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1. Introduction

Hyperbolic polynomials are intrinsically connected with many important classes of
optimization problems such as linear programs, semidefinite programs and, more
generally, symmetric cone programming.
We recall that if p : V → R is a homogeneous polynomial of degree d over a real
finite-dimensional Euclidean space V , then we say that it is hyperbolic along e if
p(e) > 0 and for every x ∈ V the one-variable polynomial t 7→ p(x − te) only has
real roots. With that, the corresponding hyperbolicity cone is

Λ+(p, e) := {x ∈ V | all roots of t 7→ p(te− x) are nonnegative}. (1)
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For example, if p : Rn → R is such that p(x1, . . . , xn) = Πn
i=1xi and e = (1, . . . , 1)

then Λ+(p, e) = Rn
+. Similarly, over the real symmetric matrices Sn, we have

Λ+(det, In) = Sn
+, where In is the n× n identity matrix, det : Sn → R is the deter-

minant polynomial and Sn
+ is the cone of n× n real symmetric positive semidefinite

matrices.
Homogeneous cones and symmetric cones are hyperbolicity cones, but that is not the
end of the story. One key point is that if a given K can be written as a hyperbolicity
cone Λ+(p, e), there could be multiple hyperbolic polynomials that generate K. For
example, we have R3

+ = Λ+(p
∗, e), where p∗(x1, x2, x3) = x2

1x2x3 even though R3 is
also generated by the degree 3 polynomial x1x2x3.
Given K, a natural question then is how to find a minimal polynomial (i.e., a poly-
nomial of minimal degree) that generates K. Fortunately, such a question is well-
defined, because two minimal polynomials for the same hyperbolicity cone must
differ by a constant, see [13, Lemma 2.1]. Unfortunately, such a question is also
notoriously hard to answer, see Section 2.1 where we overview some facts on this
topic.
At first glance, finding minimal polynomials might seem an esoteric task, but it is
actually filled with practical implications. Güler proved that − log p is a logarith-
mically homogeneous self-concordant barrier for the interior of Λ+(p, e) with barrier
parameter d = deg p, see [12, Section 4]. By its turn, the barrier parameter can be
used to upper bound the worst-case iteration complexity of interior-point methods.
The summary is that using a polynomial of smaller degree may lead to improved
complexity properties.
While the minimal polynomials of symmetric cones are known, there seems to be
several gaps in our knowledge of minimal polynomials of homogeneous cones and
general hyperbolicity cones.
Given a homogeneous cone K, Güler showed in [12, Section 8] how to construct a
hyperbolic polynomial p such that K = Λ+(p, e) holds for some e. Unfortunately, his
construction (which was based on results of Gindikin [9]) does not produce minimal
polynomials even when K = Sn

+ so, the resulting self-concordant barrier may fail to
be optimal with respect to the barrier parameter. However, in [6, Section 4.2], Chua
and Tunçel discuss a general construction based on semidefinite representations of
homogeneous cones which, in particular, recovers optimality when specialized to
K = Sn

+. Having access to a semidefinite representation of a homogeneous cone K
also makes it possible to compute a hyperbolic polynomial that generates K and
we will revisit this point in the proof of Proposition 4.7. In general, however, there
seems to be no guarantee that such polynomial is minimal.
As mentioned previously, part of the difficulty is that it is hard to attest that a given
hyperbolic polynomial is minimal. However, there is one important exception to this:
the so-called rank-one generated (ROG) hyperbolicity cones, which were studied in
[14]. A hyperbolicity cone Λ+(p, e) is ROG if its extreme rays are generated by
rank-1 elements, where the rank of a given x is the number of nonzero roots of the
polynomial t 7→ p(x− te).
If a pointed full-dimensional hyperbolicity cone Λ+(p, e) is ROG (with respect to p)
then p must be a minimal polynomial for Λ+(p, e), see [14, Proposition 3.5]. This
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helps bring some geometry into what was an otherwise purely algebraic question.
With that, the following question was formulated in [14, Section 5].

Can homogeneous cones be realized as ROG hyperbolicity cones?
Unfortunately, as we will see in this paper the answer is no. We will exhibit a
homogeneous cone that cannot be realized as a ROG hyperbolicity cone.
We also recall that there is a notion of rank for homogeneous cone. Although it is
known that a symmetric cone has a minimal polynomial equal to its rank, we will
also observe that this is no longer true for homogeneous cones. Indeed, there exists
a homogeneous cone of rank 3 whose minimal polynomial is 4, see Section 4.2. More
generally, we will present a result on the degrees of the minimal polynomials for
cones arising as duals of PSD cones with chordal sparsity patterns.
Here is a summary of our results.
• We provide minimal polynomials for the duals of PSD cones with chordal spar-

sity patterns, see Theorem 3.1. Then, based on this result, we furnish several
consequences for hyperbolicity and homogeneous cones. Among the PSD cones
with chordal sparsity patterns, if an additional condition is satisfied, these cones
become homogeneous. In combination with Theorem 3.1, this allow us to find
several examples of homogeneous cones that cannot be realized as ROG hyper-
bolicity cones, see Theorem 4.1 and Section 4.1.

