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1. Introduction

In this work, we focus on the study of an integral functional in one dimension with
linear growth, allowing for a degenerate weight w. We aim to provide an explicit
relaxation formula for the functional

o Alwwm: if u e AC(), "

+ o0 if u e X\ AC(Q),

where ) is an open bounded set in R, u' denotes the derivative of u, w is a non-
negative, locally integrable function, AC(Q) is the space of absolutely continuous
functions on Q, and X is a topological space comprising measurable functions which
will be introduced later on. We will find an explicit expression of the lower semicon-

tinuous envelope of F, that is denoted by F with respect to a suitable convergence.

Several studies have focused on the investigation of functionals with p-growth for
1 < p<+oo within different functional frameworks; see, for example, [10, 16, 17, 21].
Nevertheless, there are few works dedicated to the analysis of functionals with linear
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growth like (1) above (see, for instance, [7] and references therein). In the recent
work [11], we have analyzed the p-version of the functional F, defined as

F(u) i /Q W' [Pwdz if w e AC(Q), )

+ oo ifue X\ AC(Q),

where w does not exhibit doubling or Muckenhoupt-type conditions, [22]. In that
case, we have conducted the analysis in weighted Sobolev spaces; we refer to [2, 3,
4, 19] for general approaches to the definition of these spaces. Let us briefly explain
our strategy in the case 1 < p < +o00, and what is different in the present case p = 1.
We first proved Poincaré inequalities involving w and an auxiliary weight w, that

corrects the weight in the zones where w is strongly degenerate (i.e. w T s not
summable). Specifically, we showed that the p-norm of the gradient term of a generic
function u weighted by w, is greater up to a suitable constant than the p-norm of u
weighted by (w,)P~!. Subsequently, assuming that w is finitely degenerate (see [11,
Definition 2.1]), and in view of such a Poincaré inequality with two different weights,
we proceeded to choose X = LP((w,)? '), and showed that AC-functions are dense,
in a suitable Sobolev space W C X. As a consequence, we were able to determine
the finiteness domain of the relaxed functional F, by performing the relaxation in
the strong topology of X.

In the present work, we follow some of the previous ideas, but we cannot apply
verbatim such methodology. The first reason is that for a functional with linear
growth like (1), it is necessary to work with BV like spaces, rather than Sobolev
spaces, and the second reason is that the functional in this case can be interpreted
as a pairing.

A class of weighted bounded variation functions denoted BV(£2; w) in any dimension
(Q C R™) is introduced in [6] (see Section B where we recall the definitions and the
results of [6]).

By requiring that w > 0 and w belongs to the Muckenhoupt class A;, (see Definition
B.1 below) it is possible to define a weighted BV ({2, w)-space. A priori such weight w
is only a.e. defined, but it is not restrictive to assume that condition A; holds for any
point in Q (this is possible since it can be proved that there exists a further weight
lower semicontinuous w that defines the same weighted BV-space, and satisfies A
at any point, see Lemma B.3 below). Moreover a density theorem holds true in
BV(Q,w) (see Theorem B.6 below) and by assuming the local growth condition
(44) a Poincaré inequality holds (see Theorem B.7 below).

In the present paper, although confining the study to the onedimensional case, we
follow another approach. We will deal with a weight w > 0 (and so it admits
large degeneration), that does not belong to the Muckenhoupt class A; (and so it
is only a.e. defined) and does not satisfy any doubling condition. We will consider
a new category of spaces that we denote as BV, (€) inspired to some BV like
space recently introduced in [13], although this approach forces us to assume some
regularity of the weight, i.e. w is a BV}, within the largest open set where i is

bounded.
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More precisely, we say that v € BV, (Q2) if it is a Borel function that belongs to
L (Q,w) N LL (9, |Dw|), such that the Anzellotti pairing (w, Du), defined below
is a Radon measure (see [5] for its original definition). Moreover, under suitable

assumptions this class is a Banach space.

