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1. Introduction

In this work, we focus on the study of an integral functional in one dimension with
linear growth, allowing for a degenerate weight w. We aim to provide an explicit
relaxation formula for the functional

F (u) :=


ˆ
Ω

|u′|wdx if u ∈ AC(Ω),

+∞ if u ∈ X \ AC(Ω),

(1)

where Ω is an open bounded set in R, u′ denotes the derivative of u, w is a non-
negative, locally integrable function, AC(Ω) is the space of absolutely continuous
functions on Ω, and X is a topological space comprising measurable functions which
will be introduced later on. We will find an explicit expression of the lower semicon-
tinuous envelope of F , that is denoted by F with respect to a suitable convergence.
Several studies have focused on the investigation of functionals with p-growth for
1<p<+∞ within different functional frameworks; see, for example, [10, 16, 17, 21].
Nevertheless, there are few works dedicated to the analysis of functionals with linear
ISSN 0944-6532 / $ 2.50 © Heldermann Verlag
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growth like (1) above (see, for instance, [7] and references therein). In the recent
work [11], we have analyzed the p-version of the functional F , defined as

Fp(u) :=


ˆ
Ω

|u′|pw dx if u ∈ AC(Ω),

+∞ if u ∈ X \ AC(Ω),

(2)

where w does not exhibit doubling or Muckenhoupt-type conditions, [22]. In that
case, we have conducted the analysis in weighted Sobolev spaces; we refer to [2, 3,
4, 19] for general approaches to the definition of these spaces. Let us briefly explain
our strategy in the case 1 < p < +∞, and what is different in the present case p = 1.
We first proved Poincaré inequalities involving w and an auxiliary weight ŵp that
corrects the weight in the zones where w is strongly degenerate (i.e. w− 1

p−1 is not
summable). Specifically, we showed that the p-norm of the gradient term of a generic
function u weighted by w, is greater up to a suitable constant than the p-norm of u
weighted by (ŵp)

p−1. Subsequently, assuming that w is finitely degenerate (see [11,
Definition 2.1]), and in view of such a Poincaré inequality with two different weights,
we proceeded to choose X = Lp((ŵp)

p−1), and showed that AC-functions are dense,
in a suitable Sobolev space W ⊆ X. As a consequence, we were able to determine
the finiteness domain of the relaxed functional F p by performing the relaxation in
the strong topology of X.
In the present work, we follow some of the previous ideas, but we cannot apply
verbatim such methodology. The first reason is that for a functional with linear
growth like (1), it is necessary to work with BV like spaces, rather than Sobolev
spaces, and the second reason is that the functional in this case can be interpreted
as a pairing.
A class of weighted bounded variation functions denoted BV(Ω;w) in any dimension
(Ω ⊂ Rn) is introduced in [6] (see Section B where we recall the definitions and the
results of [6]).
By requiring that w > 0 and w belongs to the Muckenhoupt class A1, (see Definition
B.1 below) it is possible to define a weighted BV(Ω, w)-space. A priori such weight w
is only a.e. defined, but it is not restrictive to assume that condition A1 holds for any
point in Ω (this is possible since it can be proved that there exists a further weight
lower semicontinuous w̃ that defines the same weighted BV-space, and satisfies A1

at any point, see Lemma B.3 below). Moreover a density theorem holds true in
BV(Ω, w) (see Theorem B.6 below) and by assuming the local growth condition
(44) a Poincaré inequality holds (see Theorem B.7 below).
In the present paper, although confining the study to the onedimensional case, we
follow another approach. We will deal with a weight w ≥ 0 (and so it admits
large degeneration), that does not belong to the Muckenhoupt class A1 (and so it
is only a.e. defined) and does not satisfy any doubling condition. We will consider
a new category of spaces that we denote as BVw

loc(Ω) inspired to some BV like
space recently introduced in [13], although this approach forces us to assume some
regularity of the weight, i.e. w is a BVloc within the largest open set where 1

w
is

bounded.
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More precisely, we say that u ∈ BVw
loc(Ω) if it is a Borel function that belongs to

L1
loc(Ω, w) ∩ L1

loc(Ω, |Dw|), such that the Anzellotti pairing (w,Du), defined below
is a Radon measure (see [5] for its original definition). Moreover, under suitable
assumptions this class is a Banach space.
Under the assumption w ∈ BVloc(Ω), the distributional definition of the pairing is
the following

⟨(w,Du), φ⟩ := −
ˆ
Ω

u
1
2φ dDw −

ˆ
Ω

uφ′w dx, for φ ∈ C∞
c (Ω). (3)

Here φ′ denotes the derivative of φ, Du denotes the distributional derivative of u,
and u

1
2 the precise representative of u (see Section A for a more detail explanation).

The space BVw(Ω) was introduced in [13] because it is the natural functional space
where the distributional derivative defined in (3) is a Radon measure.
In the present work, we find that BVw(Ω) is the natural ambient space in which an
explicit formula for F can be expressed. Therefore, to ensure a suitable behavior
of (3), we restrict our analysis to the following setup. We assume that w is a
nonnegative function such that w is locally integrable in Ω. Our objective is to
demonstrate that, under these conditions, the relaxed functional can be expressed by
means of a pairing, as studied in [13] and [12]. This pursuit is built upon innovative
concepts introduced in those works, where BVw(Ω) spaces, consisting of functions
that satisfy divergence-measure properties, are larger than the conventional BV (Ω)-
spaces in [1], or the weighted BV (Ω, w)-spaces in [6]. By following [16, 11], our
chosen space X comprises W 1,1-functions with a degenerate weight w. The pairing
of such functions u with w consists in a Radon measure within the largest open set
where 1

w
is bounded. This requires the introduction of an additional weight, denoted

as ŵ. This corrective function addresses the singularities inherent in the respective
weight w. Moreover, in this scenario, we also prove a weighted Poincaré inequality
involving w and ŵ.
Subsequently, in Section 3, we assume that w is finitely degenerate (see Definition
2.1 below) and the stronger condition that the weight w belongs to W 1,1

loc within the
largest open set where 1

w
is bounded. We then relax F with respect to a weak con-

vergence involving ŵ and |Dw|, which we will refer to as (ŵ,Dw)-convergence. This
is similar to the (w, 1

2
)-convergence introduced in [13] (see Definition A.5 before).

The main difference lies in the choice of the L1(ŵ)-weak convergence rather than
L1(w)-weak convergence.
As we will see in Section 2, our analysis is based on a suitable decomposition of the
open set Ω into disjoint subsets where the reciprocal 1/w of the weight w is locally
bounded. The boundaries of these sets are a countable family of points. This fact
is typical of dimension 1. The subsequent construction of the auxiliary weight and
the remaining results are strongly tied to this property. In higher dimensions, this
procedure becomes more intricate, as various situations can arise, for instances, cases
where points must be replaced by surfaces, and thus the construction of ŵ becomes
more involved. Moreover, the strategy relying on the density of AC-functions must
be carefully replaced.
This work is structured as follows. In Section 2, we define ŵ and prove the validity
of weighted Poincaré inequalities, see Theorem 2.10 below. Thanks to this result,
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we are allowed in Section 3, once introduced our (ŵ,Dw)-convergence, to prove a
compactness theorem with respect to this convergence and to prove our relaxation
theorem, see Definition 3.2, and Theorem 3.6, respectively. Lastly, in Section A,
we revisit some fundamental concepts from geometric measure theory, applicable
to all dimensions n ≥ 1, and we recall the notion of pairing as studied in [13]. In
Section B, we recall some similar results about weighted Poincaré inequalities when
w belongs to the Muckenhoupt class A1, obtained in [6].