• We present a discussion on the connection of homogenous cone rank and the
degree of minimal polynomials for homogeneous cones. In particular, if the
K is the dual of a cone that arises from a homogeneous chordal sparsity pat-
tern, then the degree of minimal polynomials is no more than O(n2) where n
is the homogeneous cone rank. We also present some results for general homo-
geneous cones, but they are more limited in scope. For example, we discuss an
exponential upper bound for the degree of minimal polynomials for a general
homogeneous cone in terms of its rank, see Proposition 4.5.

This work is organized as follows. In Section 2 we recall some basic facts about
semialgebraic and hyperbolicity cones. In Section 3, we present a discussion on the
dual of cones arising from chordal sparsity patterns. Finally, in Section 4 we have
results on ROG hyperbolicity cones and minimal polynomials of homogeneous cones.

2. Preliminaries
We recall some basic nomenclature on convex sets that will be needed in the sequel,
see [24] for more details. Let K be a closed convex cone K contained in a finite
dimensional Euclidean space V . K is said to be pointed if K ∩ −K = {0} and it
is said to be full-dimensional if the linear span of K is V . We denote the relative
interior of K by riK.

2.1. Semialgebraic cones and minimal polynomials
We say a set S ⊆ Rn is semialgebraic if it can be written as a finite union of sets of
the form

{x ∈ Rn | pi(x) ≥ 0 (i = 1, . . . , k), qj(x) > 0 (j = 1, . . . , l)},

for some polynomials pi(x), qj(x) of real coefficients.
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We refer by semialgebraic cone to any convex cone that is also a semialgebraic set.
Example 2.1. In convex analysis, this class includes many important examples:
the nonnegative orthant Rn

+, the cone of n× n real symmetric positive semidefinite
matrices Sn

+, the copositive cone CoPn and the completely positive cone CPn, second
order cones, hyperbolicity cones, etc. A non-example would be the power cone Pα

m,n

for irrational α and n ≥ 2 [3, 18].

Semialgebraic cones are very special semialgebraic sets, that come with some par-
ticularly useful algebraic properties. Most importantly we have the following fact.

Proposition 2.2. Let C be a closed semialgebraic cone with non-empty interior.
Then the algebraic closure of its boundary is a hypersurface. This means that there
exists (up to multiplication by a scalar) a unique polynomial of minimal degree that
vanishes on the boundary of C, and any other polynomial vanishing on the boundary
must be a multiple of it.

The statement of Proposition 2.2 is in fact valid for any semialgebraic set S such
that S and its complement are regular and non-empty. Here, a regular set is one
that is contained in the closure of its interior. For a proof see Lemma 2.5 of [26].
We refer to that paper for a thorough survey on the algebraic theory of boundaries
of convex sets. In particular, a convex semialgebraic set C ( Rn with non-empty
interior and its complement are always regular.
The unique polynomial (up to scaling) that Proposition 2.2 associates to a closed
semialgebraic cone C with non-empty interior is called the minimal polynomial ofC.

Example 2.3. Examples of minimal polynomials of semialgebraic cones.
(a) For C = Rn

+ the minimal polynomial is x1x2...xn. It vanishes on the boundary
and any polynomial that divides it does not.

(b) For C = Sn
+ the minimal polynomial is det(X). To see this it is enough to

note that it vanishes on the boundary and that it is irreducible, so it cannot
be a multiple of any other polynomial.

(c) For C = CPn the minimal polynomial is very hard to compute. In [22] the case
n = 5 is partially answered. In particular a divisor of the minimal polynomial
is computed and it has degree 3900, see Theorem 2.13 therein.

The next lemma will be useful to argue about minimal polynomials of intersections
of cones. Here, we say that a polynomial p is a strict divisor of a polynomial q if
q = ph holds for some polynomial h of degree ≥ 1.

Lemma 2.4. Let C1, . . . , Ck ( Rn be closed semialgebraic cones with minimal poly-
nomials p1, . . . , pk, respectively. Suppose that the interiors of the Ci intersect and
the p1, . . . , pk are irreducible. Then, p1 · · · pk is a minimal polynomial of C1∩· · ·∩Ck

if and only if any strict divisor of p1 · · · pk does not vanish entirely on C1 ∩ · · · ∩Ck.

Proof. The necessity is clear by the minimality of p1 · · · pk. To show the sufficiency,
let q be a minimal polynomial of C1 ∩ · · · ∩ Ck. Since p1 · · · pk vanishes on the
boundary of C1 ∩ · · · ∩ Ck, q divides p1 · · · pk (Proposition 2.2). As R[x] is a
unique factorization domain and the factors pi are irreducible, q has the expression
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q = α
∏

j∈J pj for some α ∈ R and J ⊂ {1, . . . , k}. But J = {1, . . . , k} must hold
otherwise q becomes a strict divisor of p1 · · · pk.