Under the assumption w € BVj,(€2), the distributional definition of the pairing is
the following

{((w, Du), p) := —/u;go dDw — / up'wdz, for p € C°(Q). (3)
Q Q

Here ¢’ denotes the derivative of ¢, Du denotes the distributional derivative of w,
and u? the precise representative of u (see Section A for a more detail explanation).
The space BV (§2) was introduced in [13] because it is the natural functional space
where the distributional derivative defined in (3) is a Radon measure.

In the present work, we find that BV*(Q) is the natural ambient space in which an
explicit formula for F can be expressed. Therefore, to ensure a suitable behavior
of (3), we restrict our analysis to the following setup. We assume that w is a
nonnegative function such that w is locally integrable in 2. Our objective is to
demonstrate that, under these conditions, the relaxed functional can be expressed by
means of a pairing, as studied in [13] and [12]. This pursuit is built upon innovative
concepts introduced in those works, where BV"(2) spaces, consisting of functions
that satisfy divergence-measure properties, are larger than the conventional BV (€)-
spaces in [1], or the weighted BV (€, w)-spaces in [6]. By following [16, 11], our
chosen space X comprises Whl-functions with a degenerate weight w. The pairing
of such functions u with w consists in a Radon measure within the largest open set
where i is bounded. This requires the introduction of an additional weight, denoted
as w. This corrective function addresses the singularities inherent in the respective
weight w. Moreover, in this scenario, we also prove a weighted Poincaré inequality
involving w and w.

Subsequently, in Section 3, we assume that w is finitely degenerate (see Definition
2.1 below) and the stronger condition that the weight w belongs to I/Vlloc1 within the
largest open set where % is bounded. We then relax F' with respect to a weak con-
vergence involving w and |Dw|, which we will refer to as (w, Dw)-convergence. This
is similar to the (w, 3)-convergence introduced in [13] (see Definition A.5 before).
The main difference lies in the choice of the L!(i)-weak convergence rather than

L' (w)-weak convergence.

As we will see in Section 2, our analysis is based on a suitable decomposition of the
open set  into disjoint subsets where the reciprocal 1/w of the weight w is locally
bounded. The boundaries of these sets are a countable family of points. This fact
is typical of dimension 1. The subsequent construction of the auxiliary weight and
the remaining results are strongly tied to this property. In higher dimensions, this
procedure becomes more intricate, as various situations can arise, for instances, cases
where points must be replaced by surfaces, and thus the construction of @w becomes
more involved. Moreover, the strategy relying on the density of AC-functions must
be carefully replaced.

This work is structured as follows. In Section 2, we define w and prove the validity
of weighted Poincaré inequalities, see Theorem 2.10 below. Thanks to this result,
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we are allowed in Section 3, once introduced our (w, Dw)-convergence, to prove a
compactness theorem with respect to this convergence and to prove our relaxation
theorem, see Definition 3.2, and Theorem 3.6, respectively. Lastly, in Section A,
we revisit some fundamental concepts from geometric measure theory, applicable
to all dimensions n > 1, and we recall the notion of pairing as studied in [13]. In
Section B, we recall some similar results about weighted Poincaré inequalities when
w belongs to the Muckenhoupt class A, obtained in [6].

2. Poincaré inequalities with double weight

Let Q = (a,b) be a bounded open interval. In what follows, we make the following
structural assumptions:

(H1) w >0;
(H2) we L. (Q).

loc

Here we denote by Ig, the biggest open bounded set contained in (2 such that %
is Ly (Igw)-function. Then Ig, can be written in a unique way as the union of
pairwise disjoint open intervals (a;, b;) C 2, that is,
Ny
Iow = J(ai, by),

=1

with 1 < N, < 4+00. Furthermore, since i € LY (Igw), forevery i =1,..., N, and

loc
K & (ai, b;) there exists a nonnegative constant ¢;  such that

1
w(z)

< ¢k forae zekK. (4)

Definition 2.1. (i) If Io, = 0, we put N,, := 0.
(i) If 1 < N, < oo we say that w is finitely degenerate in €.
(iii) If N, = 400 we say that w is not finitely degenerate in Q.

Examples 2.2. Let us consider the following examples.

(I)  Let w(z) = (1 — 2%)? defined in the interval (—2,2):
then, Ig, = (—2,-1) U (—=1,1) U (1,2), and w is finitely degenerate with
N, = 3.

