upe

k21

2 n—1 n—1
~ 3O+ k=2 [ filmd o) an # 3 oo o )

S%f()\,€2)+(k‘ 2) (]:’2 S f(eg, ))-

For k — o0, this estimate and the BD-ellipticity of f yield

f(\ e2) < limsup/ f([we], vy, ) AH" ™ < flea, A).
J

k—o00 g,

Step 3: Generalization to higher dimensions (n > 3).

Let n € N with n > 3. We aim to prove again that f(\,es) < f(e2, A) for any
A € 8", To this end, let us consider the two-dimensional plane H spanned by A
and ey, choose a vector v € S" ' N N, N H with N, = {z € Q., : v - e5 = 0}, and
select the unique matrix A; € R**" with

skew

Apv = —k®e; and  Ayz =0 for every z € H*, (28)

where H+ is the orthogonal complement of H. This matrix describes a rotation by
s

=" and scaling by k? in the plane H. If X lies in the e;-es-plane then A; can be
chosen as in the Steps 1 and 2 and filled up with zeroes in the remaining components.

Any other case is handled by the fact that UTAU € RIX" for every A € RIX" and

every orthogonal matrix U € O(2). As before, we select w € 8" such that (23) is
satisfied and assume that w-es > 0; the case w-ey < 0 can be addressed analogously.

In the A-es-plane, we can set up a triangle A as in Step 1, where e; is replaced by
v. We introduce parallel right prisms A};’n, each base of the shape Ay, where 7 is
taken from an index set I of consecutive integers with cardinality k. These prisms
are constructed in such a way that dist(A} . 0Q.,) > and their union covers the
hyperplane N,, up to an error in H"~ L_measure of order % Moreover, we intersect
each prism by k% — 1 hyperplanes with normal A; the intersection of these planes
with the prism A! —are called LJ and we denote the resulting geometric subfigures

by M} for j € {1, k2 We then define for z € Q.,

() = Ap(z —iv) +Ley ifx e M,g; for some j € {1,...,k*},i € I,
Upe, (T) otherwise.
The calculations for the occurring jumps are now simple modifications of those in

Steps 1 and 2 due to (23) and (28). For instance, in the analogue case of (27), we
can write Ly, = (L 4+ $v) x C},, with (n — 2)-dimensional cuboids C} ,, C H™.
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The jump energy across these surfaces inside the prism A};’n is given by

K21 k2-1
ol = 1 n—1 ne2 i 21
jZ:; /Li,,in f([Uk], Vuk) dH = ; /L?;XO;;’n f(E(BQ, )\) dH < H ( km)%f(e% )\)

After taking the sum over all i € I, the right-hand side converges to f(es, A), since

the expression Y., H" *(C} )3 converges to the H" '-measure of N, up to an

error of % The computations for the remaining surfaces, that is, the analogues of
(24)-(26), are even easier since the cuboids C} ,, are bounded and the cardinality of
I is of order k.

Additionally, one needs to account for the jumps across the two bases Al and A¢
of each prism, which are described by the triangle Aj,. If n = 3 and z € H* with
|z| = 1, then the energy contribution of the jumps across these two triangles with
normal z (or —z) vanishes in the limit. Indeed, since the lines L7, from Step 1 have
length 2—1 for all j € {1,...,k* — 1} and the edge of A; with normal \ has length
13—2, we find that

K .a .2 _
/. F([ug), v, ) dH" ™ = Z kj /k4 FON = Ap(tv + sw) — %62,2’) ds dt
k 7j=1 ]k;3 0

J

-y ’“S/f(AJrk?tez—k?sA—iez,z) ds dt
0

x

N
.
eI

_]21 k3
k2 g 2
o % 4 k24 L) dsdt
<> .y CL+kt+ks+ 1) ds
i=1""%3
[T [ (3+20)
AN _20(3+ 2k
S;/k/o C(3+2k)dsdt = ==,

while exploiting (10), as well as (23) and (28); analogously for Ai. The energy
contribution at the combined prism bases therefore vanishes in the limit, considering
that the cardinality of the index set [ is of order k. For n > 4, the bases of the
prisms are sets of zero H" !-measure and thus, can be neglected when calculating
the surface energy. O

Next, we prove the BD-elliptic generalization of [22, Lemma 6.2], see also (4), by
tailoring Silhavy’s construction to our setting.