2. Poincaré inequalities with double weight

Let Ω = (a, b) be a bounded open interval. In what follows, we make the following
structural assumptions:
(H1) w ≥ 0;
(H2) w ∈ L1

loc(Ω).
Here we denote by IΩ,w the biggest open bounded set contained in Ω such that 1

w

is L∞
loc(IΩ,w)-function. Then IΩ,w can be written in a unique way as the union of

pairwise disjoint open intervals (ai, bi) ⊂ Ω, that is,

IΩ,w =
Nw⋃
i=1

(ai, bi),

with 1 ≤ Nw ≤ +∞. Furthermore, since 1
w
∈ L∞

loc(IΩ,w), for every i = 1, . . . , Nw and
K b (ai, bi) there exists a nonnegative constant ci,K such that

1

w(x)
≤ ci,K for a.e. x ∈ K. (4)

Definition 2.1. (i) If IΩ,w = ∅, we put Nw := 0.
(ii) If 1 ≤ Nw < ∞ we say that w is finitely degenerate in Ω.
(iii) If Nw = +∞ we say that w is not finitely degenerate in Ω.

Examples 2.2. Let us consider the following examples.
(I) Let w(x) = (1− x2)2 defined in the interval (−2, 2):

then, IΩ,w = (−2,−1) ∪ (−1, 1) ∪ (1, 2), and w is finitely degenerate with
Nw = 3.

(II) Let w(x) = 1 + sin 1
x

defined in the open interval (0, 1): since w(xi) = 0 if
xi =

1
π( 3

2
+2i)

, i ∈ N, we have that IΩ,w =
⋃

i∈N(xi+1, xi) and w is not finitely
degenerate, i.e. Nw = +∞.

(III) Let w(x) = |x|α with α > 1 defined in the interval (−1, 1).

2.1. An auxiliary weight

Let ŵ : Ω → [0,+∞[ be defined as

ŵ(x) := lim
x→a+i

(∥∥w−1
∥∥
L∞((x,ai+bi

2 ))

)−1

if x = ai

ŵ(x) :=
(∥∥w−1

∥∥
L∞((x,ai+bi

2 ))

)−1

if ai < x ≤ 3ai + bi
4
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ŵ(x) :=
(∥∥w−1

∥∥
L∞(( 3ai+bi

4
,
ai+3bi

4 ))

)−1

if 3ai + bi
4

≤ x ≤ ai + 3bi
4

ŵ(x) :=
(∥∥w−1

∥∥
L∞((ai+bi

2
,x))

)−1

if ai + 3bi
4

≤ x < bi

ŵ(x) := lim
x→b−i

(∥∥w−1
∥∥
L∞((ai+bi

2
,x))

)−1

if x = bi

ŵ(x) := 0 if x ∈ Ω \ IΩ,w .

Remark 2.3. At first glance, the definition of ŵ may seem subtle. Nevertheless,
it is an important function with nice regularity properties, as presented in the next
proposition, and it allows us to prove the validity of a Poincaré inequality with
weights w and ŵ, respectively. It is also worth noting that a similar definition of
the function ŵ was already considered in [11], in the case where the functional F
defined in (1) is replaced by (2). Instead, the present work addresses the case p = 1
separately, because the tools used in [11] were developed in a Sobolev context, where-
as here we need tools beyond BV(Ω)-spaces recently developed in [12, 13, 14, 15].

In the following figures, we illustrate the behavior of the function ŵ for a specific
choice of w, while in Proposition 2.4, we prove some of its mathematical properties.

Figure 1: In the figure on the left hand side, we have the profile of w(x) = (1− x2)2

for x ∈ (−2, 2), while in the right hand side, we have its associated weight ŵ. In
this case, we note that Nw = 3.

Let us collect some properties of the function ŵ in the following Proposition.

Proposition 2.4. (Properties of ŵ) Suppose that (H1)–(H2) hold true.
(i) For each i = 1, . . . , Nw, ŵ is constant in [3ai+bi

4
, ai+3bi

4
], increasing in [ai,

3ai+bi
4

]

and so a BV-function in
[
ai,

3ai+bi
4

)
, decreasing in [ai+3bi

4
, bi] and so a BV-

function in
(
ai+3bi

4
, bi

]
. Moreover, it holds that

0 < ŵ(x) ≤ sup
y∈(ai,bi)

ŵ(y) =: Li < ∞ ∀x ∈ (ai, bi) , (5)

Mi,K := inf
x∈K

ŵ(x) > 0 for each x ∈ K b (ai, bi), (6)

and ŵ(ai) = 0 (respectively ŵ(bi) = 0) if and only if 1
w

/∈ L∞((ai,
ai+bi

2
))

(respectively 1
w

/∈ L∞((ai+bi
2

, bi))).



340 V. Chiadò Piat et al. / Relaxation for a Degenerate Functional ...

(ii) If 1
w
∈ L∞(Ω), then there exists a constant c > 0 such that

0 <
1

c
≤ ŵ(x) ≤ c a.e. x ∈ Ω .

(iii) If w is finitely degenerate in Ω, i.e. 1 ≤ Nw < ∞, then there exists a constant
c > 0 such that

0 ≤ ŵ(x) ≤ c a.e. x ∈ Ω and ŵ ∈ BV(Ω).
(iv) If w is not finitely degenerate in Ω, i.e. Nw = ∞, then ŵ ∈ L∞

loc(IΩ,w), and
for each 1 ≤ i < +∞, we get ŵ ∈ BV((ai, bi)).

Figure 2: In the first figure on the left hand side, we have the profile of w(x) = |x|1.2
for x ∈ (−1, 1), α = 1.2, while in the right hand side, we have its associated weight
ŵ. In this case, we note that Nw = 2.

Remark 2.5. By definition ŵ ≤ w and fixed i = 1, . . . , Nw if the function w is
increasing in (ai,

3ai+bi
4

), then ŵ(x) = w(x) a.e. in (ai,
3ai+bi

4
). This is the case in

Examples 2.2. In the case (I), the function w is increasing in (−1,−1
2
) and in (1, 5

4
),

while in the case (II) the function w is increasing in (xi+1,
3xi+1+xi

4
).

On the contrary, if w admits an oscillating behaviour in a right neighborhood of some
ai, it can be happen that ŵ ̸= w in this neighborhood (see Example in Remark 2.7
below).
On the other hand, let us notice that, unlike the case 1 < p < +∞, our weight ŵ
involves the inverse of the L∞-norm of w−1. However, we can say that ŵ is a BVloc

function rather than absolutely continuous as it happens in the case 1 < p < +∞,
[11, see Proposition 2.5 (ii)]. It is important to recognize that, in some sense, the
conditions assumed in Proposition 2.4 are the analogue counterpart of those assumed
in [11, Proposition 2.5 (ii)]. Specifically, while in such a Proposition, we required
hypotheses to give a meaning to the integral of w− 1

p−1 for 1 < p < +∞, Proposition
2.4 involves the L∞-norm of w−1.

In what follows, given w ∈ BVloc(IΩ,w) we set

Domw :=
{
u : Ω → R : u ∈ W 1,1

loc (IΩ,w), u ∈ BVw
loc(IΩ,w)

}
, (7)

where the class BVw
loc(IΩ,w) has been defined in the Introduction. We note that

this definition of Domw differs from the one in [11, formula 3]. Indeed, in [11,
formula (3)], the definition of Domw does not require any regularity properties on
the weightw.
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In fact, we have that in the case 1 < p < +∞, Domw is defined as

Domw,p :=
{
u : Ω → R : u ∈ W 1,1

loc (IΩ,w),

ˆ
IΩ,w

|u′|p w dx < +∞
}
. (8)

The importance of the functional spaces (7) and (8) is related to the relaxation
result in Section 3 below and in [11, Section 3], respectively. For this reason we need
to study the Poincaré inequality in Domw.

Remark 2.6. The space BVw
loc(IΩ,w) considered in the definition of Domw in (7)

has been introduced recently in [13] in the general multidimensional setting. We
recall the definition and the main properties of BVw

loc in Section A, with the details
in the onedimensional case. We notice that

Domw ⊂ L1
loc(IΩ,w, w) ∩ L1

loc(IΩ,w, |Dw|),

and by the definition of pairing in (39) below

⟨(w,Du), φ⟩ := −
ˆ
IΩ,w

uφ dDw −
ˆ
IΩ,w

uφ′w dx, for φ ∈ C∞
c (IΩ,w), u ∈ Domw .