(II) Let w(z) = 1+ sinl defined in the open interval (0,1): since w(z;) = 0 if

T; = m, i € N, we have that Io,, = [J;cn(Zis1, i) and w is not finitely
degenerate, i.e. N,, = +o0.

(III) Let w(z) = |x|* with @ > 1 defined in the interval (—1,1).

2.1. An auxiliary weight

Let w :  — [0, 400[ be defined as
-1
~ T -1 . .
w(x) = xlfil* (Hw HLOO((xa,L;b,L))> if ©=aq,

-1 ) )
UA}(.%) = (”wil”ljoo((ﬁ’aiT"‘bi))) if a; < T S &lzTJ"bz
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w(z) = (”w1||L00((3“i4+bi"lit3bi))>_1 if 3ai:bi << #
~ _ -1 . i + 3b;
w(x) = (Hw 1||L°°((%x))> if QT <z<b
-1
N 1 o p,
w(x) = xhji} (Hw HLOO<(%T+%I))> it © =0
w(x):=0 if € Q\ Tau.

Remark 2.3. At first glance, the definition of w may seem subtle. Nevertheless,
it is an important function with nice regularity properties, as presented in the next
proposition, and it allows us to prove the validity of a Poincaré inequality with
weights w and w, respectively. It is also worth noting that a similar definition of
the function w was already considered in [11], in the case where the functional F
defined in (1) is replaced by (2). Instead, the present work addresses the case p = 1
separately, because the tools used in [11] were developed in a Sobolev context, where-
as here we need tools beyond BV(§2)-spaces recently developed in [12, 13, 14, 15].

In the following figures, we illustrate the behavior of the function w for a specific
choice of w, while in Proposition 2.4, we prove some of its mathematical properties.

10 10

8 8|

6 61

4 4t

2 27 ]
-2 -1 0 6§ 2 -2 -1 0 1 2

Figure 1: In the figure on the left hand side, we have the profile of w(z) = (1 — 2?)?
for x € (—2,2), while in the right hand side, we have its associated weight w. In

this case, we note that N, = 3.

Let us collect some properties of the function w in the following Proposition.

Proposition 2.4. (Properties of w) Suppose that (H1)—(H2) hold true.

(i)  Foreachi=1,...,N,, W is constant in [24:t% 2430 inereasing in [a;, 2401

3a;+b;
4

and so a BV-function in [ai, ), decreasing in [%?’bi,bi] and so a BV-

function in (%31”, bi]. Moreover, it holds that

0 <w(z)< sup w(y)=:L;< o Vze€ (a,b), (5)
y€(ai,bi)
M; g = in}f{@(x) > 0 for each x € K € (a;,b;), (6)
TE

and w(a;) = 0 (respectively w(b;) = 0) if and only if ~ ¢ L>((a;, 232))
(respectively £ ¢ L>((%“Eb, b,))).
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(i) If £ € L>(Q), then there exists a constant ¢ > 0 such that
0< %S w(z) < c ae €.

(iii) Ifw is finitely degenerate in 2, i.e. 1 < N, < 00, then there exists a constant
¢ > 0 such that

0<w(x)<c ae xzeQ and € BV(Q).

(iv) If w is not finitely degenerate in Q, i.e. N, = oo, then w € L{S.(Igw), and
for each 1 < i < +oo, we get w € BV((a;,b;)).

2 2
1.5 15
1 1
0.5 0.5
0 0 g
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 2: In the first figure on the left hand side, we have the profile of w(x) = |z|*?

for x € (—1,1), @ = 1.2, while in the right hand side, we have its associated weight
w. In this case, we note that N, = 2.

Remark 2.5. By definition w < w and fixed i = 1,..., N, if the function w is
increasing in (a;, 2%%), then w(z) = w(z) a.e. in (a;, 2%b). This is the case in
Examples 2.2. In the case (I), the function w is increasing in (—1, —3) and in (1, 2),

31+, )
)

On the contrary, if w admits an oscillating behaviour in a right neighborhood of some
a;, it can be happen that @ # w in this neighborhood (see Example in Remark 2.7
below).

