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The Scaled Relative Graph (SRG) is a geometric tool that maps the action of a multi-valued
nonlinear operator onto the 2D plane, used to analyze the convergence of a wide range of iterative
methods. As the SRG includes the spectrum for linear operators, we can view the SRG as a
generalization of the spectrum to multi-valued nonlinear operators. In this work, we further study
the SRG of linear operators and characterize the SRG of block-diagonal and normal matrices.
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1. Introduction

The Scaled Relative Graph (SRG) is a geometric tool that maps the action of a multi-
valued nonlinear operator onto the extended complex plane, analogous to how the
spectrum maps the action of a linear operator to the complex plane. The SRG can
be used to analyze convergence of a wide range of iterative methods expressed as
fixed-point iterations.

Scaled relative graph. For a matrix A ∈ Rn×n, define zA : Rn\{0} → C with

zA(x) =
∥Ax∥
∥x∥

exp[i∠(Ax, x)],

where ∠(a, b) =

 arccos
(

aT b

∥a∥∥b∥

)
if a ̸= 0, b ̸= 0

0 otherwise

denotes the angle in [0, π] between a and b. The SRG of a matrix A ∈ Rn×n is

G(A) = {zA(x), zA(x) : x ∈ Rn, x ̸= 0} .

This definition of the SRG, specific to (single-valued) linear operators, coincides
with the more general definition for nonlinear multi-valued operators provided in
[13]. Ryu, Hannah, and Yin showed the SRG generalizes spectrum in the following
sense.
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Fact 1.1. (Theorem 3.1 of [13]) If A∈Rn×n and n=1 or n≥3, then Λ(A) ⊆ G(A).

2D geometric illustrations have been used by Eckstein and Bertsekas [4, 5], Giselsson
[6, 7], Banjac and Goulart [1], and Giselsson and Moursi [8] to qualitatively under-
stand the convergence of optimization algorithms. The SRG was first presented as
a rigorous formulation of such illustrations in Hannah and Yin’s technical report [9]
and was further expanded upon in the follow-up work by Ryu, Hannah, and Yin [13].

Contributions. Prior work [10, 13] focused on the SRG of nonlinear multi-valued
operators. For linear operators, Ryu, Hannah, and Yin [13] established G(A) in-
cludes Λ(A), as stated in Fact 1.1, but did not characterize when and how G(A)
enlarges Λ(A). In this work, we further study the SRG of linear operators. In
particular, we fully characterize the SRG of block-diagonal and normal matrices
as a certain polygon in hyperbolic (non-Euclidean) geometry, under the Poincaré
half-plane model.

Preliminaries. Let A ∈ Rn×n. Write Λ(A) for the spectrum, the set of eigen-
values, of A. A is normal if ATA = AAT . Given matrices A1, . . . , Am, write
Diag(A1, . . . , Am) for the block-diagonal matrix with m blocks. For z ∈ C, write
z for its complex conjugate. For a set S ⊆ C, write S+ = {z ∈ S | Im z ≥ 0}. In
particular, write C+ = {z ∈ C | Im z ≥ 0} and G+(A) = {zA(x) : x ∈ Rn, x ̸= 0}.
Note zA(x) ∈ C+ for all nonzero x ∈ Rn. For z1, z2 ∈ C, define

[z1, z2] = {θz1 + (1− θ)z2 : θ ∈ [0, 1]},

i.e., [z1, z2] is the line segment connecting z1 and z2.

