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1. Introduction

In many applied problems, especially, but not restricted to, those in continuum me-
chanics, equilibrium configurations are obtained by minimizing interfacial energies.
One typically studies functionals of the form

u 7→
∫
Ju

g
(
u−(x), u+(x), νu(x)

)
dHn−1(x), (1)

where u is an SBV-function with jump set Ju, jump normal νu, and approximate
limits u− and u+ on both sides of Ju, and g : Rn×Rn×Sn−1 → [0,∞) is a suitable
energy density. Such energies often appear in the context of fracture mechanics [4],
polycrystalline solids [8, 9, 10], liquid crystals [2, 3], free discontinuity problems [5],
or the relatively recent theory of structured deformations, see [11, 13] or [21] and
the references therein.
While energies as in (1), defined on the set of piecewise constant functions (in the
sense of Caccioppoli), were first addressed in [1], a general variational theory to
handle existence of minimizers, relaxation, and Γ-convergence has been developed
ISSN 0944-6532 / $ 2.50 © Heldermann Verlag
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later in [2, 3]. For bounded densities, it was proven in [3, 5] that lower semicontinuity
of the surface energy (1) is equivalent to BV-ellipticity of the corresponding density
g. This notion is the surface-density-analogue of quasiconvexity, the key convexity
notion in the bulk-case. One calls g BV-elliptic if

g(i, j, η) ≤
∫
Ju

g(u−, u+, νu) dHn−1 (2)

for every (i, j, η) ∈ Rn × Rn × Sn−1 and every piecewise constant function u on Qη

with {u 6= ui,j,η} b Qη; here, the set Qη ⊂ Rn describes an open unit cube with a
face that is orthogonal to η and ui,j,η is the elementary jump from j to i along the
line {x · η = 0}.
Motivated by the setting of structured deformations, in which the energies account
for microscopic slips and separations and, generally, the direction in which they take
place, we assume that g has the shape

g(i, j, η) := f(i− j, η) with
{
f(αλ, η) = αf(λ, η) for every α > 0,

(λ, η) ∈ Rn × Sn−1,
(3)

subadditive and with linear growth in the first variable; via (7) below, the function
f can be viewed as positively 1-homogeneous also in the second variable. Since the
pair ([u], νu) with [u] = u+ − u− is only unique up to a sign, it is natural to require
that f is even, i.e., f(−λ,−η) = f(λ, η) for every (λ, η) ∈ Rn × Sn−1.
Our assumption (3) on the surface density is, however, incompatible with bounded-
ness, which is why only partial characterization results for lower semicontinuity are
available. It is straightforward to show that the proof of [5, Theorem 5.14] can be
modified without relying on boundedness. Hence, BV-ellipticity is still necessary for
the lower semicontinuity of the corresponding energy. A partial sufficiency result,
on the other hand, follows as in [15, Corollary 2.5]; indeed, the BV-ellipticity of
the density yields lower semicontinuity of the energy along converging sequences of
piecewise constant functions that are bounded in L∞(Ω;Rn).
Since BV-ellipticity is usually difficult to verify, one is interested in stronger no-
tions that are easier to handle. Such concepts have been analyzed and compared
extensively in the literature, for example, in [5] or [3, 8, 9, 10]. One such notion is
biconvexity, which requires that the surface density in (1) can be written as

g(i, j, η) = Φ
(
(j − i)⊗ η

)
for every (i, j, η) ∈ Rn × Rn × Sn−1,

with a convex, positively 1-homogeneous function Φ: Rn×n → [0,∞). This property
was introduced by Ambrosio & Braides [3] in a finite-valued setting. It turned out
that biconvexity does indeed imply BV-ellipticity [3, Proposition 2.2], but the reverse
has only been conjectured. Since every biconvex function is necessarily positively 1-
homogeneous in the first variable, this equivalence requires a type of 1-homogeneity
condition; indeed, one can easily construct a non-positively 1-homogeneous BV-
elliptic function by exploiting joint convexity, see [5, Definition 5.17, Theorem 5.20].
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The conjecture can thus only be true for densities of the form (3). As proposed in
[3], the inequality

g(i, j, η) ≤
m∑
k=1

g(ik, jk, ηk) with
m∑
k=1

(ik − jk)⊗ ηk = (i− j)⊗ η, (4)

for all (i, j, η), (ik, jk, ηk) ∈ Rn × Rn × Sn−1 and m ∈ N, would verify that BV-
ellipticity reduces to biconvexity. The estimate (4) has been shown later in [22] by
Šilhavý in the context of structured deformations, however, without establishing a
connection to [2, 3] or [5]. In this paper, we merge the complementary results of
the two communities and discuss different convexity and BV-ellipticity notions. Our
first contribution is the following equivalence:

Theorem 1.1. (Characterization of BV-ellipticity) If f : Rn × Sn−1 → [0,∞) is
even and positively 1-homogeneous in the first variable, then f is BV-elliptic if and
only if f is biconvex.

Note that the definition of the two properties of f as above are canonically trans-
ferred from (3), see Definitions 3.1 and 3.2.
Among the recent advances in analyzing lower semicontinuity of energies like (1)
in the setting of functions with bounded deformation include [15, 16, 17, 18, 19].
In particular, Friedrich, Perugini & Solombrino (cf. [15]) carry the notions of BV-
ellipticity and biconvexity (as well as joint convexity) over to the BD-case. They
show for bounded densities that the energy functional (1), defined on the set of
piecewise rigid functions with skew-symmetric gradients is lower semicontinuous if
and only if g is BD-elliptic. The latter is similar to BV-ellipticity in the sense that
(2) holds for every (i, j, η) ∈ Rn × Rn × Sn−1 and every piecewise rigid function u
with {u 6= ui,j,η} b Qη. It is evident that BD-elliptic functions are also BV-elliptic.
In [15], the authors also define the concept of symmetric biconvexity, for which g
satisfies

g(i, j, η) = Ψ
(
(j − i)� η

)
for every (i, j, η) ∈ Rn × Rn × Sn−1, (5)

with a convex, positively 1-homogeneous Ψ: Rn×n
sym → [0,∞); here (i − j) � η is

short for the symmetric part of (i− j)⊗ η. Whereas [15, Proposition 4.10] already
establishes that symmetric biconvex functions with {Ψ = 0} = {0}, where Ψ is as
in (5), are BD-elliptic, the question whether the two notions are equivalent (under
suitable conditions) remained open. Our second main result is the affirmation of
this issue for the choice (3).
Theorem 1.2. (Characterization of BD-ellipticity) If f : Rn × Sn−1 → [0,∞) is
even and positively 1-homogeneous in the first variable, then f is BD-elliptic if and
only if f is symmetric biconvex.

Proving this equivalence involves several steps. We establish that symmetric bicon-
vex functions are BD-elliptic by providing an alternative proof of [15, Proposition
4.10] that does not require the assumption {Ψ = 0} = {0} with Ψ as in (5) by
reorganizing results and arguments from [15]. To obtain the reverse implication,
we leverage the larger class of test functions, unveiling additional properties besides



32 D. Engl et al. / Characterizing BV- and BD-Ellipticity ...

those inherited by their BV-ellipticity. Precisely, we show that BD-elliptic densities
(or rather their positively 1-homogeneous extensions, see (7) below) are symmet-
ric in the sense that their two arguments are interchangeable. This can be done
by combining techniques from [22], which are based on the positive 1-homogeneity,
classic arguments in [5], and the class of piecewise rigid functions. The final step is
to a prove a symmetric analogue of inequality (4) in the BD-setting, for which we
carefully adapt a construction in [22] from the BV-setting.
Organization of this paper. In Section 2, we cover the notation used in this article
as well as a few technical preliminaries. After that, we introduce and characterize
a number of BV-ellipticity notions, defined via different classes of test functions in
(2). While some of these properties coincide with biconvexity, see Theorem 3.7, we
also highlight that others become trivial if the class of test functions is too large
or small, see Propositions 3.5 and 3.6. We briefly discuss an alternative approach
to joint convexity and characterize the BV-elliptic envelopes of functions of the
form (3).
Section 4 is then devoted to the BD-setting, where we prove the equivalence of
BD-ellipticity and symmetric biconvexity in Theorem 4.6. Similarly to before, we
review the notion of symmetric joint convexity in our context of (3) and provide
characterizations of BD-elliptic envelopes. We round off the article with a curios
example of a biconvex function that is symmetric biconvex although it does not
appear to be so at first glance.