On the other hand, let us notice that, unlike the case 1 < p < 400, our weight w
involves the inverse of the L>*-norm of w~!. However, we can say that @ is a BViee
function rather than absolutely continuous as it happens in the case 1 < p < 400,
[11, see Proposition 2.5 (ii)]. It is important to recognize that, in some sense, the
conditions assumed in Proposition 2.4 are the analogue counterpart of those assumed
in [11, Proposition 2.5 (ii)]. Specifically, while in such a Proposition, we required

while in the case (II) the function w is increasing in (41,

hypotheses to give a meaning to the integral of w T for 1 < p < 400, Proposition
2.4 involves the L>®-norm of w™1. 0

In what follows, given w € BVio.(Iqg,,) We set

Dom,, := {u Q—=R:ue Wl’l(Igﬁw),u € BV}ZC([QM)} , (7)

loc

where the class BV{. (ln.) has been defined in the Introduction. We note that
this definition of Dom,, differs from the one in [11, formula 3]. Indeed, in [11,
formula (3)], the definition of Dom,, does not require any regularity properties on
the weight w.
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In fact, we have that in the case 1 < p < 400, Dom,, is defined as

Dom,, , := {u QD —=R:ue VVll’l(]Q,w),/ [u'|Pwdz < —i—oo} ) (8)

o [Q,w
The importance of the functional spaces (7) and (8) is related to the relaxation
result in Section 3 below and in [11, Section 3|, respectively. For this reason we need
to study the Poincaré inequality in Dom,,,.

Remark 2.6. The space BV}’ (In.,) considered in the definition of Dom,, in (7)
has been introduced recently in [13] in the general multidimensional setting. We
recall the definition and the main properties of BV} in Section A, with the details
in the onedimensional case. We notice that

Dom,, C Ly,.(Igw, w) N L. (Igw, |Dwl),

and by the definition of pairing in (39) below

{((w, Du), @) := —/ up dDw — / up'wdz, for p € CF(Igy), u € Dom,, .

[Q,w [SZ,w

Here we used that, since u € W, (I..,) we have u = u* (recall that u* is the precise
representative of u, and since in the onedimensional case W1 (I) = AC(I), we have

that u = u* = uz where u? is the trace of u as defined in (38)), the measure (w, Du)
has the following expression

(w, Du)(I) = /u'(a:)w(a:)dx, for any I € Iq .,
I

and, by definition of BV}2.(Iq.), its total variation is finite
|(w, Du)|(I) < +o0.

Let us note that we have used the symbol u' to denote the derivative of u. In what
follows, we will maintain this notation and will subsequently use Du to denote the
distributional derivative of u. Let us now give some comments about the ambient

space BV, and further weighted Sobolev spaces used in the literature.

° Note that when w is lower semicontinuous, and belongs to the Muckenhoupt
class Ay in €, it is possible to define the weighted space BV (€2, w) that
consists of functions v € L'(I;w) such that [, wd|Du| < +oo0, for each I € €,
see Section B below.

° Notice that BVi.(2) is defined by means of the Anzellotti pairing, whose

loc

definition requires the BV regularity of w. Hence, BV,.(Q2,w) and BV}, (£2)
share similar properties, however, they are different spaces, as we will explain,
not only by construction. Let us recall that by [6, Remark 5], one has that
BV(Q,w) C BV(Q) (and also BV.(©2, w) C BV},(2) ). A major difficulty in
the definition of BV (§2; w) is that we need the Muckenhoupt class A; to hold

at any point, rather than almost everywhere.
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° Since in our context we do not assume that w belongs to the Muckenhoupt
class Aj, a priori, we have that BV}2.(€2) and BV,.(€2, w) are not comparable.

loc

However, we may wonder whether BV}? (2) and BV,.(€2,w) are related (or

loc

if BV¥(€2) and BV(Q, w) are related). For the sake of a lean explanation, let
us suppose that w is lower semicontinuous, and belongs to the Muckenhoupt
class A; in €2, and that w € L>(£2). Then by Remark A.3 below, we have that
BV (©2) € BV2.(2), and thus