2. Arc-edge polygon and arc-convexity

Consider points z1, z2 ∈ C+. If Re z1 ̸= Re z2, let C(z1, z2) be the circle in C through
z1 and z2 with the center on the real axis. We can construct C(z1, z2) by finding
the center as the intersection of the perpendicular bisector of [z1, z2] and the real
axis. If Re z1 = Re z2 but z1 ̸= z2, let C(z1, z2) be the line extending [z1, z2]. If
z1 = z2, then C(z1, z2) is undefined. If Re z1 ̸= Re z2, let Arcmin(z1, z2) ⊆ C+ be
the arc of C(z1, z2) between z1 and z2 in the upper-half plane. (If Im z1 > 0 or
Im z2 > 0, then Arcmin(z1, z2) ⊆ C+ is the minor arc of C(z1, z2) between z1 and
z2. If Im z1 = Im z2 = 0, then Arcmin(z1, z2) is a semicircle in C+.) If Re z1 = Re z2
but z1 ̸= z2, let Arcmin(z1, z2) = [z1, z2]. If z1 = z2, then Arcmin(z1, z2) = {z1}. For
z1, z2 ∈ C+ such that Re z1 ̸= Re z2, let Disk(z1, z2) and Disk◦(z1, z2) respectively be
the closed and open disks enclosed by C(z1, z2). Figure 1 illustrates these definitions.
For m ≥ 1 and z1, . . . , zm ∈ C+, we call Poly(z1, z2, . . . , zm) an arc-edge polygon and
define it as follows. For m = 1, let Poly(z1) = {z1}. For m ≥ 2, let

S =
⋃

1≤i,j≤m

Arcmin(zi, zj)

and Poly(z1, . . . , zm) = S ∪ {region enclosed by S}.

Figure 2 illustrates this definition. Note Poly(z1, z2) = Arcmin(z1, z2). The “region
enclosed by S” is the union of all regions enclosed by non-self-intersecting continuous
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loops (Jordan curves) within S. Since S is a connected set, we can alternatively
define Poly(z1, . . . , zm) as the smallest simply connected set containing S.

Circ(z1, z2)

z2

z1 Arcmin(z1, z2)

Circ(z1, z2)

z1

z2

Arcmin(z1, z2)

Figure 1: Illustration of C(z1, z2) and Arcmin(z1, z2).

z1

z2

z3

z4

Figure 2: The shaded region illustrates the arc-edge polygon Poly(z1, z2, z3, z4) for
z1 = 1 + i, z2 = 2 + 3i, z3 = 3 + 3i, and z4 = 4 + i. The solid arcs illustrate
Arcmin(zi, zj) dashed circles illustrate C(zi, zj) for i, j = 1, . . . ,m.
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Figure 3: Illustration of f ◦g and Lemma 2.1. The one-to-one map f ◦g of (2) maps
Poly(z1, . . . , z7) (a hyperbolic polygon) into a Euclidean polygon. We denote the
mapped points as wi = f(g(zi)) for i = 1, . . . , 7. The equivalent Euclidean geometry
tells us that Poly(z1, . . . , z7) is “convex” and can be enclosed by the curve through
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z1 → z2 → z3 → z4 → z6 → z1. Note that z5 and z7 are not necessary in the
description of the boundary.
This construction of Arcmin gives rise to the classical Poincaré half-plane model of
hyperbolic (non-Euclidean) geometry, where a Arcmin(z1, z2) and C(z1, z2)∩C+ are,
respectively, the “line segment” between z1 and z2 and the “line” through z1 and
z2 in the hyperbolic space [3, 12]. The Beltrami–Klein model maps the Poincaré
half-plane model onto the unit disk and Arcmin to straight line segments [11, 2].
Specifically, the one-to-one map

f ◦ g : C+ → {z ∈ C : |z| ≤ 1, z ̸= 1}

defined by f(z) =
2z

1 + |z|2
, g(z) =

z − i

z + i

maps the Poincaré half-plane model to the Beltrami–Klein model while mapping hy-
perbolic line segments Arcmin into Euclidean straight line segments. The Beltrami–
Klein model demonstrates that any qualitative statement about convexity in the
Euclidean plane is equivalent to an analogous statement in the Poincaré half-plane
model. See Figure 3.

Lemma 2.1. Let z1, . . . , zm ∈ C+ and m ≥ 1. Then Poly(z1, . . . , zm) is “convex”
in the following non-Euclidean sense:

w1, w2 ∈ Poly(z1, . . . , zm) ⇒ Arcmin(w1, w2) ⊆ Poly(z1, . . . , zm).

If Poly(z1, . . . , zm) has an interior, then there is {ζ1, . . . , ζq} ⊆ {z1, . . . , zm} such
that

Arcmin(ζ1, ζ2) ∪ Arcmin(ζ2, ζ3) ∪ · · · ∪ Arcmin(ζq−1, ζq) ∪ Arcmin(ζq, ζ1)

is a Jordan curve, and the region the curve encloses is Poly(z1, . . . , zm).