2.2. Hyperbolicity cones and their minimal polynomials

An important case of semialgebraic cones is that of hyperbolic cones. For given
p : V → R a homogeneous polynomial of degree d that is hyperbolic along a direction
e ∈ V , we defined its hyperbolicity cone (along e) in (1). Here, a polynomial over V
is understood as a polynomial over the coefficients of some basis of V .
From that definition is not clear if a hyperbolicity cone is even a convex cone, and
it is a foundational result of Gårding [8] that this is in fact the case. That it
is semialgebraic follows, for example, from [23, Theorem 20] that states that the
hyperbolicity cone is cut out by p and its directional derivatives with respect to e.
Another related very useful description of hyperbolicity cones is the following basic
fact (see, e.g., [8] and [23, Proposition 1]).

Lemma 2.5. The hyperbolicity cone Λ+(p, e) is the closure of the connected com-
ponent of {x | p(x) 6= 0} containing e.

We note that e is in the interior of Λ+(p, e), so Λ+(p, e) is always full-dimensional in
V . Lemma 2.5 immediately guarantees that p vanishes at the boundary of Λ+(p, e),
so the minimal polynomial of the cone, whose existence is guaranteed by Proposi-
tion 2.2 (see also [13, Lemma 2.1]), must divide p over V . This in turn gives us the
following well-known fact.

Lemma 2.6. A minimal polynomial q : V → R of a hyperbolicity cone Λ+(p, e) is
hyperbolic with respect to direction e and Λ+(p, e) = Λ+(q(e)q, e).

Proof. By the above observation, p = qr for some polynomial r. This implies that
for x ∈ V we have p(te − x) = q(te − x)r(te − x), and since the roots of p(te − x)
are all real so are the ones of q(te− x). By fixing the sign so that q is non-negative
in Λ+(p, e), we conclude that Λ+(p, e) ⊆ Λ+(q(e)q, e) and that Λ+(q(e)q, e) is in the
connected component of {x | p(x) 6= 0} containing e. By Lemma 2.5 we conclude
that Λ+(p, e) = Λ+(q(e)q, e).

The minimal polynomials for a hyperbolicity cone Λ+(p, e) are exactly the hyperbolic
polynomials p̂ of minimal degree for which Λ+(p, e) = Λ+(p̂, e) holds. We note that
minimality as just described and minimality in the sense of Section 2.1 coincide by
Lemma 2.6. From the discussion so far can now specialize Lemma 2.4 to the case of
hyperbolicity cones.

Proposition 2.7. Let p1, . . . , pk : V → R be hyperbolic polynomials along e ∈ V.
Assume that p1, . . . , pk are irreducible. Then p1 · · · pk is a minimal polynomial for
Λ+(p1 · · · pk, e) if and only if

∀j = 1, . . . , k,
k∩

i=1
i ̸=j

Λ+(pi, e) ) Λ+(p1 · · · pk, e).
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Proof. Observing that
∩k

i=1 Λ+(pi, e) = Λ+(p1 · · · pk, e) holds, the proof follows
Lemma 2.4.

3. Duals of chordal cones and minimal polynomials

Of special interest to us is the example of chordal cones and their duals. Given a
graph G with nodes V = {1, ..., n} and edges E, we consider the subspace

S(G) := {X ∈ Sn |Xij = 0 for all i 6= j such that {i, j} 6∈ E} (2)

and the corresponding cone of positive semidefinite matrices that respect the sparsity
pattern induced by G

S+(G) := S(G) ∩ Sn
+. (3)

A cone that is related to S+(G) is

S∗(G) = {A ∈ S(G) |AC � 0 for all G-cliques C},

where AC is the submatrix indexed by the vertices of C. The cone S∗(G) is a hyper-
bolicity cone since it is the intersection of the symmetric cones {A ∈ S(G) | AC � 0}
among G-cliques C. By the classic result of [10, Theorem 7] we have S∗(G) = S+(G)∗

if and only if G is chordal, in which case we can also say by [1, Theorem 3.3] that

S+(G) =
{∑

i

Ai |Ai � 0 with supp(Ai) contained in a clique of G
}
.

We observe that the interior of S∗(G) is given by

int (S∗(G)) = {A ∈ S(G) |AC � 0 for all maximal G-cliques C}. (4)

Let In denote the n×n identity matrix, (4) holds because (In)C � 0 for all G-cliques
C, so int (S∗(G)) = {A ∈ S(G) |AC � 0 for all G-cliques C}, by [24, Theorem 6.5].
Since every G-clique is contained in some maximal clique and principal submatrices
of positive definite matrices are positive definite, we obtain (4).

Theorem 3.1. A minimal polynomial of the hyperbolicity cone S∗(G), for G chordal,
is

pG(X) =
∏

C maximal clique of G

det(XC),

where X is a symmetric matrix of unknowns.