BViee(Q2, w) C BV (©2) C BV.(£2). 9)

Remark 2.7. Next, we show that L'(Q, ) is generally not contained in L'(Q, w).
That is, we give an example of w such that there exists
we LNQw) with |(w, Du)|(Q) = [, [v/w|dz < o0,

but u ¢ L'(Q,w) and so u ¢ BV*(Q). Let us set Q := (0,2), and for each h € N,
h # 0 define

1 (L }<L l)} 2._<1<L l) l}
%'_<h+F2 1w m G te) ol
' =UR I 1P =0 05 1y =1 U T

Fix 1 <f<+00,0<vy<1. Weset w as
+o00 400
w(zx) = Z h2a xp (x) + Z h*Qxﬁxl}zl (z)
h=1 h=1

for every x € (0,1) and w(x) = w(2 — z) for every x € (1,2). Note that ||w| <1,
Io.w = (0,2) and w € BV((0,2)). Since we defined the function w by simmetry in
the interval (0,2), it is enough to consider his behaviour only in the interval (0, 1).
Notice that

-8 .
1 '}ﬂ(%(#lJr%)) ifze (0,3) NI}

o00) = { p2p B if v e (O, %) NIz,
2B p2 if $ <a<1,
\

and so

( .
W (5 (R + b)) ifae (0,4) NI,
(277h2 if <z <1,

and w(0) = 0. On the other hand, we set u(z) = %5 € W.51((0,1)). By definition of

loc

w and u, we get that fol u(z)w(zr)dr = 4+o00. Indeed, note that

1 o0 00
/ u(x)w(x)dr = Z h_g/ 273 de + Z h_Q/ 273 dx
0 h=1 L, h=1 I
~> Ty R
h=1 h=1

which diverges because v < 1.
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On the other hand, we have that

/01 w(x)w(x)de = /0‘11 w(z)w(x)dz + /1 w(z)id (z)dz,

1
4

and by definition of w, u, and since the number of intervals of the form I}, I?

contained in (3,1) is finite, then the term fll u(z)w(x)dr is finite. Let us note that
2

which are convergent because > 1. Lastly, let us take a compact set K C (0,1/2)
such that its interior is a non-empty set. Note that

(w, Du)|(K) = / wwlds ~ SR 4 Y
K h=1 h=1

which is finite because g > 1, v > 0, and thus we are done.

2.2. A weighted Poincaré inequality

The following inequality is a first step into the proof of a Poincaré-type inequality
in the domain I ,,.

Proposition 2.8. Suppose that (H1)-(H2) hold true, and w € BVi,c(Igw). Fiz
1 <i < Ny. For all uw € Dom,,, and any n,x such that a; <n <z < % we have

) )| o) < [ ) uo) dy (10)
)l (o) < lu@)lon) + [ lols) dy. (1)
For every n,x such that ‘“T“’Z < x <17 <b; we have

() — ()| (n) < / "l () (y) dy (12)

[u(m)(n) < \U(w)lﬁf(nH/ [/ (y)|w(y) dy - (13)

T

Remark 2.9. By (13) we have wi € L>((%£%, b;)). Indeed, for every n such that

i) < o (40 Lok [ W@y < vy

itbi
2

Proof. Fix 1 <i < N,. Let us consider the open set (,z) C (a;, “3%).
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/j U’(y)dy' =

Taking the sup to ﬁ we obtain

We have that

|u(z) —u(n)| <

/: u’(y)w(y)w(l)dy’ < /: I/ (y)] w(y)ﬁy)dy'

Y

ule) —u)] < [ Wluy s L

ye (”vT
From the above inequality, we may deduce (10). Further, since

()] < Ju(@)] + u(n) — u(z)],

by (10), (11) follows. Similarly, (12) and (13) can be obtained. O

Theorem 2.10. (Poincaré type inequality on Dom,) Suppose that (H1)—(H2) hold
true, and w € BVioe(Igw). Then for every u € Dom,,

2, =25

Remark 2.11. Let recall that since u € Dom,, we need that w € BVi..(lgw).
However, the regularity of w does not play any role in the proof of Theorem 2.10,
but it is necessary to define the ambient space BVi... Further, let us point out that
the hypotheses of Theorem 2.10, and [11, Theorem 2.10] are different. Indeed, while
the case 1 < p < 400 requires a local sommability of w_P%l, the case p = 1 requires
the local boundedness of % The results of both Theorems are formally analogous,
but the auxiliary weights are different, and have different properties. Let us also
note that we do not assume any local growth condition, as in Theorem B.7 below,
where a weighted Poincaré inequality with a single weight is proved.