Proof. Let w1, . . . , wm be in the unit complex disk. Consider the construction

S̃ =
⋃

1≤i,j≤m

[wi, wj]

and P̃oly(w1, . . . , wm) = S̃ ∪ {region enclosed by S̃}.

This is the (Euclidean) 2D polyhedron given as the convex hull of w1, . . . , wm. The
Euclidean convex hull has the properties analogous to those in the Lemma statement,
and we use the map (f ◦ g)−1, where f ◦ g is as given by (2) to map the properties
to our setup.

3. SRGs of block-diagonal matrices

We characterize the SRG of block-diagonal matrices as follows.

Theorem 3.1. Let A1, . . . , Am be square matrices, where m ≥ 1. Then

G+ (Diag(A1, . . . , Am)) =
⋃

zi∈G+(Ai)
i=1,...,m

Poly(z1, . . . , zm).
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Proof. When m = 1, there is nothing to show. Assume m ≥ 2.
Step 1. Let Ai ∈ Rni×ni and ui ∈ Rni for i = 1, . . . ,m. We use the notation
n = n1 + · · ·+ nm,

u =

u1
...
um

 ∈ Rn, ui =



0
...
0
ui

0
...
0


∈ Rn for i = 1, . . . ,m,

and A = Diag(A1, . . . , Am) ∈ Rn×n. Then we have

G+ (Diag(A1, . . . , Am)) =
⋃

u∈Rn\{0}

zA(u)

=
⋃

ui∈Rni , ui ̸=0
i=1,...,m

zA (span(u1, . . . ,um)\{0}) (1)

and ⋃
ui∈Rni , ui ̸=0

i=1,...,m

Poly (zA(u1), . . . , zA(um)) =
⋃

ui∈Rni , ui ̸=0
i=1,...,m

Poly (zA1(u1), . . . , zAm(um))

=
⋃

zi∈G+(Ai)
i=1,...,m

Poly (z1, . . . , zm) . (2)

To clarify, ui depends on ui for i = 1, . . . ,m. In the following, we show

zA (span(u1, . . . ,um)\{0}) = Poly (zA(u1), . . . , zA(um)) (3)

for all ui given by ui ̸= 0 for i = 1, . . . ,m. Once (3) is proved, (1) and (2) are
equivalent and the proof is complete.

Step 2. We show the following intermediate result: for all nonzero u,v ∈ Rn such
that

⟨u,v⟩ = ⟨Au,v⟩ = ⟨u,Av⟩ = ⟨Au,Av⟩ = 0, (4)

we have zA(span(u,v)\{0}) = Arcmin(zA(u), zA(v)). (5)

First, consider the case Re zA(u) ̸= Re zA(v). Let the circle C(zA(u), zA(v)) be
centered at (t, 0) with t ∈ R and radius r ≥ 0. Then zA(u) and zA(v) satisfy

(Re zA(u)− t)2 + (Im zA(u))
2 = r2

(Re zA(v)− t)2 + (Im zA(v))
2 = r2.
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This is equivalent to
⟨Au,Au⟩ − 2t⟨Au,u⟩+ (t2 − r2)⟨u,u⟩ = 0

⟨Av,Av⟩ − 2t⟨Av,v⟩+ (t2 − r2)⟨v,v⟩ = 0.

Let α1, α2 ∈ R and w = α1u+α2v. Assume w ̸= 0. Using (4) and basic calculations,
we have

⟨Aw,Aw⟩ − 2t⟨Aw,w⟩+ (t2 − r2)⟨w,w⟩ = 0,

and this is equivalent to (Re zA(w)− t)2 + (Im zA(w))2 = r2.
Therefore zA(w) = zA(α1u+ α2v) ∈ C(zA(u), zA(v)). Notice that

Re zA(w) =
⟨Aw,w⟩
⟨w,w⟩

=
α2
1⟨Au,u⟩+ α2

2⟨Av,v⟩
α2
1⟨u,u⟩+ α2

2⟨v,v⟩

fills the interval [Re zA(u),Re zA(v)] as α1 and α2 varies. So we have⋃
α1,α2∈R

α1u+α2v ̸=0

zA(α1u+ α2v) = Arcmin(zA(u), zA(v))

and we conclude (5).
Next, consider the case Re zA(u) = Re zA(v). Note that

Re zA(u) =
⟨Au,u⟩
⟨u,u⟩

, Re zA(v) =
⟨Av,v⟩
⟨v,v⟩

.