Here we used that, since u ∈ W 1,1
loc (IΩ,w) we have u = u∗ (recall that u∗ is the precise

representative of u, and since in the onedimensional case W 1,1(I) = AC(I), we have
that u = u∗ = u

1
2 where u

1
2 is the trace of u as defined in (38)), the measure (w,Du)

has the following expression

(w,Du)(I) =

ˆ
I

u′(x)w(x)dx, for any I b IΩ,w,

and, by definition of BVw
loc(IΩ,w), its total variation is finite

|(w,Du)|(I) < +∞.

Let us note that we have used the symbol u′ to denote the derivative of u. In what
follows, we will maintain this notation and will subsequently use Du to denote the
distributional derivative of u. Let us now give some comments about the ambient
space BVw

loc, and further weighted Sobolev spaces used in the literature.
• Note that when w is lower semicontinuous, and belongs to the Muckenhoupt

class A1 in Ω, it is possible to define the weighted space BVloc(Ω, w) that
consists of functions u ∈ L1(I;w) such that

´
I
wd|Du| < +∞, for each I b Ω,

see Section B below.

• Notice that BVw
loc(Ω) is defined by means of the Anzellotti pairing, whose

definition requires the BV regularity of w. Hence, BVloc(Ω, w) and BVw
loc(Ω)

share similar properties, however, they are different spaces, as we will explain,
not only by construction. Let us recall that by [6, Remark 5], one has that
BV(Ω, w) ⊆ BV(Ω) (and also BVloc(Ω, w) ⊆ BVloc(Ω) ). A major difficulty in
the definition of BV(Ω;w) is that we need the Muckenhoupt class A1 to hold
at any point, rather than almost everywhere.
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• Since in our context we do not assume that w belongs to the Muckenhoupt
class A1, a priori, we have that BVw

loc(Ω) and BVloc(Ω, w) are not comparable.
However, we may wonder whether BVw

loc(Ω) and BVloc(Ω, w) are related (or
if BVw(Ω) and BV(Ω, w) are related). For the sake of a lean explanation, let
us suppose that w is lower semicontinuous, and belongs to the Muckenhoupt
class A1 in Ω, and that w ∈ L∞(Ω). Then by Remark A.3 below, we have that
BVloc(Ω) ⊂ BVw

loc(Ω), and thus
BVloc(Ω, w) ⊂ BVloc(Ω) ⊂ BVw

loc(Ω). (9)

Remark 2.7. Next, we show that L1(Ω, ŵ) is generally not contained in L1(Ω, w).
That is, we give an example of w such that there exists

u ∈ L1(Ω; ŵ) with |(w,Du)|(Ω) =
´
Ω
|u′w|dx < +∞,

but u /∈ L1(Ω, w) and so u /∈ BVw(Ω). Let us set Ω := (0, 2), and for each h ∈ N,
h ̸= 0 define

I1h :=
(

1

h+ 1
,
1

2

(
1

h+ 1
+

1

h

)]
; I2h :=

(
1

2

(
1

h+ 1
+

1

h

)
,
1

h

]
,

I1 := ∪∞
h=1I

1
h; I2 := ∪∞

h=1I
2
h; Ih := I1h ∪ I2h.

Fix 1 < β < +∞, 0 < γ < 1. We set w as

w(x) :=
+∞∑
h=1

h−2xγχI1h
(x) +

+∞∑
h=1

h−2xβχI2h
(x)

for every x ∈ (0, 1) and w(x) = w(2− x) for every x ∈ (1, 2). Note that ∥w∥∞ ≤ 1,
IΩ,w = (0, 2) and w ∈ BV ((0, 2)). Since we defined the function w by simmetry in
the interval (0, 2), it is enough to consider his behaviour only in the interval (0, 1).
Notice that

1

ŵ(x)
=


h2

(
1
2

(
1

h+1
+ 1

h

))−β if x ∈
(
0, 1

2

)
∩ I1h

h2x−β if x ∈
(
0, 1

2

)
∩ I2h,

2βh2 if 1
2
≤ x ≤ 1,

and so

ŵ(x) =


h−2

(
1
2

(
1

h+1
+ 1

h

))β if x ∈
(
0, 1

2

)
∩ I1h,

h−2xβ if x ∈
(
0, 1

2

)
∩ I2h,

2−βh−2 if 1
2
≤ x ≤ 1,

and ŵ(0) = 0. On the other hand, we set u(x) = 1
x3 ∈ W 1,1

loc ((0, 1)). By definition of
w and u, we get that

´ 1

0
u(x)w(x)dx = +∞. Indeed, note that

ˆ 1

0

u(x)w(x)dx =
∞∑
h=1

h−2

ˆ
I1h

xγ−3dx+
∞∑
h=1

h−2

ˆ
I2h

xβ−3dx

∼
∞∑
h=1

h−γ +
∞∑
h=1

h−β

which diverges because γ < 1.



V. Chiadò Piat et al. / Relaxation for a Degenerate Functional ... 343

On the other hand, we have that
ˆ 1

0

u(x)ŵ(x)dx =

ˆ 1
4

0

u(x)ŵ(x)dx+

ˆ 1

1
4

u(x)ŵ(x)dx,

and by definition of ŵ, u, and since the number of intervals of the form I1h, I
2
h

contained in
(
1
2
, 1
)

is finite, then the term
´ 1

1
2
u(x)ŵ(x)dx is finite. Let us note that

ˆ 1
2

0

u(x)ŵ(x)dx =
∞∑
h=1

h−β

which are convergent because β > 1. Lastly, let us take a compact set K ⊂ (0, 1/2)
such that its interior is a non-empty set. Note that

|(w,Du)|(K) =

ˆ
K

|u′w|dx ∼
∞∑
h=1

h−γ−1 +
∞∑
h=1

h−β−1

which is finite because β > 1, γ > 0, and thus we are done.

2.2. A weighted Poincaré inequality

The following inequality is a first step into the proof of a Poincaré-type inequality
in the domain IΩ,w.

Proposition 2.8. Suppose that (H1)–(H2) hold true, and w ∈ BVloc(IΩ,w). Fix
1 ≤ i ≤ Nw. For all u ∈ Domw, and any η, x such that ai < η ≤ x ≤ ai+bi

2
we have

|u(x)− u(η)| ŵ(η) ≤
ˆ x

η

|u′(y)|w(y) dy ; (10)

|u(η)|ŵ(η) ≤ |u(x)|ŵ(η) +
ˆ x

ai

|u′(y)|w(y) dy . (11)

For every η, x such that ai+bi
2

≤ x ≤ η < bi we have

|u(x)− u(η)| ŵ(η) ≤
ˆ η

x

|u′(y)|w(y) dy ; (12)

|u(η)|ŵ(η) ≤ |u(x)|ŵ(η) +
ˆ bi

x

|u′(y)|w(y) dy . (13)

Remark 2.9. By (13) we have uŵ ∈ L∞((ai+bi
2

, bi)). Indeed, for every η such that
ai+bi

2
≤ η < bi

|u(η)|ŵ(η) ≤
∣∣∣u(ai + bi

2

)∣∣∣Li +

ˆ bi

ai+bi
2

|u′(y)|w(y) dy < +∞ . (14)

Proof. Fix 1 ≤ i ≤ Nw. Let us consider the open set (η, x) ⊂ (ai,
ai+bi

2
).
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We have that

|u(x)− u(η)| ≤
∣∣∣∣ˆ x

η

u′(y)dy

∣∣∣∣ = ∣∣∣∣ˆ x

η

u′(y)w(y)
1

w(y)
dy

∣∣∣∣ ≤ ˆ x

η

|u′(y)|w(y) 1

w(y)
dy.

Taking the sup to 1
w(y)

we obtain

|u(x)− u(η)| ≤
ˆ x

η

|u′(y)|w(y)dy sup
y∈(η,ai+bi

2 )

1

w(y)
.