() dn < / ()] (y) dy.

Iﬂ,w

Proof. Fix 1 <i < N,. In (10) we take z = %“£%  then

) —u (252

2
i) < [ W) dy
By integrating with respect to 17 we obtain

a;

a;+b; aj+by
2 i+ bi\| - bi — a; 2
/ ‘U(n) —u (M) )y < M5 [/ (y)|w(y) dy.
Similarly we have
" utm - w (22 o) ay < 25 ! W) dy
M 2 - 2 L‘H’i '

2 2

Therctore [ [utn) —u (52 [ an < 0 a) [ W)lto) o

i

i
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b;
Hence ][ u(n) —u <%T+bz>

The conclusion follows since © € Dom,, and so

i) dn < [ () dy

> [t [ W)y < o .

We also have the following convergence result (see Proposition 9.3 in [13] for an
analogous result).

Proposition 2.12. Suppose that (H1)-(H2) hold true, let w € BVio(Igw) and let
(ur) C BVie.(Igw) be a sequence of functions such that

sup |(w, Dug)| (Inw) < 400, supug (ai;rb’) < 400 (15)
keN keN

for any i = 1,...,Ny,. Then for any interval K € (a;,b;), with i = 1,..., Ny,
there exists u € L'(K,w) N WH(K) and a subsequence (uy,) such that u,, — u in
LYK, ).
Moreover, if the sequence (ug)gen is uniformly bounded also in L>(Iq,,), i.e.
SUP ([l e 1,y + 10, D) (o) < F00, (16)
€

then u € BVi2.(Igw)-
Proof. A first consequence of Theorem 2.10 and (15) is that

sup [ || 11 () < +00-

keN
By (6), we can find a positive constant M; x > 0 such that w(z) > M,k for a.e.

x € K. Then
M, i sup/ lug|de < sup/ |ug|wdr < 400.
keN J K keN J K

Moreover, since w < w

keN keN keN

M; k sup/ |uy|dz < sup/ |up|wdr < sup/ luj | ivdz <
K K IQA,w

< sup/ luy |wdz < sup |(w, Duy)| (Inw) < +o0o.
keN J1g ., keN

Then, (uy,);, is bounded in W' (K). By [8, Theorem 8.8, Remark 10] we can extract
a subsequence still denoted (ug)x, and find v € W1(K) such that

lue — ull iy — 0, as k — +o0.

Furthermore, by (5) we can find a constant L; > 0 such that

/]uk—u\wdngi/\uk—u|dx—>0ask'—>+oo,
K K



346 V. Chiado Piat et al. / Relazation for a Degenerate Functional ...

and thus we have proved that
Jur — wll a0y — 0, as k — +o0.

Finally, if the sequence (ug)ren is uniformly bounded in L*(Ig,,), as in the proof
of Proposition 9.3 in [13] we can conclude that ||u|| k) < C, and this implies that
u € L'(K,|Dw|). Hence u € BV (Ig.w). O

Corollary 2.13. Under the assumptions of Proposition 2.12, if N,, < 400, then
there exists u € L'(Iq, W) and a subsequence (uy,) such that uy, — w in L' (Iq ,, 0).
If (16) holds, then u € BV (Iq.).

Proof. It suffices to use M = min{M,,...,My,} and L = min{L,..., Ly, },
instead of M; and L;, respectively. Il

3. Relaxation for finitely degenerate weights

In this section, in addition to hypothesis (H1), (H2) introduced in the previous
section, we also make the following assumption on the weight w.

(H3) w e W Inw);

loc

(H4) 1< N, < +o0.