2. Preliminaries

2.1. Notation

Let n ∈ N. We denote the standard basis vectors of Rn with e1, . . . , en. For the
Euclidean scalar product of two vectors a, b ∈ Rn, we write a · b and the length of
a is then given by |a| =

√
a · a. Their tensor product (or outer/ dyadic product)

a⊗ b ∈ Rn×n is defined componentwise as (a⊗ b)ij := aibj for every i, j ∈ {1, . . . , n};
we denote its symmetric part 1

2
a⊗ b+ 1

2
b⊗ a as a� b. The (n− 1)-dimensional unit

sphere Sn−1 consists of all vectors in Rn with unit length. Let η ∈ Sn−1 be given
and let ζ1, . . . , ζn−1 ∈ Sn−1 be such that the matrix S = (η|ζ1| · · · |ζn−1) ∈ Rn×n

satisfies STS = SST = Id and detS = 1, where (·)T stands for the transpose and
Id ∈ Rn×n is the identity matrix. With a little abuse of notation, we use the symbol
x · η⊥ to indicate x · ζi for every i = 1, . . . , n− 1. In particular, we write, for α ≥ 0,

−α ≤ x · η⊥ ≤ α :⇐⇒ −α ≤ x · ζi ≤ α, for all i ∈ {1, . . . , n− 1}. (6)

The scalar product of two square matrices A,B ∈ Rn×n is defined as usual by
A : B =

∑n
i,j=1AijBij; this product then induces the Frobenius norm |A| :=

√
A : A

of A. For the set of symmetric and skew-symmetric matrices in Rn×n we write Rn×n
sym

and Rn×n
skew; note that A : B = 0 if A ∈ Rn×n

sym and B ∈ Rn×n
skew.

The notation U b V for two sets U, V ⊂ Rn means that U is compactly contained
in V . Given η ∈ Sn−1, we define Qη as the open unit cube in Rn centered in the
origin such that two faces are orthogonal to η.
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Moreover, we define uλ,η = λ1{x·η≥0} on Qη as the elementary jump of λ ∈ Rn across
the midplane of Qη perpendicular to η; here, 1U is the indicator function of set
U ⊂ Rn, which is 1 on U and vanishes on Rn \ U .
A function h : Rn → R is called positively 1-homogeneous if h(αξ) = αh(ξ) for all
ξ ∈ Rn and all α > 0.
We say that a function f : Rn × Sn−1 → R is even if f(−λ,−η) = f(λ, η) for
all λ ∈ Rn and η ∈ Sn−1. For such a function f , we introduce its positively 1-
homogeneous extension in the second variable as

f̄ : Rn × Rn → R, (λ, ζ) 7→

|η|f
(
λ,

η

|η|

)
for η ∈ Rn \ {0},

0 for η = 0.
(7)

By Hn−1 we mean the (n−1)-dimensional Hausdorff measure and Ln is the Lebesgue
measure in Rn.
Let U ⊂ Rn be measurable and 1 ≤ p ≤ ∞; then we employ the standard notation
for the Lebesgue spaces Lp(U ;Rn) and the spaces BV(U ;Rn), SBV(U ;Rn), as well
as C1(U ;Rn).
If u ∈ BV(U ;Rn), then we write Ju for the jump set of u, νu ∈ Sn−1 for its normal,
and [u] := u+ − u−, where u+ and u− are the approximate limits on both sides of
Ju; note that the pair ([u], νu) is only unique up to a sign, which is why we always
work with even surface densities.

2.2. Auxiliary results

We first prove that rank-one matrices have a decomposition into tensor products of
two vectors in Rn and Sn−1 that is unique up to a sign.

Lemma 2.1. If (λ, η), (λ′, η′) ∈ Rn × Sn−1 with λ, λ′ 6= 0 satisfy λ ⊗ η = λ′ ⊗ η′,
then it holds that (λ, η) = (λ′, η′) or (λ, η) = (−λ′,−η′).

Proof. Choose any ξ ∈ Rn such that η · ξ = 0, then it holds that

(η′ · ξ)λ′ = (λ′ ⊗ η′)ξ = (λ⊗ η)ξ = (η · ξ)λ = 0.

Since λ′ 6= 0, it holds that η′ · ξ = 0 for any ξ ∈ Rn with ξ · η = 0 and thus η′ is
a multiple of η, which results in either η′ = η or η′ = −η because both vectors are
normalized. Then, for any x ∈ Rn we find that either(

x · (λ− λ′)
)
η = 0 or

(
x · (λ+ λ′)

)
η = 0,

which means that λ = λ′ or λ = −λ′.

Next, we briefly cover a few properties of one of the central functions in [22, Theorem
2.3], which will also be relevant in this work.
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Lemma 2.2. Let f : Rn × Sn−1 → [0,∞) be even, positively 1-homogeneous in the
first variable, and continuous. Then, the function Φf : Rn×n → [0,∞) given by

Φf (F ) := inf

{
m∑
i=1

f(λi, ηi) :
m ∈ N, (λi, ηi) ∈ Rn × Sn−1 for all
i ∈ {1, . . . ,m} with

∑m
i=1λi ⊗ ηi = F

}
(8)

for F ∈ Rn×n, is positively 1-homogeneous and convex and the integer m in (8) can
be chosen as m = n2 + 1.

Proof. Step 1: Auxiliary function ϕf .
First, we define the function

ϕf : Rn×n → [0,∞), F 7→

{
f(λ, η) if F = λ⊗ η for (λ, η) ∈ Rn × Sn−1,

∞ otherwise,
(9)

and show that ϕf is well-defined. If F = 0, then F = 0 × η for any η ∈ Sn−1.
Since f is continuous and positively 1-homogeneous in the first variable, it holds
that f(0, η) = 0. The case F 6= 0 can be handled via Lemma 2.1 and the evenness
of f .
Step 2: Convex envelope of ϕf .
As f is positively 1-homogeneous in the first variable the function ϕf is positively
1-homogeneous. Its convex envelope is then also positively 1-homogeneous and
coincides with Φf , since

inf

{
n2+1∑
i=1

µiϕf (Fi) :
µi ≥ 0, Fi ∈ Rn×n for all i ∈ {1, . . . , n2 + 1}

with
∑n2+1

i=1 µi = 1 and
∑n2+1

i=1 µiFi = F

}

= inf

{
n2+1∑
i=1

µif(λi, ηi) :
µi ≥ 0, (λi, ηi) ∈ Rn × Sn−1 for all i ∈ {1, . . . , n2 + 1}

with
∑n2+1

i=1 µi = 1 and
∑n2+1

i=1 µiλi ⊗ ηi = F

}

= inf

{
n2+1∑
i=1

f(λi, ηi) :
(λi, ηi) ∈ Rn × Sn−1 for all i ∈ {1, . . . , n2 + 1}

with
∑n2+1

i=1 λi ⊗ ηi = F

}

= inf

{
m∑
i=1

f(λi, ηi) :
m ∈ N, (λi, ηi) ∈ Rn × Sn−1 for all
i ∈ {1, . . . ,m} with

∑m
i=1λi ⊗ ηi = F

}
.

The last two equalities are a direct consequence of the positive 1-homogeneity of f
in the first variable and the proof of [12, Theorem 2.35].

For the reader’s convenience, we now state the result [22, Theorem 2.3], which
provides different formulas for the function Φf in (8). This proposition will be
crucial for the proof of Theorem 3.7 below.
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Proposition 2.3. (Alternative representations of Φf ) Let f : Rn×Sn−1 → [0,∞)
be even, positively 1-homogeneous and subadditive in the first variable, and contin-
uous. In particular, f satisfies

f(λ, η) ≤ C|λ| for every (λ, η) ∈ Rn × Sn−1 (10)

with C = maxSn−1×Sn−1 f . Then, the function Φf : Rn×n → [0,∞) in (8) can
alternatively be expressed as

Φf (F ) = sup

{
θ(F ) :

θ is subadditive on Rn×n, θ(λ⊗ η) ≤ f(λ, η)

for all (λ, η) ∈ Rn × Sn−1

}

= inf

{∫
Ju

f([u], νu) dHn−1 :
u ∈ SBV(Qη;Rn), ∇u = 0 on Qη,

u(x) = Fx for x ∈ ∂Qη

}

= inf

{∫
Ju

f([u], νu) dHn−1 :
u ∈ SBV(Qη;Rn),

∫
Qη
∇u dx = 0,

u(x) = Fx for x ∈ ∂Qη

}

for every F ∈ Rn×n. Moreover, for every (λ, η) ∈ Rn × Sn−1 it holds that

Φf (λ⊗ η) = inf

{∫
Ju

f([u], νu) dHn−1 :
u ∈ SBV(Qη;Rn), u = uλ,η on ∂Qη,

∇u = 0 on Qη

}
.

Finally, we state the well-known fact that convexity and subadditivity are equivalent
for positively 1-homogeneous function. This result will be needed a few times in
Section 3.