Lemma 4.5. Let f: R" x 8" ! — [0,00) be even, positively 1-homogeneous in the
first variable and BD-elliptic. Then, for any (\,n) € R™ x 8"~ it holds that

fn) < Z f(Nismi)
i=1
for all (A\;,m;) € R" x 8" forie {1,...,m} and m € N such that

Z/\z‘@”?z':)\@??-

=1
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Proof. Let (\,n) € R x 8" with

/\QUZZAZ'(@”Z', or equivalently )\®77=22/\i®77i—77®)\a (29)

i=1 i=1

for a collection (\;,7;) € R"® x 8" for i = 1,...,m. We consider for k € N with
k > 2 the rectangle

—loew SRS RS S |
B”_{IER sens gt son S5 %}
and define
vg(x) if x € By, - N
u(x) == ‘ with  vg(x (K2 m) — k(n @ NV
{u,\m(:z:) if x ¢ By, Zl

for z € Qy; here, (n ® )™ := L(n® X — A @), and the notation (r) stands for
the integer part of r € R. In particular, it holds that, for any ¢ € R and n € N,

1 1
OSt—nWﬂéﬁ (30)
Note that (29) and (30) then yield that, for every x € Q,),
< 1 2 skew
EA(z - ) — o) = (kA @) = prlkT ) 4 R( ® AV
i=1
=k QZA-(JE ) — (NN — Z %)\ZU{% )+ (@ N)F N
=1 i=1
1 S S SKew
Ez Xl + D Aile - m) = (n@ Nz + (n@ NV
=1 =1
1 = s ew
EZ)\|+|/\®na:—(n®>\)x+(n®>\k \_ Zm (31)

1=1

The jump set J,, of u, can be written as the union
Juk =L, UM, UN,UR;,US,

where Ly =|JLi with Li={z€By: Kz -ncl},

i=1
—{reQzn=0 )L <<}

Rk:{xéﬁBk:x-nzo}a

Sk:{x683k3$‘77:%}'

We now compute the energy of the jumps at these interfaces.
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Just as in the proof of [22, Lemma 6.2], we obtain on Lj that

m

[ #d ) et < PO H () > Do) ()

=1

as k — oo, where we have used that f is subadditive in light of Proposition 3.3. On
Ny, we compute

/ £l v 4R = LEOLm) 5 0 as koo, (33)

and for x € My, we exploit (31) to estimate

A —or(@)] < A= EA(@ - )| + [kA(z - n) — ()]

1 1
< (LKl MDA+ 2 DI < 200+ 2> Il < 200

i=1 i=1

Hence, |\ — vg(x)| is bounded uniformly in k& and
/ S ([ue), vay,) dH™™H =0 as k — o0 (34)
My,

since H"'(My) vanishes in the limit. If z € Ry, we use (31) to obtain

o ()| = o) = kA m)] < 1 D A,

i=1

and if x € Si, we similarly find

A = o) = kA ) — o) < 7 D A,

i=1

which results in / f([we], vy, ) dH" ™" = 0 as k — oo. (35)
RrUS}

Combining (32) - (35), we then conclude the desired inequality since f is BD-elliptic
and uy € uy, + PRo(Q,; R™). O

We are now in a position to prove our second main result of this paper.

Theorem 4.6. (Characterization of BD-ellipticity) Let f: R™ x "1 — [0, 00) be
even and positively 1-homogeneous in the first variable. Then, f is BD-elliptic if
and only if f is symmetric biconvex with

fun) = @A)
for every (A\,n) € R™ x §"~!, where ®; is given as in (8).
Proof. Step 1: BD-ellipticity implies symmetric biconvexity.

If f is BD-elliptic, then f(A\,n) = f(n,\) (cf. (7)) for every (A, 1) € R® x S"~! due
to Lemma 4.4.
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In particular, we find that

DrAoOn) < fFGAn) + fGn,A) = f(An) (36)

for every (\,n) € R™ x 8" ! since f is positively 1-homogeneous in both variables.
In view of Lemma 4.5, we conclude that the two sides of (36) coincide, which proves
that f is symmetric biconvex.

Step 2: Symmetric biconvezity implies BD-ellipticity.

The proof is essentially a reformulation and simplification of some results in [15]. For
the reader’s convenience, we present the details below. If f is symmetric biconvex,
then there exists a positively 1-homogeneous, convex function W: R{X" — [0, 00)
such that f(\,n) = U(\A ©®n) for every (A\,n) € R" x S"1.

As in the proof of [15, Proposition 4.9], which is based on [5, Proposition 2.31], we
find a sequence of symmetric matrices (4;); C RIx" such that W(F) = sup;ey 4; : F

sym

for every F' € RI'*". In particular, it holds that

sym

f(A,n) =sup(A;\) -0 for every (\,n) € R" x S" 1. (37)

ieN
Finally, we define the auxiliary functions g;(x) := A;z for every x € R™ and continue
with the strategy in [15, Theorem 3.4]. We fix i € N, (\,n) € R" x S"~! with A\ # 0
(otherwise there is nothing to show), and select any u € u, , + PRo(Q,; R™). Since
u € SBV(Q,;R") and g; € C'(R™;R"™), we may apply the chain rule [5, Theorem
3.96] to differentiate the composition g; o u € BV(Q,; R™), obtaining
D(giou) = Vg;(u)VuLl™ + (g:(u) — gi(u™)) @ v, K" L J,,
= A,Vul" + (A;[u]) @ v, H" L T,

where D(g; ou) is the distributional derivative. By evaluating in @), and taking the
trace, we then find

Tr (D(g; o u)(Qy)) = / A (V)T dLn +/ (Ai[u]) - vy dH™ 1.