From the above inequality, we may deduce (10). Further, since

|u(η)| ≤ |u(x)|+ |u(η)− u(x)| ,

by (10), (11) follows. Similarly, (12) and (13) can be obtained.

Theorem 2.10. (Poincaré type inequality on Domw) Suppose that (H1)–(H2) hold
true, and w ∈ BVloc(IΩ,w). Then for every u ∈ Domw

Nw∑
i=1

−
ˆ bi

ai

∣∣∣u(η)− u
(
ai + bi

2

)∣∣∣ ŵ(η) dη ≤
ˆ
IΩ,w

|u′(y)|w(y) dy.

Remark 2.11. Let recall that since u ∈ Domw, we need that w ∈ BVloc(IΩ,w).
However, the regularity of w does not play any role in the proof of Theorem 2.10,
but it is necessary to define the ambient space BVw

loc. Further, let us point out that
the hypotheses of Theorem 2.10, and [11, Theorem 2.10] are different. Indeed, while
the case 1 < p < +∞ requires a local sommability of w− 1

p−1 , the case p = 1 requires
the local boundedness of 1

w
. The results of both Theorems are formally analogous,

but the auxiliary weights are different, and have different properties. Let us also
note that we do not assume any local growth condition, as in Theorem B.7 below,
where a weighted Poincaré inequality with a single weight is proved.

Proof. Fix 1 ≤ i ≤ Nw. In (10) we take x = ai+bi
2

, then∣∣∣u(η)− u
(
ai + bi

2

)∣∣∣ ŵ(η) ≤ ˆ ai+bi
2

ai

|u′(y)|w(y) dy.

By integrating with respect to η we obtain
ˆ ai+bi

2

ai

∣∣∣u(η)− u
(
ai + bi

2

)∣∣∣ ŵ(η) dη ≤ bi − ai
2

ˆ ai+bi
2

ai

|u′(y)|w(y) dy.

Similarly we have
ˆ bi

ai+bi
2

∣∣∣u(η)− u
(
ai + bi

2

)∣∣∣ ŵ(η) dη ≤ bi − ai
2

ˆ bi

ai+bi
2

|u′(y)|w(y) dy.

Therefore
ˆ bi

ai

∣∣∣u(η)− u
(
ai + bi

2

)∣∣∣ ŵ(η) dη ≤ (bi − ai)

ˆ bi

ai

|u′(y)|w(y) dy.
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Hence −
ˆ bi

ai

∣∣∣u(η)− u
(
ai + bi

2

)∣∣∣ ŵ(η) dη ≤
ˆ bi

ai

|u′(y)|w(y) dy.

The conclusion follows since u ∈ Domw and so
Nw∑
i=1

ˆ bi

ai

|u′(y)|w(y) dy =

ˆ
IΩ,w

|u′(y)|w(y) dy < +∞.

We also have the following convergence result (see Proposition 9.3 in [13] for an
analogous result).

Proposition 2.12. Suppose that (H1)–(H2) hold true, let w ∈ BVloc(IΩ,w) and let
(uk) ⊂ BVw

loc(IΩ,w) be a sequence of functions such that

sup
k∈N

|(w,Duk)| (IΩ,w) < +∞, sup
k∈N

uk

(
ai + bi

2

)
< +∞ (15)

for any i = 1, . . . , Nw. Then for any interval K b (ai, bi), with i = 1, . . . , Nw,
there exists u ∈ L1(K, ŵ) ∩W 1,1(K) and a subsequence (ukj) such that ukj → u in
L1(K, ŵ).
Moreover, if the sequence (uk)k∈N is uniformly bounded also in L∞(IΩ,w), i.e.

sup
k∈N

∥uk∥L∞(IΩ,w) + |(w,Duk)| (IΩ,w) < +∞, (16)

then u ∈ BVw
loc(IΩ,w).

Proof. A first consequence of Theorem 2.10 and (15) is that

sup
k∈N

∥uk∥L1(K,ŵ) < +∞.

By (6), we can find a positive constant Mi,K > 0 such that ŵ(x) > Mi,K for a.e.
x ∈ K. Then

Mi,K sup
k∈N

ˆ
K

|uk|dx ≤ sup
k∈N

ˆ
K

|uk|ŵdx < +∞.

Moreover, since ŵ ≤ w

Mi,K sup
k∈N

ˆ
K

|u′
k|dx ≤ sup

k∈N

ˆ
K

|u′
k|ŵdx ≤ sup

k∈N

ˆ
IΩ,w

|u′
k|ŵdx ≤

≤ sup
k∈N

ˆ
IΩ,w

|u′
k|wdx ≤ sup

k∈N
|(w,Duk)| (IΩ,w) < +∞.

Then, (uk)k is bounded in W 1,1(K). By [8, Theorem 8.8, Remark 10] we can extract
a subsequence still denoted (uk)k, and find u ∈ W 1,1(K) such that

∥uk − u∥L1(K) → 0, as k → +∞.

Furthermore, by (5) we can find a constant Li > 0 such thatˆ
K

|uk − u|ŵdx ≤ Li

ˆ
K

|uk − u|dx → 0 as k → +∞,
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and thus we have proved that

∥uk − u∥L1(K,ŵ) → 0, as k → +∞.

Finally, if the sequence (uk)k∈N is uniformly bounded in L∞(IΩ,w), as in the proof
of Proposition 9.3 in [13] we can conclude that ∥u∥L∞(K) ≤ C, and this implies that
u ∈ L1(K, |Dw|). Hence u ∈ BV w

loc(IΩ,w).

Corollary 2.13. Under the assumptions of Proposition 2.12, if Nw < +∞, then
there exists u ∈ L1(IΩ,w, ŵ) and a subsequence (ukj) such that ukj → u in L1(IΩ,w, ŵ).
If (16) holds, then u ∈ BVw(IΩ,w).

Proof. It suffices to use M = min{M1, . . . ,MNw} and L = min{L1, . . . , LNw},
instead of Mi and Li, respectively.

3. Relaxation for finitely degenerate weights

In this section, in addition to hypothesis (H1), (H2) introduced in the previous
section, we also make the following assumption on the weight w.
(H3) w ∈ W 1,1

loc (IΩ,w);
(H4) 1 ≤ Nw < +∞.

Remark 3.1. We note that, as proven in [13, Proposition 5.1 (3)], under (H3), the
space BVw(IΩ,w) is a Banach space, with the norm

||u||BVw(IΩ,w) := ||u||L1(IΩ,w,w) + ||u||L1(IΩ,w,|Dw|) + |D(uw)|(IΩ,w) (17)

which is not generally the case.

3.1. The choice of the ambient space X and the convergence

Notice that, by the Poincaré inequality in Theorem 2.10, we have Domw ⊂ L1(Ω, ŵ).
In what follows, we set X = L1(Ω, ŵ) and we define the (ŵ,Dw)-convergence, as
follows:

Definition 3.2. We say that a sequence (un)n∈N ⊂ BVw
loc(Ω) (ŵ,Dw)-converges to

u ∈ BVw
loc(Ω) if

(i) un⇀u in L1
loc(IΩ,w, ŵ),

(ii) un⇀u in L1
loc(IΩ,w, |Dw|).

Remark 3.3. This new convergence is a modification of the one introduced in [13]
and guarantees the lower semicontinuity of the pairing functional (see Step 2 in the
proof of Theorem 3.6).

Proposition 3.4. Suppose that assumptions (H1)–(H3) hold true. Then Domw

defined as in (7) is a Banach space endowed with the norm

∥u∥Domw
:= ∥u∥L1(IΩ,w,ŵ) + |(w,Du)| (IΩ,w). (18)

Furthermore, the convergence in (18) implies the (ŵ,Dw)-convergence.
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Proof. Notice that Domw is a linear subspace of BVw
loc(IΩ,w), and by [13, Corollary

5.2] we can endow it with the norm

∥u∥BVw(IΩ,w) := |(w,Du)| (IΩ,w), u ∈ Domw. (19)

We also have the following compactness result which extends Proposition 9.3 in [13].
In what follows, we denote by L1 the unidimensional Lebesgue measure.