Lemma 2.4. Let h : Rn → R be positively 1-homogeneous, then h is subadditive if
and only if h is convex. In this case, the function h is also continuous.

3. BV-ellipticity and related notions

3.1. Basic definitions and properties

First, we provide the reader with a few classes of functions that appear in the
literature, though often without explicit notation, in the context of BV-ellipticity
and lower semicontinuity of surface energy functionals. For η ∈ Sn−1, we introduce

SBV0(Qη;Rn) =
{
φ ∈ SBV(Qη;Rn) : φ = 0 on ∂Qη

}
,

VA0(Qη;Rn) =

{
φ ∈ SBV(Qη;Rn) :

∫
Qη

∇φ dx = 0, φ = 0 on ∂Qη

}
,

VG0(Qη;Rn) =
{
φ ∈ SBV(Qη;Rn) : ∇φ = 0 on Qη, φ = 0 on ∂Qη

}
,

PC0(Qη;Rn) =

{
φ∈SBV(Qη;Rn) :

φ =
∑

k∈Nλk1Pk
with λk∈Rn, (Pk)k is a

Caccioppoli partition and suppφ b Qη

}
,

SJ0(Qη;Rn) ={φ ∈ SBV(Qη;Rn) : φ = λ1P with λ ∈ Rn, P b Qη}. (11)
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The space SBV0(Qη;Rn) appears in [6, Theorem 4.2.2], the subset VA0(Qη;Rn) with
vanishing average of the gradient and VG0(Qη;Rn) with vanishing gradient can be
found in [11, Theorem 2.16, Theorem 2.17]. The set of piecewise constant functions
PC0(Qη;Rn) (in the sense of Caccioppoli) is the standard class of test functions
for BV-ellipticity and appears in, for instance, [5, Definition 5.13]. Single jumps
in SJ0(Qη;Rn) are an addition of ours to round off the discussion about different
BV-ellipticity notions.
Clearly, it holds that

SJ0(Qη;Rn) ⊂ PC0(Qη;Rn) ⊂ VG0(Qη;Rn) ⊂ VA0(Qη;Rn) ⊂ SBV0(Qη;Rn). (12)

All inclusions above are also strict: while the first and last one are obvious, the
other other two might not be as easy to see.
For the second inclusion, we refer to the construction in [22, Lemma 5.2]. As for
VG0(Qη;Rn) ( VA0(Qη;Rn), we choose A ∈ Rn×n \ {0} and η ∈ Sn−1, define

Q+
η :=

{
x ∈ Qη : x · η ≥ 0

}
and Q−

η :=
{
x ∈ Qη : x · η < 0

}
, (13)

and φ(x) :=

{
0 if x ∈ Qη \ 1

2
Qη,

±Ax if x ∈ 1
2
Q±
η ,

x ∈ Qη,

and observe that φ ∈ VA0(Qη;Rn) \ VG0(Qη;Rn).
Now, we introduce several BV-ellipticity notions with varying classes of test func-
tions.

Definition 3.1. (BV-ellipticity) Let f : Rn × Sn−1 → [0,∞) be an even function.
We say that f is BV-elliptic if for any λ ∈ Rn and η ∈ Sn−1 it holds that

f(λ, η) ≤
∫
Ju

f
(
[u], νu

)
dHn−1 (14)

for all u ∈ uλ,η + PC0(Qη;Rn).
More generally, we say that f is BV-elliptic with respect to SBV0/ VG0/ VA0/
SJ0 when (14) holds with PC0(Qη;Rn) replaced by one of the corresponding sets
introduced in (11).

In Section 3.2, we provide characterizations of all these BV-ellipticity notions. While
BV-ellipticity with respect to the extreme cases SJ0 and SBV0 result in trivial state-
ments, BV-ellipticity with respect to PC0, VG0, and VA0 are all equivalent and
coincide, under suitable conditions, with biconvexity. In general, the latter is a
stronger notion and is much easier to verify. We introduce this concept in the next
definition and adapt it from [3, Section 2.2].

Definition 3.2. (Biconvexity) We call f : Rn × Sn−1 → [0,∞) biconvex if there
exists a convex, positively 1-homogeneous function Φ: Rn×n → [0,∞) such that

f(λ, η) = Φ
(
λ⊗ η

)
for every (λ, η) ∈ Rn × Sn−1.
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Naturally, any biconvex map has to be positively 1-homogeneous in the first argu-
ment. It was already conjectured in [3, p. 9] that BV-ellipticity with respect to PC0

and biconvexity are equivalent concepts. This conjecture can, however, not be true
in general. To see this, one needs to construct a BV-elliptic function that is not
a positively 1-homogeneous in the first variable. This can be done with the help
of a jointly convex one with said property, cf. Remark 3.10 or [5, Definition 5.17],
as every jointly convex function is BV-elliptic with respect to PC0 in view of [5,
Theorem 5.20]. If one amends this question by requiring positive 1-homogeneity
in the first variable, then the two definitions are indeed equivalent, as is shown in
Theorem 3.7 below.
We now gather a few properties emanating from BV-ellipticity with respect to SJ0.
This statement can be drawn from combining and adapting the proofs of Theo-
rem 5.11 and Theorem 5.14 in [5]. The benefit of our argument is a direct proof
which does not rely on lower semicontinuity arguments.

Proposition 3.3. If f : Rn×Sn−1 → [0,∞) is even and BV-elliptic with respect to
SJ0, then the following statements hold true.
(i) For any η ∈ Sn−1, the function f(·, η) : Rn → [0,∞) is subadditive.
(ii) For any λ ∈ Rn, the function f̄(λ, ·) : Rn → [0,∞) (cf. (7)) is convex.

(a)

−ξ

(b)

λ

−ξ

λ− ξ

Figure 1. (a) the function φk and (b) the function uk in dimension n = 2
(here pictured for k = 4), the dashed lines marking the jump set Juk . For
the purpose of illustration, here we have taken λ, ξ ∈ R2 with vanishing
first component.

Proof. (i) For fixed λ, ξ ∈ Rn and η ∈ Sn−1, we use the single-jump test functions
(φk)k ⊂ SJ0(Qη;Rn) defined by

φk = −ξ1{0≤x·η≤ 1
k
,− 1

2
+ 1

2k
≤x·η⊥≤ 1

2
− 1

2k
}, for k > 2,

see Figure 1(a); recall also the notation (6).
If we define uk := uλ,η + φk (see Figure 1(b)), then the BV-ellipticity with respect
to SJ0(Qη;Rn) gives
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f(λ, η) ≤
∫
Juk

f([uk], νuk) dHn−1

=
(
1− 1

k

)n−1(
f(λ− ξ, η) + f(ξ, η)

)
+

1

k

(
1− 1

k

)n−2
(
2f(λ, η) +

n−1∑
i=1

(
f(−ξ, ζi) + f(−ξ,−ζi)

))
.

Letting k → ∞ yields f(λ, η) ≤ f(λ− ξ, η) + f(ξ, η).
Substituting λ by λ+ ξ implies

f(λ+ ξ, η) ≤ f(λ, η) + f(ξ, η) for λ, ξ ∈ Rn,
which means that f(·, η) is subadditive for any fixed η ∈ Sn−1.
(ii) In view of Lemma 2.4, we can equivalently show that η 7→ f̄(λ, η) is subadditive
on Rn. We illustrate the proof in the case n = 2 for clarity and indicate how to
modify it for general dimensions n ∈ N.
Let η1, η2 ∈ R2 and set η0 := η1+ η2 and η̃j := ηj/|ηj| for every j ∈ {0, 1, 2}. On the
“upper” side of the square Qη̃0 we build a triangle T 0 with side lengths L0 = ρ > 0,
L1 = ρ|η1|/|η0|, and L2 = ρ|η2|/|η0| and normals η̃0, −η̃1, and −η̃2, respectively.
Notice that the triangle “closes” because of the definition of η0. Setting ρ = 1

2k
, we let

T k be the corresponding triangle, and we denote by Tk the union of 2k− 2 triangles
given by shifting T k along the upper side of Qη̃0 so that dist(Tk, ∂Qη) ≥ 1

2k
. Let now

φk ∈ SJ0(Qη;Rn) be the function taking the value −λ on Tk, and use uk = uλ,η̃0 +φk
as a test function for the BV-ellipticity of f with respect to SJ0. We have

f̄(λ, η0) = |η0|f(λ, η̃0) ≤ |η0|
∫
Juk

f([uk], νuk) dH1 (15)

= |η0|(2k − 2)

[
f(λ, η̃1)

1

2k

|η1|
|η0|

+ f(λ, η̃2)
1

2k

|η2|
|η0|

]
→ f̄(λ, η1) + f̄(λ, η2)

as k → ∞, so that f is subadditive.
To deduce the statement for arbitrary dimensions, it suffices to use the previous
construction on a thin cuboid whose base is a 2-dimensional section of the cube Qη̃0 ,
and whose thickness is 1

2k
in the remaining n−2 dimensions. In doing so, the bracket

in (15) must be modified to(
1− 1

k

)n−2

|η0|(2k − 2)
[
f(λ, η̃1)

1

2k

|η1|
|η0|

+ f(λ, η̃2)
1

2k

|η2|
|η0|

]
+
(

1

2k

)n−2

|η0|f(ξ, λ̄),

which reduces to the right-most term in (15) in the limit as k → ∞.