Remark 3.1. We note that, as proven in [13, Proposition 5.1 (3)], under (H3), the
space BV (Iq,,) is a Banach space, with the norm

lullBve(ra,u) 7= [l 00w + 1l . D) + D (ww)[(Io.w) (17)

which is not generally the case.

3.1. The choice of the ambient space X and the convergence

Notice that, by the Poincaré inequality in Theorem 2.10, we have Dom,, C L(€, ).
In what follows, we set X = L'(Q,w) and we define the (w, Dw)-convergence, as
follows:

w
loc

Definition 3.2. We say that a sequence (u,),eny C BV
u € BV () if

loc

(Q) (w, Dw)-converges to
(i) wu,—uin L] (Ig.., ),
(i)  w,—u in L (Ig.w, | Dwl|).

Remark 3.3. This new convergence is a modification of the one introduced in [13]
and guarantees the lower semicontinuity of the pairing functional (see Step 2 in the
proof of Theorem 3.6).

Proposition 3.4. Suppose that assumptions (H1)—(H3) hold true. Then Dom,,
defined as in (7) is a Banach space endowed with the norm

[l pomn,, = el iz, 0y + [(ws Du)| (Taw)- (18)

Furthermore, the convergence in (18) implies the (W, Dw)-convergence.
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Proof. Notice that Dom,, is a linear subspace of BV}, (Iq..), and by [13, Corollary
5.2] we can endow it with the norm

HuHBVw(IQ’w) = |(w, Du)| (Inw), u € Dom,,. N (19)

We also have the following compactness result which extends Proposition 9.3 in [13].
In what follows, we denote by £! the unidimensional Lebesgue measure.

Proposition 3.5. Suppose that (H1)—(H3) hold true, and
L1\ supp(w)) = 0. (20)
Let (uy) C Dom,, be a sequence of functions such that

sSup ||Uk||Loo + ||uk||Domw < too. (21)
keN

Then there exist u € Dom,, and a subsequence (uy;) such that, possibly up to a
further subsequence, w,, — u in Li, (Inw,|Dw|); so that the sequence (ux,);en
locally (w, Dw)-converges to u in Iqg.,.

Proof. By Proposition 2.12 for any interval K € (a;, b;), with ¢ = 1,..., N, there
exists u € L'(K,w) N WY (K) and a subsequence (uy,) such that uy, — u in
LY(K,w) and so uy, (x) = u(x) for [w|L'-a.e. © € K, and therefore ug,(z) — u(x)
for £L'-a.e. x € supp(w)N K. Then by (20) ug,(x) = u(z) for L'-a.e. x € K. Hence,
since |Dw| < L', we get

ug,;(v) = u(z) for [Dwl|-ae v € K.
Since by (21), there exists C' > 0 such that
lug, —u| < C € L'(K, |Dw|),

by Lebesgue’s Dominated Convergence Theorem we conclude that ugp, — w in
LY(Q,|Dwl|). This implies that (uy,)jen (@, Dw)-converges to u in K. On the
other hand, by Fatou’s Lemma we obtain

/ |u| d| Dw :/ lim inf |ug, | d|Dw| < liminf/ |lug, | d| Dw| < +o0.
K K Jrtoo J—otoo i

Therefore, we have u € Li..(Iq.,, |Dw|), and so u € BV (Ig.w)- O

loc
3.2. Main result
We then consider

F(u) = inf{l}im inf F'(ug) : up — u w.rt. (0, Dw)—convergence }
—+00

/ W |wdx if u € AC(Q),
U) = Q .
+00 if ue LY(Q,w)\ AC(Q),

where F(

and let o= {u € L'(Q,0) : F(u) < +oo}.
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Note that for every u € AC(2) we have

/Q\u']wd:r:/QKw,Du)\.

Theorem 3.6. Suppose that (H1)—(H4) hold true. Then

/= = Dom,,
where Domy,, is defined by (7) and the following representation holds for the relazed
functional

(22)

Flu) = |(w, Du)|(Igw) if u € Dom,,
R NI if u € L'(, ) \ Dom,,.

Proof. Let us denote by H(u) the right-hand side of the above formula (22), i.e.