Proof. For a clique C of G consider the cone KC = {X |XC � 0} and its minimal
polynomial pC = det(XC). With that, we have KC = Λ+(pC , In) and

S∗(G) =
∩

C KC = Λ+(pG, In),
where C varies over the maximal cliques of G. By Proposition 2.7, since every such
pC is irreducible, we just have to show that none of the factors can be omitted. In
order to do so, for any maximal clique C we construct a matrix A in S∗(G) such that
AC is singular (i.e., is in the boundary of S∗(G)) but all the other maximal clique-
indexed submatrices are positive definite (i.e., A is in the interior of the intersection
of the KD for D 6= C).
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To do this, start by constructing AC to be positive semidefinite and singular but
such that all its proper principal submatrices are positive definite. For instance let it
be the matrix with |C| − 1 on the diagonal and −1 on every other entry. Complete
A by adding 1 to every other diagonal entry not in C. For any maximal clique
D 6= C of G, the matrix AD will be block diagonal, with one block being AD∩C
and the other being an identity. Since both C and D are maximal cliques, D ∩ C
is strictly contained in C, so AD∩C is a proper principal submatrix of AC hence
positive definite. This implies that AD is positive definite for any maximal clique
other than C. In particular the only term of the product vanishing at A is pC(X)
so we cannot drop it.

It follows that the degree of the minimal polynomial of S∗(G) is the sum of the sizes
of its maximal cliques. While general graphs can have exponentially many cliques
with respect to the number of vertices, chordal graphs admit no such behavior. In
fact, since every chordal graph has an elimination order, there are at most n maximal
cliques in a chordal graph with n vertices (see [2] for more details on chordal graphs).
Since the size of each clique has a trivial bound of n, this tells us that the degree of
the minimal polynomial of S∗(G) is O(|V (G)|2), where V (G) is the set of vertices of
G. While |V (G)|2 can never be attained, the degree can in fact grow quadratically
as illustrated in the following example.

Example 3.2. For each n consider the graph Gn constructed in the following way:
we take a clique K of size bn−1

2
c and add dn+1

2
e new vertices each connecting to

every vertex of K and nowhere else. This graph has n vertices and dn+1
2
e maximal

cliques of size bn−1
2
c+ 1 = bn+1

2
c.

Using Theorem 3.1 we conclude that the degree of the minimal polynomial of S∗(Gn)

is (n+1)2

4
for n odd and (n+1)2−1

4
if n even.

4. Consequences for hyperbolicity and homogenous cones

Before we proceed, we recall that a closed convex cone K ⊆ V is said to be homo-
geneous if its group of automorphisms acts transitively on its relative interior, i.e.,
∀x, y ∈ riK, there exists A ∈ Aut(K) such that Ax = y. Then, a cone K is said
to be self-dual if there exists some inner product 〈·, ·〉 over V for which K coincides
with its dual cone K∗ := {y | 〈x, y〉 ≥ 0,∀x ∈ K}. With that a symmetric cone is
a self-dual homogeneous cone. Examples of symmetric cones are the n× n positive
semidefinite matrices over the real numbers Sn

+, the nonnegative orthant Rn
+ and

the second-order cone Ln+1
2 := {(x, t) | t ≥ ‖x‖2}, where ‖·‖2 indicates the 2-norm.

Symmetric cones have a natural notion of rank that comes from its Jordan algebraic
structure. Fortunately, we will not need to discuss the details of that and it suffices
to recall that the ranks of Sn

+, Rn
+ and Ln+1

2 are n, n and 2, respectively.
We also recall that given a hyperbolic polynomial p : V → R along a hyperbolicity
direction e, we define the rank of x ∈ V as

rank(x) := number of nonzero roots of t 7→ p(te− x).

A hyperbolicity cone Λ+(p, e) is said to be rank-one generated (ROG) if its extreme
rays are generated by rank-1 elements. More generally, a given closed convex cone
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K is said to be realizable as a ROG hyperbolicity cone if there exists p and e such
that K = Λ+(p, e) and Λ+(p, e) is ROG. The subtlety here is that even if Λ+(p, e) =
Λ+(p̂, e) holds for a certain cone, the rank function induced by p and p̂ may still
be different, so ROGness depends on the choice of p. However, if Λ+(p, e) is ROG,
then p must be a minimal polynomial for Λ+(p, e), see [14, Proposition 3.5].
All symmetric cones are realizable as ROG hyperbolicity cones, for more details see
[11, proof of Lemma 4.1] or [14, Section 3.1.1 and Proposition 3.8]. For example,
we have Sn

+ = Λ+(det, In). The extreme rays of Sn
+ correspond to rank-1 matrices

(in the usual linear algebraic sense). They also correspond to rank-1 elements in
the hyperbolic sense, since the matrix rank of X ∈ Sn

+ is the number of nonzero
roots of t 7→ det(tIn − X). In this way, a minimal polynomial of Sn

+ is indeed the
determinant polynomial, which has degree n. For Rn

+ and Ln+1
2 , minimal polynomials

have degrees n and 2, respectively. More generally, a symmetric cone has a minimal
polynomial of degree equal to its rank1.
If G is chordal, then S+(G) (see (3)) is a ROG hyperbolicity cone with respect to the
usual determinant polynomial and In, since every X ∈ S+(G) has a decomposition
in rank-1 matrices that respects the sparsity pattern defined by G. S∗(G) is also
a hyperbolicity cone, but, in contrast, it is rarely ROG as we will see in the next
result.