Remark 3.4. Let f : Rn×Sn−1 → [0,∞) be even, positively 1-homogeneous in the
first variable, and BV-elliptic with respect to SJ0, then f̄ is separately convex, in
view of Lemma 2.4. In particular, it follows that f̄ , and thus also f , is continuous
and satisfies (10).
These properties will be useful for proving the characterization result in Theorem
3.7 as they provide the remaining assumptions for [22, Theorem 2.3], see also Propo-
sition 2.3.
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3.2. Characterization results

In this section we show that, under suitable assumptions, BV-ellipticity with respect
to the extreme sets SJ0 and SBV0 turn out to be rather trivial and that all other
BV-ellipticity notions introduced in Definition 3.1 coincide.

Proposition 3.5. If f : Rn × Sn−1 → [0,∞) is even and positively 1-homogeneous
in the first argument, then f is BV-elliptic with respect to SBV0 if and only if f = 0.

Proof. For any (λ, η) ∈ Rn × Sn−1 and k ∈ N, let ψk ∈ C∞
c (Qη;Rn) such that

ψk = −λ in (1− 1
k
)Qη and sup

k
‖ψk‖∞ ≤ C < +∞,

for some positive constant C. We define φk := ψk1Q+
η
, with Q+

η as in (13) and
observe that φk ∈ SBV0(Qη;Rn) by design. The only jumps of uk appear on the set

Nk :=
{
x ∈ Qη : x · η = 0, −1

2
+ 1

2k
≤ x · η⊥ ≤ 1

2
− 1

2k

}
.

Since f is BV-elliptic with respect to SBV0, one obtains with the test fields uk :=
uλ,η + φk and in view of Proposition 3.3(i) that

f(λ, η) ≤
∫
Juk

f
(
[uk], νuk

)
dHn−1 =

∫
Nk

f
(
λ+ ψk, η

)
dHn−1

≤ Hn−1(Nk)f(λ, η) + C

∫
Nk∩{ψk ̸=0}

∣∣∣f( ψk

‖ψk‖L∞
, η
)∣∣∣ dHn−1

≤ (1 + C) max
ξ∈Sn−1

|f(ξ, η)|Hn−1(Nk) → 0.

The second step exploits that f(0, η) = 0 for all η ∈ Sn−1, noting that f(·, η) is
continuous by Lemma 2.4, and the third one makes use of the subadditivity in
combination with the positive 1-homogeneity of f ; for the final two steps, we have
used that f is continuous in its first variable, and hence, f(·, η) is uniformly bounded
on Sn−1, and that

Hn−1(Nk) ≤ 1− (1− 1
k
)n−1

tends to zero as k → 0. This shows that f ≤ 0, from which we conclude that f = 0
since f is non-negative by assumption.

The next theorem shows that separate convexity of the positively 1-homogeneous
extension of f : Rn × Sn−1 → [0,∞) in the second variable is sufficient for the BV-
ellipticity of f with respect to SJ0.

Proposition 3.6. If f : Rn × Sn−1 → [0,∞) is even and positively 1-homogeneous
in the first variable, then f is separately convex if and only if f is BV-elliptic with
respect to SJ0.

Proof. The necessity follow immediately from Remark 3.4. We now turn to the
proof of sufficiency. Let (λ, η) ∈ Rn × Sn−1 and φ ∈ SJ0(Qη;Rn) with φ = ξ1P for
ξ ∈ Rn and P b Qη a set of finite perimeter. Moreover, take P+ := P ∩ Q+

η and
P− := P ∩Q−

η with Q±
η as in (13).
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In the following, we take ∂P as the reduced boundary of P in the measure-theoretic
sense and let νP : ∂P → Sn−1 be the generalized outer normal to P according to [5,
Section 3.5]; and analogously for P±.
Setting Nη := {x ∈ Qη : x · η = 0}, by the measure-theoretic Gauß-Green formula
(see e.g. [5]),∫

∂P±\Nη

νP± dHn−1 = −
∫
∂P±∩Nη

νP± dHn−1 = ±Hn−1(∂P± ∩Nη)η. (16)

By Jensen’s inequality, exploiting the convexity of f̄ in its second variable, we find
together with (16) that∫

∂P+\Nη

f(−ξ, νP+) dHn−1 ≥ Hn−1(∂P+ \Nη)f
(
−ξ,−

∫
∂P+\Nη

νP+ dHn−1
)

= Hn−1(∂P+ \Nη)f(−ξ, η),
(17a)

and similarly,∫
∂P−\Nη

f(−ξ, νP−) dHn−1 = Hn−1(∂P− \Nη)f(−ξ,−η). (17b)

Further, let u = uλ,η + φ and invoke (17) and the evenness of f to obtain∫
Ju

f([u], νu) dHn−1 =

∫
∂P+\Nη

f(−ξ, νP+) dHn−1 +

∫
∂P−\Nη

f(−ξ, νP−) dHn−1

+

∫
∂P+\∂P−∩Nη

f(−ξ − λ,−η) dHn−1 +

∫
∂P−\∂P+∩Nη

f(λ− ξ, η) dHn−1

+

∫
Nη\∂P

f(λ, η) dHn−1 +

∫
∂P+∩∂P−∩Nη

f(λ, η) dHn−1

≥ Hn−1(∂P+ \Nη)f(−ξ, η) +Hn−1(∂P− \Nη)f(ξ, η)

+Hn−1(∂P+ \ ∂P− ∩Nη)f(ξ + λ, η) +Hn−1(∂P− \ ∂P+ ∩Nη)f(λ− ξ, η)

+Hn−1(Nη \ ∂P )f(λ, η) +H(∂P+ ∩ ∂P− ∩Nη)f(λ, η). (18)

The measures in (18) can be estimated via

Hn−1(∂P± \Nη) ≥ Hn−1(∂P± \ ∂P∓ ∩Nη) (19)

in light of (16), while the values of f can be treated via

f(λ, η) ≤ f(λ± ξ, η) + f(∓ξ, η), (20)

which follows from the subadditivity of f in the first variable, considering that f is
separately convex and positively 1-homogenous in the first variable, cf. Lemma 2.4.
Combining (18)–(20) then yields∫

Su∩Qη

f([u], νu) dHn−1 ≥ Hn−1(∂P+ \ ∂P− ∩Nη)
(
f(ξ + λ, η) + f(−ξ, η)

)
+Hn−1(∂P− \ ∂P+ ∩Nη)

(
f(λ− ξ, η) + f(ξ, η)

)
+Hn−1(Nη \ ∂P )f(λ, η) +H(∂P+ ∩ ∂P− ∩Nη)f(λ, η) ≥ f(λ, η),
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since Hn−1(Nη \ ∂P ) +Hn−1(∂P+ \ ∂P− ∩Nη) +Hn−1(∂P− \ ∂P+ ∩Nη)

+H(∂P+ ∩ ∂P− ∩Nη)

= Hn−1(Nη \ ∂P ) +Hn−1(∂P \Nη) = Hn−1(Nη) = 1.

Since the set
(
Rn\{0}

)
×Sn−1 modulo the equivalence relation (λ, η) ∼ (−λ,−η) can

be identified with the set of rank-one matrices, every function f : Rn×Sn−1 → [0,∞)
can be written as

f(λ, η) = Φ(λ⊗ η)

for some Φ : Rn×n → [0,∞), see also [7, p. 305]. If f is additionally 1-homogeneous
in the first variable and BV-elliptic with respect to the smallest class SJ0, then Φ is
1-homogeneous and rank-one convex, due to Proposition 3.6. In the next theorem,
we show with the help of [22, Lemma 6.2 and Lemma 6.3] that if f is BV-elliptic with
respect to VA0, VG0 or PC0, then Φ is also convex and coincides with Φf (see (8))
on rank-one matrices. Note that, in contrast to [22] we do not require the additional
assumptions of subadditivity and continuity of f , since they are given automatically
by its BV-ellipticity and 1-homogeneity in the first variable, see Remark 3.4.
Theorem 3.7. (Characterization of BV-ellipticity) Let f : Rn × Sn−1 → [0,∞)
be even and positively 1-homogeneous in the first argument. Then the following
statements are equivalent:
(1) f is BV-elliptic with respect to VA0;
(2) f is BV-elliptic with respect to VG0;
(3) f is BV-elliptic with respect to PC0;
(4) f is biconvex and f(λ, η) = Φf (λ⊗ η) for every (λ, η) ∈ Rn × Sn−1, cf. (8).