Let α1, α2 ∈ R and w = α1u+α2v. Assume w ̸= 0. Using (4) and basic calculations,
we have

Re zA(w) =
⟨Aw,w⟩
⟨w,w⟩

= Re zA(u) = Re zA(v).

Notice that |zA(w)|2 = ⟨Aw,Aw⟩
⟨w,w⟩

=
α2
1⟨Au,Au⟩+ α2

2⟨Av,Av⟩
α2
1⟨u,u⟩+ α2

2⟨v,v⟩

fills the interval [|zA(u)|2, |zA(v)|2] as α1 and α2 varies. So Im zA(w) fills the interval
[Im zA(u), Im zA(v)] as α1 and α2 varies, and we conclude

zA(span(u,v)\{0}) = [zA(u), zA(v)] = Arcmin(zA(u), zA(v)).

Step 3. We show

zA (span(u1, . . . ,um)\{0}) ⊆ Poly (zA(u1), . . . , zA(um)) (6)

by induction. Clearly

zA (span(u1)\{0}) = Poly (zA(u1)) .

Now assume (6) holds for m− 1. By (5), we have

zA (span(u1, . . . ,um)\{0}) =
⋃

ζ∈zA(span(u1,...,um−1)\{0})

Arcmin(ζ, zA(um)).
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By the induction hypothesis, ζ ∈ zA (span(u1, . . . ,um−1)\{0}), implies

ζ ∈ Poly (zA(u1), . . . , zA(um−1)) ⊆ Poly (zA(u1), . . . , zA(um)) .

By construction, zA(um) ∈ Poly (zA(u1), . . . , zA(um)).
“Convexity” of Lemma 2.1 implies⋃

ζ∈zA(span(u1,...,um−1)\{0})

Arcmin(ζ, zA(um)) ⊆ Poly (zA(u1), . . . , zA(um)) ,

and we conclude (6).
Step 4. We show

zA (span(u1, . . . ,um)\{0}) ⊇ Poly (zA(u1), . . . , zA(um)) . (7)

First, consider the case where Poly (zA(u1), . . . , zA(um)) has no interior. In 2D
Euclidean geometry, a polygon has no interior when it is a single line segment or
a point. The Beltrami–Klein model provides us with an equivalent statement in
hyperbolic geometry: the “polygon” can be expressed as

Poly (zA(u1), . . . , zA(um)) = Arcmin(zA(µ1), zA(µ2))

where µ1,µ2 ∈ {u1, . . . ,um}. By the reasoning of Step 2, we conclude

zA (span(u1, . . . ,um)\{0}) ⊇ zA (span(µ1,µ2)\{0})
= Arcmin(zA(µ1), zA(µ2)) = Poly (zA(u1), . . . , zA(um)) .

Next, consider the case where Poly (zA(u1), . . . , zA(um)) has an interior. In this case,
dim span(u1, . . . ,um) ≥ 3 by the arguments of Step 2. Assume for contradiction that
there is a z ∈ Poly (zA(u1), . . . , zA(um)) but z /∈ zA (span(u1, . . . ,um)\{0}).
Let ζ1, . . . , ζq be vertices provided by Lemma 2.1. There exists corresponding
{µ1, . . . ,µq} ⊆ {u1, . . . ,um} such that ζi = zA(µi) for i = 1, . . . , q. Define the
curve

η(t) : [1, q + 1] → span(u1, . . . ,um) ∩ Sm−1,

where Sm−1 ⊂ Rm is the unit sphere, as

η(t) =
cos((t− p)π

2
)

∥µp∥
µp +

sin((t− p)π
2
)

∥µp+1∥
µp+1, for p ≤ t ≤ p+ 1.