Theorem 4.1. Let G be a chordal graph. S∗(G) is realizable as a ROG hyperbolicity
cone if and only if G is a disjoint union of cliques.

Proof. If G is a disjoint union of cliques G1, . . . Gm, then S∗(G) is linearly isomor-
phic to a direct product of smaller positive semidefinite cones that are supported on
the Gi. In particular, S∗(G) is a symmetric cone and therefore it is realizable as a
ROG hyperbolicity cone.
Conversely, suppose that G is not a disjoint union of cliques. Then, there exists a
least one node of G that is contained in two distinct maximal cliques G1, G2 of G.
Relabelling the nodes if necessary, we may assume that this node is 1. Let E be the
matrix that is 1 at the (1, 1)-entry and zero elsewhere. First, we will prove that E
generates an extreme ray of S∗(G). Let X,Y ∈ S∗(G) be nonzero and assume that
X + Y = αE for some α ≥ 0. Then, for every G-clique C we have

XC + YC = αEC .

If 1 is not in the node set of C, then EC is the zero matrix, so XC + YC = 0, which
in view of XC � 0, YC � 0, implies XC = YC = 0 = EC . If 1 is in the node set of C,
then, assuming that C has k nodes, EC generates an extreme ray of Sk

+. Therefore,
XC � 0, YC � 0 and XC +YC = αEC implies that XC and YC are positive multiples
of EC . The conclusion is that for every G-clique C, the entries of XC , YC are zero
with the potential exception of the (1, 1)-entry if C contains 1. We note that every
pair of indices (i, j) with i 6= j is either outside the edge set of G (in which case of
1 The precise proof of this statement comes from the fact a symmetric cone admits a generalized
notion of determinant, which is a polynomial of degree equal to its rank. With respect to this
determinant, a symmetric cone can be realized as a ROG hyperbolicity cone, see the discussion in
[14, Section 3.1.1].
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Xij = Yij = 0) or is in G, in which case, it is covered by some clique of G. Overall,
we obtain that X11 and Y11 are positive and all the other entries of X and Y are
zero. This shows that E is indeed an extreme ray of S∗(G).
The next step is showing that no matter which hyperbolic polynomial q is chosen
for S∗(G), the extreme ray E will always have rank greater than 1. Suppose that
S∗(G) = Λ+(q, U), where q is a hyperbolic polynomial along the direction U . Since
the polynomial given in Theorem 3.1 is minimal, there exists some polynomial h
such that

q(X) = h(X)
∏

C maximal clique of G

det(XC) (5)

holds, which follows from either Proposition 2.2 or [13, Lemma 2.1]. Now we recall
some facts about hyperbolicity cones. First, if Λ+(p, ē) is a hyperbolicity cone, then
for any ê belonging to the relative interior of Λ+(p, ē), we have Λ+(p, ê) = Λ+(p, e),
see [23, Theorem 3]. Also, the rank of x ∈ Λ+(p, ē) with respect to p and ē (i.e., the
number of roots of t 7→ p(tē−x)) coincides with the rank of x with respect to p and
ê (i.e., the number of roots of t 7→ p(tê− x)), see [23, Proposition 22]2.
In particular, the (hyperbolic) rank of E computed with respect q and U is the
same as the rank of E computed with respect to q and the identity matrix In. By
assumption, the node 1 is in at least two maximal cliques G1, G2 of G, so the rank
of E is at least two because of the terms det(XG1) and det(XG2) in (5).

4.1. Consequences for homogeneous cones

Among the chordal cones described in Section 3, there is special class of cones that
are homogeneous. These are the cones S+(G) (see (3)) where G not only is chordal
but also does not contain induced subgraphs isomorphic to a 4-node path. We will
refer to such a graph G as being a homogeneous chordal graph. For a proof that
S+(G) is homogeneous see [16, Theorem A]. This class of cones was also extensively
studied in [27]. The cones S∗(G) are also homogeneous because duality preserves
homogeneity.
As mentioned in Section 1, an open question that was left in [14] was whether
homogeneous cones can be realized as ROG hyperbolicity cones. Theorem 4.1 im-
mediately implies that the answer is “No”, since G may be homogeneous chordal
without being a disjoint union of cliques, in which case S∗(G) will fail to be ROG.
For the sake of concreteness, we present a detailed example. Consider the following
graph G.

1

2 3

With that, S+(G) can be described as follows

S+(G) =

(x1, x2, x3, x4, x5) ∈ R5 |

x1 x2 x3

x2 x4 0
x3 0 x5

 � 0

 .