Proof. The implications “(1) ⇒ (2)”, “(2) ⇒ (3)” are trivial in light of (12). It
remains to prove “(3) ⇒ (4)” and “(4) ⇒ (1)”. Let (λ, η) ∈ Rn × Sn−1 now be
arbitrary.
“(3) ⇒ (4)”. As a consequence of Remark 3.4, the function f is separately convex,
continuous and satisfies (10). Then, the assumptions of Remark 2.3 are satisfied in
view of Lemma 2.4 and it holds that

Φf (λ⊗ η) = inf

{∫
Ju

f([u], νu) dHn−1 : u ∈ uλ,η +VG0(Qη;Rn)

}
= inf

{∫
Ju

f([u], νu) dHn−1 : u ∈ uλ,η + PC0(Qη;Rn)

}
;

the latter equality follows from the proofs in [22, Section 6] where only test functions
in PC0 instead of VG0 are employed. Due to the BV-ellipticty with respect to PC0

of f , we then conclude that Φf (λ ⊗ η) ≥ f(λ, η). On the other hand, by choosing
u = uλ,η as a test function, one immediately finds that Φf (λ⊗ η) ≤ f(λ, η).
“(4) ⇒ (1)”. Let φ ∈ VA0(Qη;Rn) and u = uλ,η + φ. Then, we infer by Jensen’s
inequality and by exploiting the positive 1-homogeneity of Φf (see Lemma 2.2) that∫

Ju

f([u], νu) dHn−1 =

∫
Ju

Φf ([u]⊗ νu) dHn−1 ≥ Φf

(∫
Ju

[u]⊗ νu dHn−1
)

= Φf (λ⊗ η) = f(λ, η).
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To see the equality before the last, we argue that∫
Ju

[u]⊗ νu dHn−1 =

∫
Nη

(λ+ [φ])⊗ η dHn−1 +

∫
Ju\Nη

[φ]⊗ νφ dHn−1

= λ⊗ η +

∫
Jφ

[φ]⊗ νφ dHn−1 = λ⊗ η,

due to∫
Jφ

[φ]⊗ νφ dHn−1 = Dφ(Qη)−
∫
Qη

∇φ dx =

∫
∂Qη

φ⊗ νQη dHn−1 = 0,

where we have exploited that the mean value of ∇φ on Qη is zero and that φ has
zero boundary conditions on ∂Qη. Moreover, we used the fine properties of SBV
functions (see [5]) and

Dφ(Qη) =

∫
∂Qη

φ⊗ νQη dHn−1,

which follows from the trace theorem for BV functions, see e.g. [14, Section 5.3,
Theorem 1].

Remark 3.8. It is known (see [20, Proposition 4]) that SBV-functions cannot gen-
erally be approximated by piecewise constant ones. Proposition 3.5 and Theorem
3.7 provide an additional confirmation of this fact: if such an approximation existed,
then SBV0-elliptic functions could be approximated by PC0-elliptic ones, but this
cannot be the case since the former class only contains the zero function.

To close this section, we briefly discuss two closely related topics. We first cover a
relaxation result in the BV-setting. Here, Theorem 3.7 is the key to characterizing
BV-elliptic envelopes of even functions f : Rn×Sn−1 → [0,∞). Two versions of such
envelopes could be defined as follows:

fBV (λ, η) := sup {h(λ, η) : h is BV-elliptic and h ≤ f} ,

fBV (λ, η) := inf

{∫
Ju

f([u], νu) dHn−1 : u ∈ uλ,η + PC0(Qη;Rn)

}
.

In the following, we prove that they both suitably coincide with Φf under the as-
sumptions in Theorem 3.7.

Proposition 3.9. (BV-elliptic envelope) Let f : Rn × Sn−1 → [0,∞) be even and
positively 1-homogeneous in the first variable. Then, it holds that

fBV (λ, η) = fBV (λ, η) = Φf (λ⊗ η),

for every (λ, η) ∈ Rn × Sn−1. In particular, the BV-elliptic envelope of f is BV-
elliptic, and f is BV-elliptic if and only if it coincides with its BV-elliptic envelope.

Proof. The function f̃ : Rn × Sn−1 → [0,∞), (λ, η) 7→ Φf (λ ⊗ η) is BV-elliptic
due to Theorem 3.7. Hence, it follows that

Φf (λ⊗ η) = f̃(λ, η) ≤ fBV (λ, η)

for every (λ, η) ∈ Rn × Sn−1.
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The inequality fBV ≤ f̃ has been shown in [22, Lemma 6.2], so it remains to show
that fBV ≤ fBV . To this end let u ∈ uλ,η + PC0(Qη;Rn) be any test function and
let ε > 0. By definition of fBV , we find a BV-elliptic function h with h ≤ f such
that

fBV (λ, η) ≤ h(λ, η) + ε ≤
∫
Ju

h([u], νu) dHn−1 + ε ≤
∫
Ju

f([u], νu) dHn−1 + ε.

Since u and ε are arbitrary, we conclude the remaining inequality.
Lastly, we mention another closely related notion of convexity.

Remark 3.10. (Joint convexity) We say that an even function

f : Rn × Sn−1 → [0,∞)

is jointly convex if there exist Lipschitz continuous functions gi ∈ C1(Rn;Rn) for
every i ∈ N such that

f(λ, η) = sup
i∈N

(
gi(λ)− gi(0)

)
· η for every (λ, η) ∈ Rn × Sn−1.

This definition differs slightly from the literature [5, Definition 5.17] in the sense
that we do not require the functions gi to be defined on compact sets. We also do
not necessitate uniform continuity and boundedness when extending the functions
in [5, Definition 5.17] to all of Rn.
It turns out that this convexity notion is also equivalent to BV-ellipticity if f is
positively 1-homogeneous in the first variable. Indeed, any jointly convex function
is BV-elliptic and the proof can be handled exactly as in [5, Theorem 5.20].
On the other hand, any biconvex function is jointly convex since any convex function
Φ: Rn×n → [0,∞) with Φ(0) = 0 can be approximated from below by linear func-
tions gi : Rn×n → R, which can be expressed as gi(F ) = Ai : F for some Ai ∈ Rn×n

and every F ∈ Rn×n.

4. BD-ellipticity and related notions

4.1. Basic definitions

First, we introduce the primary set of test functions relevant for BD-ellipticity. For
η ∈ Sn−1, we define the set of piecewise rigid functions with compact support in Qη

as

PR0(Qη;Rn) =

φ∈SBV(Qη;Rn) :

φ(x) =
∑

k∈N(Akx+ bk)1Pk
(x) for x ∈ Qη,

Ak ∈ Rn×n
skew, bk ∈ Rn, (Pk)k a Caccioppoli

partition of Qη, and suppφ b Qη

 ,

cf. [15, Section 2.1], and give the following definition of BD-ellipticity:

Definition 4.1. (BD-ellipticity) We call an even function f : Rn × Sn−1 → [0,∞)
BD-elliptic if, for every u ∈ uλ,η + PR0(Qη;Rn),

f(λ, η) ≤
∫
Ju

f
(
[u], νu

)
dHn−1.

Several examples of BD-elliptic functions can be found in Section [15, Section 4].
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The next definition is the BD-analogue of biconvexity, taken from [15, Definition
4.8], and tailored to our setting.

Definition 4.2. (Symmetric biconvexity) An even function f : Rn×Sn−1 → [0,∞)
is said to be symmetric biconvex, if there exists a convex and positively 1-homoge-
neous function Ψ : Rn×n

sym → [0,∞) such that

f(λ, η) = Ψ(λ� η) for all (λ, η) ∈ Rn × Sn−1.

Before we prove our second main theorem, we briefly summarize a few properties of
BD-elliptic functions as a direct consequence of their BV-ellipticity.

Remark 4.3. Let f : Rn × Sn−1 → [0,∞) be even, positively 1-homogeneous and
BD-elliptic. In view of PC0(Qη;Rn) ⊂ PR0(Qη;Rn) and the chain of inclusions in
(12), it follows from Proposition 3.3 and Remark 3.4 that f̄ as in (7) is separately
convex, continuous and satisfies (10).

4.2. Characterization result

First, we prove that BD-elliptic functions that are positively 1-homogeneous in the
first variable are symmetric in the sense that the two variables can be switched.