Proposition 3.5. Suppose that (H1)–(H3) hold true, and

L1(Ω \ supp(ŵ)) = 0. (20)

Let (uk) ⊂ Domw be a sequence of functions such that

sup
k∈N

∥uk∥L∞ + ∥uk∥Domw
< +∞. (21)

Then there exist u ∈ Domw and a subsequence (ukj) such that, possibly up to a
further subsequence, ukj → u in L1

loc(IΩ,w, |Dw|); so that the sequence (ukj)j∈N
locally (ŵ,Dw)-converges to u in IΩ,w.

Proof. By Proposition 2.12 for any interval K b (ai, bi), with i = 1, . . . , Nw, there
exists u ∈ L1(K, ŵ) ∩ W 1,1(K) and a subsequence (ukj) such that ukj → u in
L1(K, ŵ) and so ukj(x) → u(x) for |ŵ|L1-a.e. x ∈ K, and therefore ukj(x) → u(x)
for L1-a.e. x ∈ supp(ŵ)∩K. Then by (20) ukj(x) → u(x) for L1-a.e. x ∈ K. Hence,
since |Dw| ≪ L1, we get

ukj(x) → u(x) for |Dw|-a.e. x ∈ K.

Since by (21), there exists C > 0 such that

|ukj − u| ≤ C ∈ L1(K, |Dw|),

by Lebesgue’s Dominated Convergence Theorem we conclude that ukj → u in
L1(Ω, |Dw|). This implies that (ukj)j∈N (ŵ,Dw)-converges to u in K. On the
other hand, by Fatou’s Lemma we obtain

ˆ
K

|u| d|Dw| =
ˆ
K

lim inf
j→+∞

|ukj | d|Dw| ≤ lim inf
j→+∞

ˆ
K

|ukj | d|Dw| < +∞.

Therefore, we have u ∈ L1
loc(IΩ,w, |Dw|), and so u ∈ BV w

loc(IΩ,w).

3.2. Main result

We then consider

F (u) := inf{lim inf
k→+∞

F (uk) : uk → u w.r.t. (ŵ,Dw)−convergence }

where F (u) :=


ˆ
Ω

|u′|w dx if u ∈ AC(Ω),

+∞ if u ∈ L1(Ω, ŵ) \ AC(Ω),

and let AF := {u ∈ L1(Ω, ŵ) : F (u) < +∞} .
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Note that for every u ∈ AC(Ω) we have
ˆ
Ω

|u′|w dx =

ˆ
Ω

|(w,Du)|.

Theorem 3.6. Suppose that (H1)–(H4) hold true. Then

AF = Domw

where Domw is defined by (7) and the following representation holds for the relaxed
functional

F (u) =

{
|(w,Du)|(IΩ,w) if u ∈ Domw,

+∞ if u ∈ L1(Ω, ŵ) \Domw.
(22)

Proof. Let us denote by H(u) the right-hand side of the above formula (22), i.e.

H(u) :=

{
|(w,Du)|(IΩ,w) if u ∈ Domw,

+∞ if u ∈ L1(Ω, ŵ) \Domw.

In the following we will prove that F = H by showing the two inequalities.
Step 1. We first prove that F ≤ H. To this end, it is enough to show that

F (u) ≤ |(w,Du)|(IΩ,w) for all u ∈ Domw. (23)

Suppose that AC(Ω) is dense in Domw with respect to (18). Then there exists a
sequence (uk) in AC(Ω) such that

lim
k→+∞

uk = u in AC(Ω) with respect to (18).

Then, F (u) ≤ lim
k→+∞

F (uk) = lim
k→+∞

|(w,Duk)|(IΩ,w) = |(w,Du)|(IΩ,w),

which is (23). To complete the proof, we now need to show that AC(Ω) is actually
dense in Domw with respect to (18), i.e., that for each u ∈ Domw there is uh ∈ AC(Ω)
such that

lim
h→∞

uh = u in L1(IΩ,w, ŵ) and

|(w,Duh)|(IΩ,w) → |(w,Du)|(IΩ,w) as h → +∞.
(24)

Since u′ ∈ L1(IΩ,w, w), we can apply [9, Theorem 3.45] to find a sequence of functions
(vh)h ⊂ C0

c (IΩ,w) ⊂ L1(Ω, w) such that

∥vh − u′∥L1(IΩ,w,w) =
Nw∑
i=1

ˆ bi

ai

|vh − u′|w dx → 0 as h → +∞ . (25)

Let us define, for given h ∈ N, ũ(i)
h : (ai, bi) → R, i = 1, 2, . . . , h as

ũ
(i)
h (x) := u

(
ai + bi

2

)
−
ˆ ai+bi

2

x

vh(y) dy , x ∈ (ai, bi). (26)

We divide the proof into three cases, according to the structure of the set IΩ,w.
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Case 1. Assume that Nw = 1. In this case IΩ,w = (a1, b1). Let (ũ(1)
h )h the sequence

defined in (26) for i = 1 and, for each h, let uh = ūh : (a, b) → R defined as

ūh(x) :=


ũ
(1)
h (a1) if x ∈ [a, a1],

ũ
(1)
h (x) if x ∈ (a1, b1),

ũ
(1)
h (b1) if x ∈ [b1, b] .

Then it is easy to see that (ūh)h ⊂ AC(Ω). Let us prove that
ˆ b

a

|ūh − u| ŵ dx → 0 as h → ∞ . (27)

In fact, since ŵ ≡ 0 in Ω \ IΩ,w,
ˆ b

a

|ūh − u| ŵ dx =

ˆ b1

a1

|ūh − u| ŵ dx.

Applying the Poincaré type inequality (2.10) with ũh − u instead of u and since
ũh

(
a1+b1

2

)
= u

(
a1+b1

2

)
, we obtain

ˆ b1

a1

|ūh − u| ŵ dx ≤
ˆ
IΩ,w

|ū′
h − u′|w dx = |(D(ūh − u), w)|(IΩ,w)

=

ˆ
IΩ,w

|vh − u′|w dx .

Then |(D(ūh − u), w)|(IΩ,w) → 0, as h → +∞. Hence∣∣∣|(Dūh, w)|(IΩ,w)−|(Du,w)|(IΩ,w)
∣∣∣ ≤ |(D(ūh−u), w)|(IΩ,w) → 0, as h → +∞. (28)

Moreover, by (25) and (28), (27) follows.

Case 2. Assume now that Nw = 2. In this case IΩ,w = (a1, b1) ∪ (a2, b2), and
assume that b1 ≤ a2.
Firstly, we consider the subcase b1 < a2. Let (ũ(i)

h )h the sequence defined in (26) for
i = 1, 2 and, for each h, let uh = ūh : Ω → R defined as

ūh(x) :=



ũ
(1)
h (a1) if x ∈ [a, a1),

ũ
(1)
h (x) if x ∈ [a1, b1),

ũ
(2)
h (a2)− ũ

(1)
h (b1)

a2 − b1
(x− b1) + ũ

(1)
h (b1) if x ∈ [b1, a2),

ũ
(2)
h (x) if x ∈ [a2, b2),

ũ
(2)
h (b2) if x ∈ [b2, b] .

Notice that (uh)h ⊂ AC(Ω) and (24) holds. Indeed, it can be done by repeating the
arguments of the 1st case and by observing that ŵ ≡ 0 in Ω \ IΩ,w.
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Now, we consider the second subcase b1 = a2. Let h ∈ N such that
1

h
< min

{
bi − ai

4
: i = 1, 2

}
.

w̄(x) :=



´ x
ai+bi

2
ŵ(y) dy if ai ≤ x ≤ 3ai+bi

4
,

´ ai+3bi
4

3ai+bi
4

ŵ(y) dy if 3ai+bi
4

≤ x ≤ ai+3bi
4

,

´ ai+bi
2

x
ŵ(y) dy if ai+3bi

4
≤ x ≤ bi,

0 if x ∈ Ω \ IΩ,w .