2A minor detail is that Renegar’s result is about the multiplicity of zero as a root of t 7→ p(te−x).
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The graph G is chordal and since it has only 3 vertices it is also homogenous chordal
thus, S+(G) is a homogeneous cone of dimension 5. We equip R5 with the Frobenius
inner product 〈·, ·〉F in such a way that for x, y ∈ R5 we have

〈x, y〉F = tr

x1 x2 x3

x2 x4 0
x3 0 x5

y1 y2 y3
y2 y4 0
y3 0 y5

 .

In this way, following the discussion in Section 3, the dual of S+(G) is given by

S∗(G) =

{
(y1, y2, y3, y4, y5) ∈ R5 |

(
y1 y2
y2 y4

)
� 0,

(
y1 y3
y3 y5

)
� 0

}
. (6)

This cone S∗(G) is also called the Vinberg cone [15]. G has two maximal cliques, so
it follows from Theorem 3.1 that a minimal polynomial for S∗(G) is given by

det

(
y1 y2
y2 y4

)
det

(
y1 y3
y3 y5

)
.

In addition, by Theorem 4.1, S∗
+(G) is not realizable as a ROG hyperbolicity cone.

We note this is a corollary.

Corollary 4.2. The Vinberg cone (6) is not realizable as a ROG hyperbolicity cone.

4.2. Homogeneous cone rank and minimal polynomials

Regarding homogeneous cones we are still left with the question of identifying mini-
mal polynomials and their degrees. As mentioned previously, symmetric cones have
a notion of rank and their minimal polynomials have degree equal to the rank, see
[14, Proposition 3.8]. So, for symmetric cones, this question is completely settled.
A natural question then is whether the same is true for homogeneous cones. As we
will see, the answer is no. But, first, we need to recall some aspects of the theory of
homogeneous cones.
Given a pointed full-dimensional homogeneous closed convex cone K contained in
some finite dimensional Euclidean space V , it is possible to associate to K an algebra
of “generalized matrices” M in such a way that K correspond to the elements that
have a “generalized Cholesky decomposition”, i.e.,

x ∈ K ⇔ ∃t, s.t. x = tt∗, (7)

where t ∈ M is an “upper triangular” generalized matrix and “∗” is an operator
analogous to the usual matrix adjoint. The elements of M are generalized matrices
in the sense that each a ∈ M can be written in a unique way as a =

∑
1≤i,j≤n aij,

where each aij belongs to certain subspaces Mij ⊆ M satisfying M =
⊕

1≤i,j≤nMij.
This direct sum decomposition of M is called a bigradation. The subspaces Mii in
the “diagonal” must all be one-dimensional. However, contrary to an usual matrix
algebra over a field, the Mij with i 6= j may have dimension greater than 1 or it
may even be zero. In this way, the t in (7) is “upper triangular” in the sense that
tij = 0 if i > j. Finally, by definition, the number n is the rank of the algebra and
corresponds to the (homogeneous) rank of the cone K, see [5, Definition 4].
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This M is a so-called T-algebra introduced by Vinberg [28], see also the works of
Chua for a discussion on T-algebras focused on optimization aspects [4, 5]. An
earlier related discussion can also be seen in [12, Section 8]. The precise definition
of T-algebra is relatively involved and describes the behavior of the bigradation of
M with respect to upper triangular elements, the underlying algebra multiplication
and the adjoint operator. Fortunately, for what follows we only need two facts. The
first is that the rank of a homogeneous cone is well-defined, i.e., a cone may be
realizable in multiple ways using different T-algebras, but all of them correspond to
isomorphic T-algebras of same rank, see, for example, [5, Theorem 1]. The second is
that the dual of a homogeneous cone is also a homogeneous cone of the same rank.
We note this as a lemma.
Lemma 4.3. The dual of a homogeneous convex cone of rank n also has rank n.

Proof. We only present a sketch of this well-known fact. A T-algebra for the dual
cone is obtained from a T-algebra of the primal cone by exchanging the order of
the subspaces Mij in an appropriate way. This is referred to in the literature as a
“change of grading”, e.g., see [28, Chapter 3, section 6] or see [5, Section 2.3]. In
particular, the rank of the T-algebra stays the same.

Returning to the issue of minimal polynomials, it turns out that, in contrast to
symmetric cones, the homogeneous cone rank can be smaller than the degree of
minimal polynomials.

Corollary 4.4. Let G be a homogenous chordal graph on n nodes. Then, S∗(G)
has homogeneous cone rank n. Furthermore, minimal polynomials for S∗(G) have
degree n if and only if G is a disjoint union of cliques.

Proof. The cone S+(G) is a homogeneous cone of rank n, so its dual S∗(G) is also
homogeneous of rank n, by Lemma 4.3. Each polynomial det(XC) in Theorem 3.1
has degree equal to the number of nodes of C. The only way that pG can have
degree n is if each node is in at most one maximal clique.

In particular, the Vinberg cone in (6) has rank 3 but its minimal polynomials have
degree 4.
A natural question then becomes how to bound the degree of minimal polynomials
in terms of the homogeneous cone rank. We note that it is not obvious that this is
even possible in the first place. However, we have the following result.