Proposition 4.4. (Symmetry of BD-elliptic functions) If f : Rn × Sn−1 → [0,∞)
is even, positively 1-homogeneous in the first variable, and BD-elliptic, then

f̄(λ, η) = f̄(η, λ) for all (λ, η) ∈ Rn × Rn, with f̄ as in (7). (21)

Proof. Since f̄ is positively 1-homogeneous in both variables, it suffices to establish
(21) for unit vectors. For n = 1, the statement is clear, which is why first consider
the case n = 2. We detail the generalization to higher dimensions in Step 3.
Without loss of generality, we may assume that λ ∈ Sn−1 is arbitrary and η = e2.
The goal is then to show

f(λ, e2) ≤ f(e2, λ).

Our proof strategy relies on the construction of suitable test functions that generate
many small jumps by multiples of e2 in the direction λ, and at the same time
compensate the elementary jump uλ,e2 . To establish the above inequality for any
given η ∈ Sn−1, we simply rotate the construction. The desired equality (21) can be
obtained by exchanging the roles of λ and η. If λ = ±e2, there is nothing to prove,
which is why we exclude this case in the following calculations.
Step 1: Construction on a single triangle (n = 2).
Let k ∈ N with k > 2. In this step, we consider the unique matrix Ak ∈ R2×2

skew with
the property that

Ake1 = −k2e2. (22)

We define a small triangle ∆k with vertices 0, 1
k
e1 and ξk := 1

k
e1+

2
k2
w, where w ∈ S1

is the vector with
1

k2
Akw = λ. (23)

For now, we assume that w · e2 > 0; the case w · e2 < 0 is detailed at the end of this
step.
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We intersected the triangle by k2 − 1 parallel lines with normal λ in such a way
that their intersection points with [0, 1

k
)×{0} are equidistant with distance 1

k3
. The

resulting geometric figures inside ∆k (a single triangle and k2 − 1 trapezoids) are
denoted by M1

k , . . . ,M
k2

k , counting from left to right. For an illustration of the
geometric setup, see Figure 2.

∆k

1
k
e1

2
k2
w

ξk

1
k3

|ξk|
k2

Figure 2. An illustration of the triangle ∆k, including k2 − 1 parallel
lines with normal λ that intersect the bottom line equidistantly. All
other lengths are uniquely determined as a consequence of the intercept
theorem.

We now set ūk(x) =

{
Akx+

j
k
e2 if x ∈M j

k for some j ∈ {1, . . . , k2},
uλ,e2(x) if x /∈ ∆k,

for x ∈ Qe2 . The task is now to carefully estimate the jumps of uk on ∂∆k as well
as those within ∆k. Along the bottom edge D1

k of ∆k in direction e1, we compute
with (22) that∫

D1
k

f([ūk], νūk) dHn−1 =
k2∑
j=1

∫ j

k3

j−1

k3

f
(
(−k2x1 + j

k
)e2, e2

)
dx1

=
k2∑
j=1

∫ j

k3

j−1

k3

(
− k2x1 +

j
k

)
dx1f(e2, e2)

=
k2∑
j=1

1

2k4
f(e2, e2) =

1

2k2
f(e2, e2) ≤

1

k2
max

Sn−1×Sn−1
f ; (24)

note that −k2x1 + j
k
> 0 on ( j−1

k3
, j
k3
), which allows us to exploit the positive 1-

homogeneity of f in the first variable. With similar arguments, we estimate, with
the help of (22) and (23), along the top edge D2

k of ∆k, in direction ξ̄k := 1
|ξk|
ξk (and

outer normal ζk)∫
D2

k

f([ūk], νūk) dHn−1 =
k2∑
j=1

∫ j|ξk|
k2

(j−1)|ξk|
k2

f
(
λ− k2tAkξ̄k −

j

k
e2, ζk

)
dt

=
k2∑
j=1

∫ j|ξk|
k2

(j−1)|ξk|
k2

f
(
λ+

k

|ξk|
te2 −

2

|ξk|
tλ− j

k
e2, ζk

)
dt

≤
k2∑
j=1

∫ j|ξk|
k2

(j−1)|ξk|
k2

[(
1− 2

|ξk|
t
)
f(λ, ζk)−

( k

|ξk|
t− j

k

)
f(−e2, ζk)

]
dt

=
|ξk|
2k
f(−e2, ζk) ≤

|ξk|
2k

max
Sn−1×Sn−1

f ≤ 1

k2
max

Sn−1×Sn−1
f. (25)
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On the shortest edge D3
k, in direction w ∈ Sn−1, we observe the total jump energy∫

D3
k

f([ūk], νūk) dHn−1 =

∫ 2
k2

0

f
(
λ+ ke2 − k2tλ− ke2, λ

)
dt

= f(λ, λ)

∫ 1
k2

0

(1− k2t) dt+ f(−λ, λ)
∫ 2

k2

1
k2

(k2t− 1) dt

=
1

2k2
(f(λ, λ) + f(−λ, λ)) ≤ 1

k2
max

Sn−1×Sn−1
f, (26)

due to (23). The parallel lines inside the triangle ∆k, which we denote by Ljk and
have length 2j

k4
for j = 1, . . . , k2 − 1, yield the jumps

k2−1∑
j=1

∫
Lj
k

f([ūk], νūk) dHn−1 =
k2−1∑
j=1

j

k4
f
(
1
k
e2, λ)

=
2

k5

k2−1∑
j=1

jf(e2, λ) =
k4 − k2

k5
f(e2, λ) ≤

1

k
f(e2, λ). (27)

If w · e2 < 0, then we redefine ∆k as having the vertices 0, − 1
k
e1, and − 1

k
e1 − 2

k2
w;

the parallel lines Ljk for j = 1, . . . , k2 − 1 inside ∆k are drawn analogously. The
function ūk is now set to be

ūk(x) =

{
−Akx− j

k
e2 if x ∈M j

k for some j ∈ {1, . . . , k2},
uλ,e2(x) if x /∈ ∆k,

for x ∈ Qe2 . Using the evenness of f , it is evident that the previous estimates still
hold.
Step 2: Extending the construction to multiple triangles (n = 2).
We now choose k = 2N for N ∈ N and place k − 2 = 2N − 2 copies of ∆k next to
each other, i.e., we set ∆i

k := ∆k +
i

2N
e1 for i ∈ {1−N, . . . , N − 2}, cf. Figure 3.

1
2N

1
2N

Figure 3. An illustration of the translated copies ∆i
k of ∆k.

Moreover, we define for x ∈ Qe2

uk(x) =

{
ūk(x− i

2N
e1) if x ∈ ∆i

k for some i ∈ {1−N, . . . , N − 2},
uλ,e2(x) otherwise.
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In light of (24)–(27) and Figure 3, we then obtain∫
Juk

f
(
[uk], νuk

)
dHn−1 =

=
2

k
f(λ, e2) + (k − 2)

(∫
∂∆k

f([ūk], νūk) dHn−1 +
k2−1∑
j=1

∫
Lj
k

f([ūk], νūk) dHn−1

)

≤ 2

k
f(λ, e2) + (k − 2)

(
3

k2
max

Sn−1×Sn−1
f +

1

k
f(e2, λ)

)
.

For k → ∞, this estimate and the BD-ellipticity of f yield

f(λ, e2) ≤ lim sup
k→∞

∫
Juk

f
(
[uk], νuk

)
dHn−1 ≤ f(e2, λ).

Step 3: Generalization to higher dimensions (n ≥ 3).
Let n ∈ N with n ≥ 3. We aim to prove again that f(λ, e2) ≤ f(e2, λ) for any
λ ∈ Sn−1. To this end, let us consider the two-dimensional plane H spanned by λ
and e2, choose a vector v ∈ Sn−1 ∩Ne2 ∩H with Ne2 = {x ∈ Qe2 : x · e2 = 0}, and
select the unique matrix Ak ∈ Rn×n

skew with

Akv = −k2e2 and Akz = 0 for every z ∈ H⊥, (28)

where H⊥ is the orthogonal complement of H. This matrix describes a rotation by
−π
2

and scaling by k2 in the plane H. If λ lies in the e1-e2-plane then Ak can be
chosen as in the Steps 1 and 2 and filled up with zeroes in the remaining components.
Any other case is handled by the fact that UTAU ∈ Rn×n

skew for every A ∈ Rn×n
skew and

every orthogonal matrix U ∈ O(2). As before, we select w ∈ Sn−1 such that (23) is
satisfied and assume that w ·e2 > 0; the case w ·e2 < 0 can be addressed analogously.
In the λ-e2-plane, we can set up a triangle ∆k as in Step 1, where e1 is replaced by
v. We introduce parallel right prisms ∆i

k,n, each base of the shape ∆k, where i is
taken from an index set I of consecutive integers with cardinality k. These prisms
are constructed in such a way that dist(∆i

k,n, ∂Qe2) >
1
k

and their union covers the
hyperplane Ne2 up to an error in Hn−1-measure of order 1

k
. Moreover, we intersect

each prism by k2 − 1 hyperplanes with normal λ; the intersection of these planes
with the prism ∆i

k,n are called Lj,ik,n and we denote the resulting geometric subfigures
by M j,i

k,n for j ∈ {1, . . . , k2}. We then define for x ∈ Qe2

uk(x) =

{
Ak(x− i

k
v) + j

k
e2 if x ∈M j,i

k,n for some j ∈ {1, . . . , k2}, i ∈ I,

uλ,e2(x) otherwise.