Since A; is symmetric and (Vu)T is skew-symmetric, their scalar product vanishes.
Moreover, as g;ou—g;0uy , has compact support in @, it holds that D(g;ou)(Q,) =
D(g; o uy,)(Qy), which leads to

/ (Ai[u]) - vy dH"™ = (AN) - 1.

Finally, we conclude from (37) that
) a1t = [ sup(aifa) - nane
Tu Ju i€EN

> sup/ (Ai[u]) - ndH" ! =sup(A;\) -0 = f(A,n),

1€eN €N

which proves that f is BD-elliptic. [
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Now that we have established the equivalence of BD-ellipticity and symmetric bicon-
vexity under suitable assumptions, we turn to a relaxation result similar to Proposi-
tion 3.9. For an even function f: R™" x 8" — [0, 00) we define the two BD-elliptic
envelopes for every (\,n) € R" x §" 1

PP\, n) := sup {h(\,n) : h is BD-elliptic and h < f},

fooOm) =it { [ f([u), ) A w € uyy + PRo(QyiR") |,
Ju

Proposition 4.7. (BD-elliptic envelope) Let f: R" x S"! — [0,00) be even and
positively 1-homogeneous in the first variable. Then, it holds that

fBD()‘>77) = fBD()\777) = (I)f()\ © 77)7

for every (A\,n) € R™ x S"~L. In particular, the BD-elliptic envelope of f is BD-
elliptic, and f is BD-elliptic if and only if it coincides with its BD-elliptic envelope.

Proof. The proof can be handled analogously to Proposition 3.9. We merely replace
Theorem 3.7 with Theorem 4.6, and [22, Lemma 6.2] with Lemma 4.5. O

Similar to Remark 3.10, we tackle one final related convexity notion.

Remark 4.8. (Symmetric joint convexity) An even function f: R"xS"~! — [0, o)
is called symmetric jointly convex if

fOn) =sup (g:(A) — gi(0)) - for every (A, n) € R" x "7,

ieN

where g; € C}(R™; R") is Lipschitz continuous and conservative for every n € N.
Here, we merged [15, Definition 3.1] with the class of functions for g; used in [15,
Remark 3.2]. In our setting the chain rule for compositions of g; with BV-functions
can be applied directly. Moreover, if f is positively 1-homogeneous in the first
variable, then symmetric joint convexity is also equivalent to BD-ellipticity.

The proofs of both implications can be handled almost exactly as in Step 2 of the
proof of Theorem 4.6, which are inspired by [15, Theorem 3.4] and [15, Proposition
4.9] but do not require boundedness of the functions g;. ]

We close this article with a curious example for a symmetric biconvex function. It
has already been establishes in [15, Example 4.16] that densities of the form

fun) =v), (An) eR"x8"!

with an anisotropic function 1 are, in general, not BD-elliptic. In the following, we
tackle the case ¢ = | - |, which has been addressed in [15, Theorem 4.1]

Example 4.9. (a) We consider the function
fiR?x 8= [0,00), (A,n) = [A@],

where |.| is the Frobenius norm. It is then obvious that f is biconvex, and also
BV-elliptic due to Theorem 3.7, since f(A,n) = ®(A®n) for every (A, n) € R?* x S!
with @: R**? — [0,00), F — |F)|.
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It might be surprising to see that f is also symmetric biconvex, and thus BD-elliptic
in view of Theorem 4.6, since f(\,n) = (A ®n) for every (\,n) € R* x S' with

U RY2 = [0,00), F s \/(Fi1 — Fa)? + (Fia + Fo1)? = /| F|? — 2det F.

However, neither ® nor ¥ (extended canonically to all of R?*?) coincides with @
(cf. (8)) on all of R?*2,

It turns out that ®; is the nuclear norm | - |, on R**? i.e.,

Op(F) = |F|. :=Tr (VFTF) = 01(F) + 02(F)

for every F' € R**?) where o,(F),02(F) > 0 are the two singular values of F. To
prove this identity, we turn our attention to Lemma 2.2, in which we established
that @ is the convex envelope of (9). Since the nuclear norm is convex and coincides
with f on tensor products, we obtain the trivial inequality |- |, < ®;. We establish
the reverse inequality by exploiting the singular value decomposition: for every
F € R?*? there exist orthogonal matrices U,V € O(2) such that

F=U <"1§)F ) UQ?F)) VT (38)

in particular, it holds that
F=0(F)Ue)® (Vey) + 02(F)(Uey) ® (Vesg).

This composition then yields that ®; < | - |, since the columns of U and V are
normalized and the singular values are non-negative.

(b) Since the singular value decomposition (38) is also true in higher dimensions,
the result in (a) can be generalized as follows: For

f:R" xS — [0,00), (\,n) = [A®n|, n>2
it holds that
Q(F)=|F|s:=01(F)+ -+ 0,(F) forall F e R"™,

where | - |, is now the nuclear norm on R™*" and o4(F),...,0,(F) are the singular
values of F. N
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