Note that by (5) ŵ ∈ L∞((ai, bi)) and so w̄ ∈ L∞((ai, bi)).
Let uh = ūh : Ω → R defined as

ūh(x) :=



ũ
(1)
h (a1) if x ∈ [a, a1),

ũ
(1)
h (x) if x ∈ [a1,

a1+b1
2

),

u(x) if x ∈ [a1+b1
2

, b1 − 1
h
),

u(x)
w̄(x)

|w̄(b1 − 1
h )|

if x ∈ [b1 − 1
h
, b1)

u(x)
w̄(x)

|w̄(a2 + 1
h )|

if x ∈ [a2, a2 +
1
h
),

u(x) if x ∈ [a2 +
1
h
, a2+b2

2
),

ũ
(2)
h (x) if x ∈ [a2+b2

2
, b2),

ũ
(2)
h (b2) if x ∈ [b2, b] .

Then (uh)h ⊂ AC(Ω) and (24) holds. Indeed, in order to prove (24), we now prove
that ˆ b1

a1+b1
2

|ūh − u| ŵ dx → 0 as h → ∞ , (29)

and
ˆ b1

a1+b1
2

|ū′
h|w dx ≤ C < +∞ , (30)

since the proof of the analogous conditions on (a2,
a2+b2

2
) are similar. Indeed, we

have ˆ b1

a1+b1
2

|ūh − u| ŵ dx =

ˆ b1

b1− 1
h

u

(
1− w̄(x)

|w̄(b1 − 1
h )|

)
ŵ(x) dx.

Notice that w̄ is decreasing in [a1+3b1
4

, b1], and by (5)

0 ≤ 1− w̄(x)

|w̄(b1− 1
h )|

=
|w̄(b1 − 1

h )| − w̄(x)

|w̄(b1 − 1
h )|

≤ 2L1

|w̄(b1 − 1
h )|

=: c̃h, x ∈
(
b1−

1

h
, b1

)
. (31)

Note that |w̄(b1 − 1
h
)| → |w̄(b1)| ̸= 0. Indeed,

w̄(b1) =

ˆ a1+b1
2

b1

ŵ(y) dy =

ˆ a1+b1
2

b1

(∥∥w−1
∥∥
L∞((a1+b1

2
,y))

)−1

dy < 0.
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This implies that
ˆ b1

a1+b1
2

|ūh − u| ŵ dx ≤ c̃h

ˆ b1

b1− 1
h

u ŵ dx → 0 as h → +∞ .

This proves (29). On the other hand, in order to prove (30) we note that

ū′
h(x) :=

u′(x) if x ∈ [a1+b1
2

, b1 − 1
h
),

1

|w̄(b1 − 1
h )|

(u′(x)w̄(x) + u(x)w̄′(x)) if x ∈ [b1 − 1
h
, b1).

Therefore
ˆ b1

a1+b1
2

|ū′
h|w dx =

ˆ b1− 1
h

a1+b1
2

|u′|w dx+

ˆ b1

b1− 1
h

1

|w̄(b1 − 1
h )|

|u′w̄ + uw̄′| w dx

≤
ˆ b1

a1+b1
2

|u′|w dx+

ˆ b1

a1+b1
2

|w̄|
|w̄(b1 − 1

h )|
|u′|w dx+

ˆ b1

b1− 1
h

1

|w̄(b1 − 1
h )|

|u| |w̄′|w dx.

Notice that the second integral is finite by (31). Let us prove that the last integral
tends to 0. Indeed,

w̄′ = −ŵ a.e. in
(
b1 −

1

h
, b1

)
and, since uŵ is bounded in (b1 − 1/h, b1) (see Remark 2.9), we obtain

ˆ b1

b1− 1
h

1

|w̄(b1 − 1
h
)|
|u||w̄′|w dx =

ˆ b1

b1− 1
h

1

|w̄(b1 − 1
h
)|
|u||ŵ|w dx

≤ C
1

|w̄(b1 − 1
h
)|

ˆ b1

b1− 1
h

w dx → 0 as h → +∞.

Case 3. In the general case we have IΩ,w =
⋃Nw

i=1(ai, bi) with bi ≤ ai+1, for every
i = 1, . . . , Nw−1, it is sufficient to repeat the arguments of the 2nd case for every
i = 1, . . . , Nw−1.

Step 2. We now prove that H ≤ F . To this end, since

F = sup{G : G lower semicontinuous and G ≤ F},

its is enough to show that H is lower semicontinuous and H ≤ F . The last inequality
is trivially true, so, we now need to prove the lim inf inequality for H. Let uh → u
with respect to the (ŵ,Dw)-convergence in IΩ,w. Then we have that uh⇀u weakly
in L1(IΩ,w, ŵ). By Mazur Lemma there exists a function f : N → N and a sequence
{αk,h : h ≤ k ≤ f(h)} such that αk,h ≥ 0, and

f(h)∑
k=h

αk,h = 1 such that the sequence vh :=

f(h)∑
k=h

αk,huk

strongly converges to u in L1(IΩ,w, ŵ) and L1(IΩ,w, |Dw|).
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Notice that (4) and the definition of ŵ imply that L1(IΩ,w\supp(ŵ)) = 0. Then
vh(x) → u(x) for L1-a.e. x ∈ IΩ,w. Since w ∈ W 1,1

loc (IΩ,w) ⊂ L∞
loc(IΩ,w) and (4) hold

true, then for all compact K b Ii := (ai, bi) one gets

1

ci,K

ˆ
K

|vh − u|dx ≤
ˆ
K

|vh − u|wdx ≤ C

ˆ
K

|vh − u|dx,

for some positive constant C. Then vh → u strongly in L1
loc(IΩ,w, w), and thus

weakly in L1
loc(IΩ,w, w). Hence, since vh → u strongly in L1

loc(IΩ,w, |Dw|), and thus
weakly in L1

loc(IΩ,w, |Dw|) we conclude that vh (w, 1
2
)-converges to u in the sense of

Definition A.5. Therefore, we may apply Theorem A.6 to conclude the desired lower
semicontinuity inequality. Indeed, by (41) we get

lim inf
h→+∞

H(vh) ≥ lim
h→+∞

|(w,Dvh)|(IΩ,w) ≥ |(w,Du)|(IΩ,w) = H(u). (32)

Now let us prove that (32) holds true for uh. Suppose by contradiction that (32) is
not true for uh. By the definition of lim inf we have that

C1 := sup

{
inf

{ˆ
IΩ,w

w|u′
m|dx : m ≥ h

}
;h ∈ N

}
<

ˆ
IΩ,w

w|u′|dx, (33)

C2 := sup

{
inf

{ˆ
IΩ,w

w|v′j|dx : j ≥ h′
}
;h′ ∈ N

}
≥
ˆ
IΩ,w

w|u′|dx. (34)

In (34), we use the definition of sup, so that for all ε > 0, there exists h′ ∈ N such
that

inf

{ˆ
IΩ,w

w|v′j|dx : j ≥ h′
}

> C2 − ε ≥
ˆ
IΩ,w

w|u′|dx− ε.

Moreover, by (33), for all h ∈ N, we get

inf

{ˆ
IΩ,w

w|u′
m|dx : m ≥ h

}
<

ˆ
IΩ,w

w|u′|dx.

It implies that
´
IΩ,w

w|u′|dx is not the infimum, so that there exists δ > 0, such that
for each m ≥ h ˆ

IΩ,w

w|u′
m|dx+ δ <

ˆ
IΩ,w

w|u′|dx, (35)

and the same inequality holds true for all m′ ≥ m ≥ h. Now let us choose such
h ≥ h′. Then
ˆ
IΩ,w

w|u′|dx−ε ≤ inf

{ˆ
IΩ,w

w|v′j|dx : j ≥ h′
}

≤ inf

{ f(j)∑
k=j

αk,j

ˆ
IΩ,w

w|u′
k|dx : j ≥ h′

}

≤ inf

{ f(j)∑
k=j

αk,j

(ˆ
IΩ,w

w|u′|dx− δ

)
: j ≥ h′

}
=

ˆ
IΩ,w

w|u′|dx− δ.