The calculations for the occurring jumps are now simple modifications of those in
Steps 1 and 2 due to (23) and (28). For instance, in the analogue case of (27), we
can write Lj,ik,n = (Ljk +

i
k
v)× Ci

k,n with (n− 2)-dimensional cuboids Ci
k,n ⊂ H⊥.
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The jump energy across these surfaces inside the prism ∆i
k,n is given by

k2−1∑
j=1

∫
Lj,i
k,n

f
(
[uk], νuk

)
dHn−1 =

k2−1∑
j=1

∫
Lj
k×C

i
k,n

f
(1
k
e2, λ

)
dHn−1 ≤ Hn−2(Ci

k,n)
1

k
f(e2, λ).

After taking the sum over all i ∈ I, the right-hand side converges to f(e2, λ), since
the expression

∑
i∈I Hn−2(Ci

k,n)
1
k

converges to the Hn−1-measure of Ne2 up to an
error of 1

k
. The computations for the remaining surfaces, that is, the analogues of

(24)–(26), are even easier since the cuboids Ci
k,n are bounded and the cardinality of

I is of order k.
Additionally, one needs to account for the jumps across the two bases ∆i

k and ∆̄i
k

of each prism, which are described by the triangle ∆k. If n = 3 and z ∈ H⊥ with
|z| = 1, then the energy contribution of the jumps across these two triangles with
normal z (or −z) vanishes in the limit. Indeed, since the lines Ljk from Step 1 have
length 2j

k4
for all j ∈ {1, . . . , k2 − 1} and the edge of ∆k with normal λ has length

2
k2

, we find that∫
∆i

k

f
(
[uk], νuk

)
dHn−1 =

k2∑
j=1

∫ j

k3

j−1

k3

∫ 2j

k4

0

f
(
λ− Ak(tv + sw)− j

k
e2, z

)
ds dt

=
k2∑
j=1

∫ j

k3

j−1

k3

∫ 2j

k4

0

f
(
λ+ k2te2 − k2sλ− j

k
e2, z

)
ds dt

≤
k2∑
j=1

∫ j

k3

j−1

k3

∫ 2
k2

0

C(1 + k2t+ k2s+
j

k
) ds dt

≤
k2∑
j=1

∫ j

k3

j−1

k3

∫ 2
k2

0

C(3 + 2k) ds dt =
2C(3 + 2k)

k3
,

while exploiting (10), as well as (23) and (28); analogously for ∆̄i
k. The energy

contribution at the combined prism bases therefore vanishes in the limit, considering
that the cardinality of the index set I is of order k. For n ≥ 4, the bases of the
prisms are sets of zero Hn−1-measure and thus, can be neglected when calculating
the surface energy.

Next, we prove the BD-elliptic generalization of [22, Lemma 6.2], see also (4), by
tailoring Šilhavý’s construction to our setting.

Lemma 4.5. Let f : Rn × Sn−1 → [0,∞) be even, positively 1-homogeneous in the
first variable and BD-elliptic. Then, for any (λ, η) ∈ Rn × Sn−1 it holds that

f(λ, η) ≤
m∑
i=1

f(λi, ηi)

for all (λi, ηi) ∈ Rn × Sn−1 for i ∈ {1, . . . ,m} and m ∈ N such that
m∑
i=1

λi ⊗ ηi = λ� η.
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Proof. Let (λ, η) ∈ R× Sn−1 with

λ� η =
m∑
i=1

λi ⊗ ηi, or equivalently λ⊗ η = 2
m∑
i=1

λi ⊗ ηi − η ⊗ λ, (29)

for a collection (λi, ηi) ∈ Rn × Sn−1 for i = 1, . . . ,m. We consider for k ∈ N with
k > 2 the rectangle

Bk :=
{
x ∈ Rn : 0 ≤ x · η ≤ 1

k
,−1

2
+

1

2k
≤ x · η⊥ ≤ 1

2
− 1

2k

}
and define

uk(x) :=

{
vk(x) if x ∈ Bk,

uλ,η(x) if x /∈ Bk,
with vk(x) :=

m∑
i=1

1

k
λi〈k2x · ηi〉 − k(η ⊗ λ)skewx

for x ∈ Qη; here, (η ⊗ λ)skew := 1
2

(
η ⊗ λ − λ ⊗ η

)
, and the notation 〈r〉 stands for

the integer part of r ∈ R. In particular, it holds that, for any t ∈ R and n ∈ N,

0 ≤ t− 1

n
〈nt〉 ≤ 1

n
. (30)

Note that (29) and (30) then yield that, for every x ∈ Qη,

|kλ(x · η)− vk(x)| =

∣∣∣∣∣k(λ⊗ η)x−
m∑
i=1

1

k
λi〈k2x · ηi〉+ k(η ⊗ λ)skewx

∣∣∣∣∣
= k

∣∣∣∣∣2
m∑
i=1

λi(x · ηi)− (η ⊗ λ)x−
m∑
i=1

1

k2
λi〈k2x · ηi〉+ (η ⊗ λ)skewx

∣∣∣∣∣
≤ 1

k

m∑
i=1

|λi|+

∣∣∣∣∣
m∑
i=1

λi(x · ηi)− (η ⊗ λ)x+ (η ⊗ λ)skewx

∣∣∣∣∣
=

1

k

m∑
i=1

|λi|+
∣∣(λ� η)x− (η ⊗ λ)x+ (η ⊗ λ)skewx

∣∣ = 1

k

m∑
i=1

|λi| . (31)

The jump set Juk of uk can be written as the union

Juk = Lk ∪Mk ∪Nk ∪Rk ∪ Sk

where Lk =
m⋃
i=1

Lik with Lik =
{
x ∈ Bk : k

2x · ηi ∈ Z
}
,

Mk =
{
x ∈ ∂Bk : 0 < x · η < 1

k

}
,

Nk =
{
x ∈ Qη : x · η = 0,

1

2
− 1

2k
< |x · η⊥| < 1

2

}
,

Rk =
{
x ∈ ∂Bk : x · η = 0

}
,

Sk =
{
x ∈ ∂Bk : x · η =

1

k

}
.

We now compute the energy of the jumps at these interfaces.
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Just as in the proof of [22, Lemma 6.2], we obtain on Lk that∫
Lk

f
(
[uk], νuk

)
dHn−1 ≤ 1

k

m∑
i=1

f(λi, ηi)Hn−1(Lik) →
m∑
i=1

f(λi, ηi) (32)

as k → ∞, where we have used that f is subadditive in light of Proposition 3.3. On
NK , we compute∫

Nk

f
(
[uk], νuk

)
dHn−1 =

1

k
f(λ, η) → 0 as k → ∞, (33)

and for x ∈Mk, we exploit (31) to estimate

|λ− vk(x)| ≤ |λ− kλ(x · η)|+ |kλ(x · η)− vk(x)|

≤ (1 + k|(x · η)|)|λ|+ 1

k

m∑
i=1

|λi| ≤ 2|λ|+ 1

k

m∑
i=1

|λi| ≤ 2|λ|.

Hence, |λ− vk(x)| is bounded uniformly in k and∫
Mk

f
(
[uk], νuk

)
dHn−1 → 0 as k → ∞ (34)

since Hn−1(Mk) vanishes in the limit. If x ∈ Rk, we use (31) to obtain

|vk(x)| = |vk(x)− kλ(x · η)| ≤ 1

k

m∑
i=1

|λi|,

and if x ∈ Sk, we similarly find

|λ− vk(x)| = |kλ(x · η)− vk(x)| ≤
1

k

m∑
i=1

|λi|,

which results in
∫
Rk∪Sk

f
(
[uk], νuk

)
dHn−1 → 0 as k → ∞. (35)

Combining (32) - (35), we then conclude the desired inequality since f is BD-elliptic
and uk ∈ uλ,η + PR0(Qη;Rn).