Proposition 4.5. Let K be a pointed homogeneous cone of rank n. Then, the degree
d of minimal polynomials of K satisfy d ≤ 2n−1.

Proof. Without loss of generality, we may assume that K has dimension m and is
contained in some Rm. In this way, K has non-empty interior with respect to Rm.
In view of Proposition 2.2, it is enough to exhibit a polynomial of degree 2n−1 that
vanishes on the boundary of K. Such a polynomial is described in [28, Chapter 3,
§3] and also in [15, Section 1]. Here we will follow the account in [15].
There exists n polynomials Di : Rm → R of degree 2i−1 such that the following
property holds

x ∈ intK ⇔ Di(x) > 0, i ∈ {1, . . . , n};
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see the discussion that goes from (1.11) in [15] to [15, Proposition 1.3] or see the
discussion around [28, Chapter 3, §3, Proposition 2] for the analogous result in
Vinberg’s notation. In particular, the Di’s must be nonnegative on the boundary
of K. Intuitively, the Di are similar to the leading principal minors of symmetric
matrices.
A key property is that the Di’s satisfy a recurrence relation of the following form:

Dk = D1D2 · · ·Dk−1pk −
( ∑

i<k−1

Di+1 · · ·Dk−1q
2
ki

)
− q2k,k−1, (8)

see [15, Proposition 1.4]. Here, pk, qki and qk,k−1 are polynomials whose specific
formulae do not matter for our purposes.
Next, let x be in the boundary of K. We are now positioned to argue that Dn(x)
(which has degree 2n−1) must be zero. Since Di(x) ≥ 0 for all i and x is not in the
interior of K, there exists some k for which Dk(x) = 0 holds. If k = n we are done.
Otherwise, in view of (8), we have

Dk+1(x) = −(qk+1,k(x))
2.

Since Dk+1(x) ≥ 0, we have Dk+1(x) = 0. By induction, we conclude that if Dk(x)
vanishes, then all the Dj(x) vanish for j > k. In particular Dn(x) is zero.

We note that Güler has a similar result in [12, Section 8], where he showed that
homogeneous cones are hyperbolicity cones. However it is not immediately clear
the degree of the polynomial obtained in [12, Theorem 8.1]. In more detail, Güler
showed in [12, Theorem 8.1] that p(x) =

∏n
i=1 χi(x)

di is a hyperbolic polynomial
for a homogeneous cone K, where (d1, . . . , dn) := (1, 1, 2, 4, . . . , 2n−2) and χi(x) are
rational functions satisfying x ∈ riK ⇔ χi(x) > 0, ∀i. From the discussion therein,
it is not clear what the degree of p is, since the degrees of the rational functions
χi(x) are not described.
Proposition 4.5 is somewhat disappointing because it gives an exponential upper
bound on the minimal polynomial for homogeneous cones. We note that Ishi iden-
tified the irreducible components of Dk and was able to express the interior of a
homogeneous cone using certain polynomials ∆k of potentially smaller degree than
the Dk, see [15, Proposition 2.3]. Related to that, Nakashima described techniques
for computing the degrees of ∆k, see [19, Equation (1.5), Theorem 6.1] and [20,
Lemma 1.1]. Nevertheless, we were not able to improve the bound in Proposi-
tion 4.5.
In contrast, in the case of cones arising from homogeneous chordal sparsity patterns,
the situation is far more favourable and we have a quadratic bound in terms of the
rank.

Theorem 4.6. Let G be a homogenous chordal graph on n nodes. Then, a minimal
polynomial for S∗(G) has degree no larger than dn+1

2
ebn+1

2
c.

Proof. We start by noting that the structure of a homogeneous chordal graph can
be completely characterized by a rooted forest. A rooted forest is a directed acyclic
graph (DAG), whose connected components are trees having a marked node, which
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we call a root, and having all edges oriented away from the root. As is the case for
every DAG, it induces a partial order in its nodes. In [27, Section 2.3] it is noted that
for any homogeneous chordal graph there is a rooted forest T with the same nodes
as G such that G is the comparability graph of T , i.e., two nodes are connected if
they are comparable in the partial order induced by T , in other words, if there is a
directed path in T between them.
With this correspondence, maximal cliques of G correspond to maximal paths away
from a root in T . To see this, we note that the nodes form a clique in G if and only
if the partial order induced by T restricted to those nodes becomes a total order,
which in its turn means that we can order the nodes such that there is a path from
each node to its successor, so they are all contained in an oriented path. With this
correspondence, by Theorem 3.1, the degree of the minimal polynomial of S∗(G) is
obtained by summing the numbers of nodes of every path from a root to a leaf, plus
the number of isolated roots. We will now bound this quantity.
We observe that in a tree DAG, there is at most one directed path from any two
nodes. In addition, all maximal paths must start on a root. This implies that the
leaf of a maximal path cannot be a part of any other maximal path. So if there are
k + 1 maximal paths, for each of them there are k nodes it cannot contain, so the
maximum length is n− k, and the maximum sum of lengths is (k + 1)(n− k). We
just have to maximize this number over all integer k between 1 and n− 1 and this
is attained at k = bn−1

2
c, giving the degree dn+1

2
ebn+1

2
c as stated. This is precisely

the cone in Example 3.2.