Then δ ≤ ε. Since ε > 0 is arbitrary, we get that δ ≤ 0, and thus a contradiction
because δ > 0.
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A. A pairing beyond BV

In this section, we recall the notion of pairing (w,Du) for functions u that may
not be of bounded variation, and we introduce the larger space BV w(Ω), where this
pairing make sense. In the definition, we will use a precise representative u

1
2 defined

for functions u ∈ L1
loc(Ω).

A.1. Precise representatives

Firstly, we recall some basic definitions and results about the precise representatives
of u ∈ L1

loc(Ω) (see [1, Sections 3.6 and 4.5]), where Ω ⊂ Rn is an open set.
We say that a function u ∈ L1

loc(Ω) has an approximate limit z ∈ R at x ∈ Ω if

lim
r→0+

1

Ln (Br(x))

ˆ
Br(x)

|u(y)− z| dy = 0 ;

and we say that x is a Lebesgue point of u. The set Su ⊂ Ω of points where
this property does not hold is called the approximate discontinuity set of u, and
Ln(Su) = 0. For any x ∈ Ω \ Su the approximate limit z is uniquely determined
and is denoted by z =: ũ(x). Let u = χE, for a measurable set E ⊂ Rn; in this case
the approximate limit at a point x ∈ Rn is also called density of E at x, and it is
defined by

D(E;x) := lim
r→0+

Ln(E ∩Br(x))

Ln(Br(x))

whenever this limit exists.
For every Borel function u : Ω → R, we denote the sublevel and superlevel sets of u
as

{u < t} = {x ∈ Ω : u(x) < t} and {u > t} = {x ∈ Ω : u(x) > t},

and we give the definition of the approximate liminf and limsup at a point x ∈ Ω in
the following way

u−(x) := sup
{
t ∈ R : D({u < t};x) = 0

}
,

and u+(x) := inf
{
t ∈ R : D({u > t};x) = 0

}
(see [1, Definition 4.28]), where R := R ∪ {±∞}.
We note further that u+, u− : Ω → [−∞,+∞] are Borel functions and that the set
S∗
u := {x ∈ Ω : u−(x) < u+(x)} satisfies

Ln(S∗
u) = 0,

so that u+(x) = u−(x) for Ln-a.e. x ∈ Ω (see [1, Definition 4.28]). If u ∈ L1
loc(Ω),

we have
u+(x) = u−(x) = ũ(x) for all x ∈ Ω \ Su,

and so S∗
u ⊂ Su. Therefore, in Ω \ S∗

u we shall write ũ(x) := u+(x) = u−(x), with
an abuse of notation.
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On the other hand, for every u ∈ L1
loc(Ω), we say that x ∈ Ω is an approximate jump

point of u if there exist a, b ∈ R, a ̸= b, and a unit vector ν ∈ Rn such that

lim
r→0+

1

Ln(Bi
r(x))

ˆ
Bi

r(x)

|u(y)− a| dy = 0,

lim
r→0+

1

Ln(Be
r(x))

ˆ
Be

r(x)

|u(y)− b| dy = 0,

(36)

where

Bi
r(x) := {y ∈ Br(x) : (y − x) · ν > 0}, Be

r(x) := {y ∈ Br(x) : (y − x) · ν < 0}.

The triplet (a, b, ν), uniquely determined by (36) up to a permutation of (a, b) and
a change of sign of ν, is denoted by (ui(x), ue(x), νu(x)). We observe that

u−(x) = min{ui(x), ue(x)} and u+(x) = max{ui(x), ue(x)} for all x ∈ Ju.

Finally, for u ∈ L1
loc(Ω) we define the precise representative of u in x ∈ Ω as

u∗(x) := lim
r→0+

1

Ln (Br(x))

ˆ
Br(x)

u(y) dy,

whenever the limit exists. It is then clear that

u∗(x) =

ũ(x) x ∈ Ω \ Su,

ui(x) + ue(x)

2
x ∈ Ju.

(37)

A priori, it is not clear whether u∗ is well posed in Su \ Ju, in general. However, for
u ∈ BVloc(Ω), it is well known that we have H n−1(Su \Ju) = 0, so that u∗(x) exists
for H n−1-a.e x ∈ Ω and, up to a H n−1-negligible set, is given by (37).

Finally, for every Borel function we define the representative u
1
2 : Ω → R as

u
1
2 (x) :=

{
1
2
(u−(x) + u+(x)) if x ∈ Ω \ Zu

0 if x ∈ Zu

(38)

where Zu := {x ∈ Ω : u+(x) = +∞ and u−(x) = −∞} and

u
1
2 (x) = ũ(x) for all x ∈ Ω \ S∗

u.

If u ∈ L1
loc(Ω), we notice that u

1
2 (x) = ũ(x) for all x ∈ Ω \ Su and u

1
2 (x) = u∗(x)

for all x ∈ Ω \ (Su \ Ju), but we might have u∗(x) ̸= u
1
2 (x) for some x ∈ Su \ Ju (see

Example in [13] Section 2.2).

A.2. Pairing in the n-dimensional case

In this subsection, we need to recall a general notion of pairing for divergence mea-
sure fields, as introduced in [13, Section 3].
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We define DM1
loc(Ω) as the space of all vector fields w ∈ L1

loc(Ω,Rn) whose diver-
gence divw in the sense of distributions belongs to Mloc(Ω).
First of all, we need suitable ambient classes of summable functions, which naturally
depend on the chosen Borel field w. Given w ∈ DM1

loc(Ω), we set

Xw(Ω) :=
{
u Borel function : u ∈ L1(Ω, w), u

1
2 ∈ L1(Ω, |divw|)

}
,

Xw
loc(Ω) :=

{
u Borel function : u ∈ L1

loc(Ω, w), u
1
2 ∈ L1

loc(Ω, |divw|)
}
.

We now recall the definition of pairing for functions in Xw
loc(Ω).

Definition A.1. Let w ∈ DM1
loc(Ω), and u ∈ Xw

loc(Ω). We define the pairing
between w and u as the distribution

(w,Du) : C∞
c (Ω) → R

acting as

⟨(w,Du), φ⟩ := −
ˆ
Ω

u
1
2φ ddivw −

ˆ
Ω

u∇φ · w dx for φ ∈ C∞
c (Ω). (39)

A.3. Pairing in the one-dimensional case

Let us notice that for n = 1, Ω ⊂ R and we have divw = Dw. Furthermore, we
have that

DM1
loc(Ω) = BVloc(Ω) ⊂ L∞

loc(Ω)

and ⟨(w,Du), φ⟩ = −
ˆ
Ω

u
1
2φ dDw −

ˆ
Ω

u∇φ · w dx for φ ∈ C∞
c (Ω). (40)

Then, recalling that if u ∈ BVloc(Ω), then u∗(x) = u
1
2 (x) for every x ∈ Ω and by

Proposition 3.5 (3) in [13] since BVloc(Ω) ⊂ L∞
loc(Ω)

{u ∈ BVloc(Ω) : u
1
2 ∈ L1

loc(Ω, |Dw|)} = BVloc(Ω).

We will also need the following classes of functions which are the analogue of BV-
type functions when working with the pairing.

Definition A.2. Given w ∈ BVloc(Ω), we define the classes
BVw(Ω) := {u ∈ Xw(Ω) : (w,Du) ∈ M(Ω)} ,
BVw

loc(Ω) := {u ∈ Xw
loc(Ω) : (w,Du) ∈ Mloc(Ω)} .

Remark A.3. By Proposition 3.5 in [13] since w ∈ L∞
loc(Ω) , then

BVloc(Ω) ⊆ BV w
loc(Ω).

Remark A.4. As noted in [13, Remark 3.4], the set BVw
loc(Ω) is not a linear space.