where we regard µq+1 as µ1. Then {γ(t)}{t∈[1,q+1]} = {zA(η(t))}t∈[1,q+1] encloses z.
Since span(u1, . . . ,um) ∩ Sm−1 is simply connected, we can continuously contract
{η(t)}t∈[1,q+1] to a point in span(u1, . . . ,um) ∩ Sm−1 and the curve under the map
zA continuously contracts to a point in zA (span(u1, . . . ,um)\{0}).
However, this is not possible as z /∈ zA (span(u1, . . . ,um)\{0}) and {γ(t)}{t∈[1,q+1]}
has a nonzero winding number around z. We have a contradiction and we conclude
z ∈ zA (span(u1, . . . ,um)\{0}).
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4. SRGs of normal matrices

We now use Theorem 3.1 to fully characterize the SRG of normal matrices.

Proposition 4.1. Let A =

[
a1 b1
b2 a2

]
∈ R2×2. Then G(A) consists of two circles

centered at
(
a1 + a2

2
,±b1 − b2

2

)
with radius

√(
a1 − a2

2

)2

+
(
b1 + b2

2

)2

.

G
([

1 2
3 4

])
= G

([
1
2 2

− 1
2

1
2

])
=

Figure 4: Illustration of Proposition 4.1.

Proof. Let xθ =

[
cos(θ)
sin(θ)

]
∈ R2, and T

([
x1

x2

])
=

[
x1

|x2|

]
.

The stated result follows from

G+(A) = {zA(xθ) : θ ∈ [0, 2π)}

and the calculations

zA(xθ) =

[
1
2
(a1 + a2 + (a1 − a2) cos(2θ) + (b1 + b2) sin(2θ))

1
2
|−b1 + b2 + (b1 + b2) cos(2θ)− (a1 − a2) sin(2θ)|

]

= T

([
a1+a2

2

− b1−b2
2

]
+

[
cos(−2θ) − sin(−2θ)
sin(−2θ) cos(−2θ)

]
︸ ︷︷ ︸

rotation by −2θ

[
a1−a2

2
b1+b2

2

])
.

Proposition 4.2. A matrix’s SRG is invariant under orthogonal similarity trans-
forms.

Proof. Let A ∈ Rn×n. Let Q ∈ Rn×n be orthogonal. For any nonzero x ∈ Rn, we
have

zQAQT (x) =
∥QAQTx∥

∥x∥
exp[i∠(QAQTx, x)]

=
∥AQTx∥

∥x∥
exp[i∠(AQTx,QTx)] = zA(Q

Tx).
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Therefore, G(QAQT ) =
{
zQAQT (x), zQAQT (x) : x ∈ Rn, x ̸= 0

}
= {zA(Qx), zA(Qx) : x ∈ Rn, x ̸= 0}
= {zA(x), zA(x) : x ∈ Rn, x ̸= 0} = G(A).

Theorem 4.3. If A is normal, then G+(A) = Poly(Λ(A) ∩ C+).

λ6

λ2

λ4

λ7

λ3

λ5

λ1

(a) SRG of an n × n normal ma-
trix with one distinct real eigenvalue
and three distinct complex conju-
gate eigenvalue pairs.

λ1 λ2 λ3 λ4 λ5 λ6

(b) SRG of an n× n symmetric
matrix with distinct eigenvalues
λ1 < λ2 < · · · < λ6.

Figure 5: Illustration of Theorem 4.3. For normal matrices, multiplicity of
eigenvalues do not affect the SRG.

Proof. A normal matrix is orthogonally similar to the real block-diagonal matrix

a1 b1
−b1 a1

. . .
ak bk
−bk ak

λk+1

. . .
λm


.

Propositions 4.1 tells us

G+

([
aj bj
−bj aj

])
= {aj + |bj|i} = Λ

([
aj bj
−bj aj

])
∩ C+

for j = 1, . . . , k. We conclude the stated result with Theorem 4.3 and Proposi-
tion 4.2.

Corollary 4.4. Let A ∈ Rn×n be symmetric, and let λ1 < λ2 < · · · < λm be the
distinct (real) eigenvalues of A. If m = 1, then G+(A) = {λ1}. If m ≥ 2, then

G(A) = Disk(λ1, λm)\
m−1⋃
i=1

Disk◦(λi, λi+1).
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