We are now in a position to prove our second main result of this paper.

Theorem 4.6. (Characterization of BD-ellipticity) Let f : Rn ×Sn−1 → [0,∞) be
even and positively 1-homogeneous in the first variable. Then, f is BD-elliptic if
and only if f is symmetric biconvex with

f(λ, η) = Φf (λ� η)

for every (λ, η) ∈ Rn × Sn−1, where Φf is given as in (8).

Proof. Step 1: BD-ellipticity implies symmetric biconvexity.
If f is BD-elliptic, then f̄(λ, η) = f̄(η, λ) (cf. (7)) for every (λ, η) ∈ Rn × Sn−1 due
to Lemma 4.4.



D. Engl et al. / Characterizing BV- and BD-Ellipticity ... 51

In particular, we find that

Φf (λ� η) ≤ f̄(1
2
λ, η) + f̄(1

2
η, λ) = f(λ, η) (36)

for every (λ, η) ∈ Rn × Sn−1 since f̄ is positively 1-homogeneous in both variables.
In view of Lemma 4.5, we conclude that the two sides of (36) coincide, which proves
that f is symmetric biconvex.
Step 2: Symmetric biconvexity implies BD-ellipticity.
The proof is essentially a reformulation and simplification of some results in [15]. For
the reader’s convenience, we present the details below. If f is symmetric biconvex,
then there exists a positively 1-homogeneous, convex function Ψ: Rn×n

sym → [0,∞)
such that f(λ, η) = Ψ(λ� η) for every (λ, η) ∈ Rn × Sn−1.
As in the proof of [15, Proposition 4.9], which is based on [5, Proposition 2.31], we
find a sequence of symmetric matrices (Ai)i ⊂ Rn×n

sym such that Ψ(F ) = supi∈NAi : F
for every F ∈ Rn×n

sym . In particular, it holds that

f(λ, η) = sup
i∈N

(Aiλ) · η for every (λ, η) ∈ Rn × Sn−1. (37)

Finally, we define the auxiliary functions gi(x) := Aix for every x ∈ Rn and continue
with the strategy in [15, Theorem 3.4]. We fix i ∈ N, (λ, η) ∈ Rn×Sn−1 with λ 6= 0
(otherwise there is nothing to show), and select any u ∈ uλ,η + PR0(Qη;Rn). Since
u ∈ SBV(Qη;Rn) and gi ∈ C1(Rn;Rn), we may apply the chain rule [5, Theorem
3.96] to differentiate the composition gi ◦ u ∈ BV(Qη;Rn), obtaining

D(gi ◦ u) = ∇gi(u)∇uLn +
(
gi(u

+)− gi(u
−)
)
⊗ νuHn−1 Ju

= Ai∇uLn + (Ai[u])⊗ νuHn−1 Ju ,

where D(gi ◦ u) is the distributional derivative. By evaluating in Qη and taking the
trace, we then find

Tr
(
D(gi ◦ u)(Qη)

)
=

∫
Qη

Ai : (∇u)T dLn +
∫
Ju

(Ai[u]) · νu dHn−1.

Since Ai is symmetric and (∇u)T is skew-symmetric, their scalar product vanishes.
Moreover, as gi◦u−gi◦uλ,η has compact support in Qη it holds that D(gi◦u)(Qη) =
D(gi ◦ uλ,η)(Qη), which leads to∫

Ju

(Ai[u]) · νu dHn−1 = (Aiλ) · η.

Finally, we conclude from (37) that∫
Ju

f([u], νu) dHn−1 =

∫
Ju

sup
i∈N

(Ai[u]) · η dHn−1

≥ sup
i∈N

∫
Ju

(Ai[u]) · η dHn−1 = sup
i∈N

(Aiλ) · η = f(λ, η),

which proves that f is BD-elliptic.
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Now that we have established the equivalence of BD-ellipticity and symmetric bicon-
vexity under suitable assumptions, we turn to a relaxation result similar to Proposi-
tion 3.9. For an even function f : Rn×Sn−1 → [0,∞) we define the two BD-elliptic
envelopes for every (λ, η) ∈ Rn × Sn−1:

fBD(λ, η) := sup {h(λ, η) : h is BD-elliptic and h ≤ f} ,

fBD(λ, η) := inf
{∫

Ju

f([u], νu) dHn−1 : u ∈ uλ,η + PR0(Qη;Rn)
}
.

Proposition 4.7. (BD-elliptic envelope) Let f : Rn × Sn−1 → [0,∞) be even and
positively 1-homogeneous in the first variable. Then, it holds that

fBD(λ, η) = fBD(λ, η) = Φf (λ� η),

for every (λ, η) ∈ Rn × Sn−1. In particular, the BD-elliptic envelope of f is BD-
elliptic, and f is BD-elliptic if and only if it coincides with its BD-elliptic envelope.

Proof. The proof can be handled analogously to Proposition 3.9. We merely replace
Theorem 3.7 with Theorem 4.6, and [22, Lemma 6.2] with Lemma 4.5.

Similar to Remark 3.10, we tackle one final related convexity notion.

Remark 4.8. (Symmetric joint convexity) An even function f : Rn×Sn−1 → [0,∞)
is called symmetric jointly convex if

f(λ, η) = sup
i∈N

(
gi(λ)− gi(0)

)
· η for every (λ, η) ∈ Rn × Sn−1,

where gi ∈ C1(Rn;Rn) is Lipschitz continuous and conservative for every n ∈ N.
Here, we merged [15, Definition 3.1] with the class of functions for gi used in [15,
Remark 3.2]. In our setting the chain rule for compositions of gi with BV-functions
can be applied directly. Moreover, if f is positively 1-homogeneous in the first
variable, then symmetric joint convexity is also equivalent to BD-ellipticity.
The proofs of both implications can be handled almost exactly as in Step 2 of the
proof of Theorem 4.6, which are inspired by [15, Theorem 3.4] and [15, Proposition
4.9] but do not require boundedness of the functions gi.

We close this article with a curious example for a symmetric biconvex function. It
has already been establishes in [15, Example 4.16] that densities of the form

f(λ, η) = ψ(λ), (λ, η) ∈ Rn × Sn−1

with an anisotropic function ψ are, in general, not BD-elliptic. In the following, we
tackle the case ψ = | · |, which has been addressed in [15, Theorem 4.1]

Example 4.9. (a) We consider the function

f : R2 × S1 → [0,∞), (λ, η) 7→ |λ⊗ η|,

where |.| is the Frobenius norm. It is then obvious that f is biconvex, and also
BV-elliptic due to Theorem 3.7, since f(λ, η) = Φ(λ⊗ η) for every (λ, η) ∈ R2 ×S1

with Φ: R2×2 → [0,∞), F 7→ |F |.
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It might be surprising to see that f is also symmetric biconvex, and thus BD-elliptic
in view of Theorem 4.6, since f(λ, η) = Ψ(λ� η) for every (λ, η) ∈ R2 × S1 with

Ψ: R2×2
sym → [0,∞), F 7→

√
(F11 − F22)2 + (F12 + F21)2 =

√
|F |2 − 2 detF.

However, neither Φ nor Ψ (extended canonically to all of R2×2) coincides with Φf

(cf. (8)) on all of R2×2.
It turns out that Φf is the nuclear norm | · |∗ on R2×2, i.e.,

Φf (F ) = |F |∗ := Tr
(√

F TF
)
= σ1(F ) + σ2(F )

for every F ∈ R2×2, where σ1(F ), σ2(F ) ≥ 0 are the two singular values of F . To
prove this identity, we turn our attention to Lemma 2.2, in which we established
that Φf is the convex envelope of (9). Since the nuclear norm is convex and coincides
with f on tensor products, we obtain the trivial inequality | · |∗ ≤ Φf . We establish
the reverse inequality by exploiting the singular value decomposition: for every
F ∈ R2×2 there exist orthogonal matrices U, V ∈ O(2) such that

F = U

(
σ1(F ) 0
0 σ2(F )

)
V T ; (38)

in particular, it holds that

F = σ(F )(Ue1)⊗ (V e1) + σ2(F )(Ue2)⊗ (V e2).

This composition then yields that Φf ≤ | · |∗ since the columns of U and V are
normalized and the singular values are non-negative.
(b) Since the singular value decomposition (38) is also true in higher dimensions,
the result in (a) can be generalized as follows: For

f : Rn × Sn−1 → [0,∞), (λ, η) 7→ |λ⊗ η|, n > 2

it holds that

Φf (F ) = |F |∗ := σ1(F ) + · · ·+ σn(F ) for all F ∈ Rn×n,

where | · |∗ is now the nuclear norm on Rn×n and σ1(F ), . . . , σn(F ) are the singular
values of F .
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