For general homogeneous cones it seems hard to give a polynomial bound on the
degree of minimal polynomials in terms of the rank. However, as a consequence of
the fact that the homogeneous cones can be realized as slices of positive semidefinite
cones (i.e., homogeneous cones are spectrahedral), we have the following “easy”
bound in terms of the dimension of the cone.

Proposition 4.7. Let K be a pointed homogeneous cone. The degree d of minimal
polynomials of K satisfies d ≤ dimK.

Proof. Without loss of generality, we may assume that K is contained in some Rk

for which we have k = dimK. Chua proved in [4, Corollary 4.3] that if K is a
homogeneous cone in Rk, then for some m ≤ k, there exists an injective linear map
M : Rk → Sm with the property that

M(riK) = Sm
++ ∩M(Rk)

holds, where Sm
++ is the cone of m×m positive definite matrices and riK is the rel-

ative interior of K. See also [27, Section 6] which discusses related results contained
in [28, 25, 7] and other works.
In particular, we have that M(K) = Sm

+ ∩ M(Rk). Put otherwise, K is linearly
isomorphic to an intersection of a hyperbolicity cone (Sm

+ ) and a subspace. If we let
e ∈ K be such that M(e) ∈ Sm

++, then the composition q := det ◦M corresponds to
a hyperbolic polynomial of degree m along e such that K = Λ+(q, e). This shows
that d ≤ m ≤ k = dimK.
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Unfortunately, there is no straightforward relation between rank and dimension. For
example, second-order cones of dimension m+1 always have rank 2 (for m > 0). In
particular, for fixed rank, one may construct homogeneous cones of arbitrary large
dimensions.
In view of the discussion so far, during the writing of the first version of this paper
we considered the following (then open) question.

Question. Is there a polynomial bound on the degrees of minimal polynomials of
homogeneous cones in terms of rank? Or, more optimistically, does a quadratic
bound hold as in the case of homogeneous chordal cones?

Shortly after we completed the paper, we were informed by Nakashima that the
answer is no and, in particular, for any integer r > 0 it is possible to construct a
homogeneous cone of rank r for which its minimal polynomials have degree 2r−1,
see [21] for more details. This shows that the bound in Proposition 4.5 cannot be
improved.
We now conclude this paper with a few remarks on interior point methods. The
barrier parameter of a closed convex cone K is the smallest d for which there exists
a self-concordant barrier function for K with parameter d, see, for example, [11, 12].
The importance of the barrier parameter is that it can be used to bound the worst-
case iteration complexity of interior-point methods.
We recall here the optimal barrier parameter for a homogeneous cone is equal to its
rank, see [11, Theorem 4.1]. In contrast, if K = Λ+(p, e) is a hyperbolicity cone and
p is a hyperbolic polynomial of degree d, then − log p is a self-concordant barrier
for K of parameter d, see [12, Section 4]. The function x 7→ − log p(x) is called a
hyperbolic barrier function for K.
Suppose that G is a homogeneous chordal cone with n nodes. Then, the homoge-
neous cone rank of S∗(G) is n and, therefore, the barrier parameter of S∗(G) is n as
well. However, as a consequence of Theorem 3.1, no hyperbolic barrier function has
parameter n unless G is a disjoint union of cliques. Put otherwise, hyperbolic barrier
functions for homogeneous cones are typically not optimal, even if the polynomial
considered is minimal.
For S∗(G), in view of Theorem 4.6, the difference in order between the optimal
barrier parameter and the one afforded by the best possible hyperbolic barrier func-
tion is polynomial. However, the discussion in [21] indicates that, in general, the
difference in order may be exponential.
The existence of a gap between both quantities suggests that it may be more ad-
vantageous to deal with a homogeneous cone constraint on its own terms (e.g., as
in [5, 27]) instead of seeing it as a hyperbolicity cone or as a slice of a positive
semidefinite cone.
Some numerical evidence towards this was given in [17, Section 14.4], where a
problem of minimizing the nuclear norm is solved through two different formu-
lations. Denoting by Rm×n the space of m × n matrices and by UT the trans-
pose of U ∈ Rm×n, the first formulation uses a self-concordant barrier for the set
{(Z,U) ∈ Sm × Rm×n | Z − UUT ∈ Sm

+ } (see Section 7 therein), which is a slice of



J. Gouveia et al. / Minimal Hyperbolic Polynomials ... 241

the homogeneous cone of rank m + 1 given in [11, Example 5]. The second uses a
formulation via semidefinite programming. The results in [17, Fig. 2] seem to indi-
cate that the former is significantly more efficient than the latter when n is much
larger than m.
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