This is due to the fact that the pairing is, in fact, a nonlinear operation in the second
component, representing a departure from the classical BV-setup. Nevertheless, if
w ∈ W 1,1

loc (Ω), then BVw
loc(Ω) is a linear space (see Corollary 5.3 in [13]).
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Since the pairing (w,Du) is affected by the pointwise value of u 1
2 , then a suitable

notion of convergence involving these representatives is introduced in [13].

Definition A.5. Let w ∈ BVloc(Ω). We say that a sequence (un)n∈N ⊂ Xw
loc(Ω)

(w, 1
2
)-converges to u ∈ Xw

loc(Ω) if
(i) un⇀u in L1

loc(Ω, w),

(ii) u
1
2
n⇀u

1
2 in L1

loc(Ω, |Dw|).

When w ∈ W1,1
loc(Ω), then (ii) is equivalent to un⇀u in L1

loc(Ω, |Dw|).
The following lower semicontinuity of the pairing holds true.

Theorem A.6. [13, Theorem 4.3] Let w ∈ BVloc(Ω). Then for every sequence
(un)n∈N ⊂ Xw

loc(Ω) and for every u ∈ Xw
loc(Ω), and such that (un)n (w, 1

2
)-converges

to u, it holds

⟨(w,Du), φ⟩ = lim
n→+∞

⟨(w,Dun), φ⟩ for all φ ∈ C1
c (Ω)

in the sense of distributions. Further, if u, un ∈ BVw
loc(Ω) for all n ∈ N, then

|(w,Du)| (Ω) ≤ lim inf
n→+∞

|(w,Dun)| (Ω). (41)

If sup
n∈N

|(w,Dun)| (Ω) < +∞,

we get |(w,Dun)|(Ω)⇀|(w,Du)|(Ω)

weakly in the sense of measures.

B. Weighted BV-spaces

In this part, for the sake of completeness, we recall the definition of weighted
BV(Ω;w)-spaces introduced in [6], where the weight w belongs to the global Muck-
enhoupt’s A1 := A1(Ω). Suppose that Ω is an open subset of R, and let Ω0 be a
neighborhood of Ω.

Definition B.1. Let w ∈ L1
loc(Ω0), w > 0. We say that w ∈ A1 if there exists a

constant c > 0 such that

w(x) ≥ c

 
B(x,r)

w(y)dy a.e. in any ball B(x, r) ⊂ Ω0. (42)

In[6], given u ∈ L1(Ω;w), the weighted total variation of u with respect to w is
defined as

TV (u;w) := sup

{ˆ
Ω

uϕ′ dx : ϕ ∈ C1
c (Ω;R), |ϕ(x)| ≤ w(x) for all x ∈ Ω

}
.

Denote by BV(Ω;w) the set of all functions u∈L1(Ω;w) for which TV (u;w) < +∞,
and we equip it with the norm

∥u∥BV(Ω,w) := ∥u∥L1(Ω;w) + TV (u;w).
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In particular, when w ≡ 1 we recover the usual space BV(Ω). For a measurable set
B ⊂ Ω, we then define the perimeter in Ω as the weighted total variation of the
characteristic function of B, that is, Per(B;w) := TV (χB;w).

Remark B.2. Let us recall that in the definition of weighted Sobolev spaces, the
weight is usually defined a.e. (almost everywhere) because functions in these spaces
have derivatives that, as measures, are absolutely continuous with respect to the
Lebesgue measure. Nevertheless, in the case of weighted BV-spaces, the situation is
completely different. Indeed, derivatives can be concentrated on sets of null Lebesgue
measure. A proper definition of a weighted BV-space requires a pointwise definition
of w. In fact, requiring that w ∈ A1 reflects this, as it captures a pointwise definition
in each ball B(x, r) for which the inequality (42) holds.

In [6], it is shown that it not necessary to assume that w is lower semicontinuous to
define a weighted Sobolev space. However, in the case where w ∈ A1, it is possible
to show that we can find an auxiliary weight w∗ that is lower semicontinuous and
such that BV(Ω;w) = BV(Ω;w∗).

Lemma B.3. [6, Lemma 3.1] Suppose that w∈A1.The following assertions hold true.
(i) Let us set L0(Ω,R) the set of Lipschitz continuous functions with compact

support. Define
w∗ := sup

ϕ∈L0(Ω,R)
|ϕ|≤w

|ϕ|.

Then BV(Ω;w) = BV(Ω;w∗).
(ii) Let us consider the relaxed function w∗∗ associated to w, that is,

w∗∗ := sup {g : g : Ω → (0,+∞) is lower semicontinuous, and g ≤ w} .

Then w∗∗ = w∗ in Ω, and BV(Ω;w) = BV(Ω;w∗) = BV(Ω;w∗∗).
(iii) w∗∗ ∈ A1.

Let us set w̃(x) := sup
r>0

 
B(x,r)

w(y)dy.

Since w ∈ A1, note that w̃ ∈ A1 with the same constant c > 0. Indeed, observe that
 
B(x,r)

w̃(y)dy ≤ 1

c

 
B(x,r)

w(y)dy ≤ 1

c
w̃(x).

Furthermore, since the integral is a continuous operation, then by taking the supre-
mum of continuous functions we obtain a lower semicontinuous function, and w̃ > 0.
Hence, in order to obtain suitable density results, it is customary to replace w with
an appropriate lower semicontinuous function when defining weighted BV-spaces.

Definition B.4. Let w ∈ A1, and define A∗
1 as

A∗
1 :=

{
w ∈ A1 :

w is lower semicontinuous, and
condition A1 is satisfied at any point

}
.
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The following holds true.

Proposition B.5. [6, Theorem 3.3] Let w ∈ A∗
1, and u ∈ BV(Ω;w). Then there

exist a finite Radon measure |Du|w and a |Du|w-measurable function σ : Ω → R such
that |σ(x)| = 1 for |Du|w-almost every x ∈ Ω and such that

ˆ
Ω

u(x)ϕ′(x) dx = −
ˆ
Ω

ϕ(x)σ(x)

w(x)
d|Du|w(x). (43)

The measure |Du|w and the function σ are uniquely determined by (43) and the
weighted total variation TV (u;w) is equal to |Du|w(Ω).

Note that, using (43), one can check that |Du|w = w|Du|, so that

TV (u;w) =

ˆ
Ω

w(x) d|Du|(x).

Since the functional TV (·;w) is defined as the supremum of linear continuous func-
tionals in L1(Ω;w), it is lower semicontinuous with respect to the L1(Ω;w) metric.
The following density theorem for weighted BV functions holds true.

Theorem B.6. [6, Theorem 3.4] Let Ω be an open subset of R with Lipschitz
boundary. Suppose w ∈ Lip(Ω), and w ∈ A1. Then for every u ∈ BV(Ω;w)
there exists a sequence {un}n∈N ⊆ C∞

c (R) such that un → u in L1(Ω) and we have´
Ω
|u′

n|w dx → TV (u;w) as n → ∞.

A similar version of this density result can be found in [18, Proposition 2.4]. In what
follows, we recall a Poincaré inequality proved in [6, Theorem 4.2].

Theorem B.7. [6, Theorem 4.2] Let u ∈ BV(Ω;w), with w ∈ A∗
1, and q > 1.

Suppose that the local growth condition
ˆ
B(x,r)

w(y)dy

ˆ
B(x,s)

w(y)dy

 ≤ c
(
r

s

) q
q−1 (44)

holds for any pair of balls B(x, r) ⊂ B(x, s) in R. Then there exist two positive
constants C1, C2 such that the following inequalities hold true:

•
( 

B

|u− uB|qw(y)dy
) 1

q

≤ rC1

B
TV (u;w)(B)

for all balls B = B(x, r) ⊂ R, where uB :=

 
B

u(y)dy, and

TV (u;w)(B) :=

ˆ
B

w(x) d|Du|(x).



V. Chiadò Piat et al. / Relaxation for a Degenerate Functional ... 359

• Suppose that

lim sup
R→+∞

R

(ˆ
B(x,R)

w(y)dy

) 1
q
−1

< +∞.

Then ∥u∥Lq(Ω;w) ≤ C2TV (u;w)(R).
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