H(u) = |(w, Du)|(Iaw) if u € Dom,,,
C | Hoo if u e LY(Q, @) \ Dom,.

In the following we will prove that F' = H by showing the two inequalities.
Step 1. We first prove that F < H. To this end, it is enough to show that

F(u) < |(w, Du)|(Iqw) for all u € Dom,,. (23)

Suppose that AC(2) is dense in Dom,, with respect to (18). Then there exists a

sequence (uy) in AC(2) such that
lim wu = uin AC(Q) with respect to (18).

k—+o0

Then, F(u) < lim F(u) = lim |(w, Dug)|(Igw) = |(w, Du)|(Ig.w),

" k—+oo k—+o00

which is (23). To complete the proof, we now need to show that AC(S) is actually
dense in Dom,, with respect to (18), i.e., that for each u € Dom,, there is u;, € AC(Q)
such that

lim u, = w in L' (g, W) and

h—00 (24>

|(w, Dup)|(Igw) — [(w, Du)|(Ig.w) as h — +o0.

Since v’ € L*(Iq ., w), we can apply [9, Theorem 3.45] to find a sequence of functions
(vn)n C C¥(Iqw) C LY(Q,w) such that

Ny b;
lvon — || 2 (16 0) = Z/ lop, — v/ |wdz — 0 as h — +oo. (25)
i=1 Jai

Let us define, for given h € N, ﬂg) (aj, b)) >R, i=1,2,... has

a;+b;

ﬂg)(m) =u (ai;bi) —/x : vp(y)dy, = € (a;b;). (26)

We divide the proof into three cases, according to the structure of the set I .
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Case 1. Assume that N, = 1. In this case Ig,, = (a1, ;). Let (ﬂgl))h the sequence
defined in (26) for ¢ = 1 and, for each h, let up, =y : (a,b) — R defined as

iV(a) ifz€la,a),
up(x) == @, (x)  if z € (ag,b),
V(b))  ifz e [by,b].

Then it is easy to see that (i), C AC(Q). Let us prove that
b
/]ﬁh—u\wdx%Oash%oo. (27)

In fact, since w =0 in Q \ I,

b b1
/ |ﬂh—u|ﬁ)dx:/ |y, — u|wde.
a ai

Applying the Poincaré type inequality (2.10) with @, — u instead of u and since
ay, (44) = u (“$2), we obtain

b1
/!uh—u\wdxs/ @), — /| wdz = |(D(@n — ), w)|(Io.u)

al IQ,'LU

:/ lop, — u'|wdx.
Io

;W

Then |(D(a, — u),w)|(Igw) — 0, as h — +oo. Hence
|(Day, w)|(Igw)—|(Du, w)|(IQ7w)‘ < |(D(ap—u),w)|(Igw) — 0, as h — +00. (28)

Moreover, by (25) and (28), (27) follows.

Case 2. Assume now that N, = 2. In this case I, = (ai,b1) U (az,bs), and
assume that b; < as.

Firstly, we consider the subcase b; < ay. Let (aﬁj)) n the sequence defined in (26) for

1= 1,2 and, for each h, let up = @y : 2 — R defined as

'ﬂgl)(al) if x € [a,a1),
sV (x) if x € [a1, by),
iy (x) = (2)(“2) _Zg)(b” (@—b) +aD (b))  ifz e b as),
ﬂf) (x)2 1 if x € [ag, by),
La”) (by) if © € [by,b)].

Notice that (up), C AC(Q2) and (24) holds. Indeed, it can be done by repeating the
arguments of the 1st case and by observing that @ =0 1in Q \ Iq .
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Now, we consider the second subcase b; = ay. Let h € N such that

1 . bi—ai .
E<mm{ 1 :2:1,2}.

(Jarzo do(y)dy  if a; < o < ol

2

7ai+3bi . . . .
— 4
sithi 3b
fz > w(y)dy if % <z <\,
\ 0 if v €Q\ Tau.

Note that by (5) w € L*>((a;,b;)) and so w € L*((a;, b;)).
Let up, = up, : 2 — R defined as

(

a,’ (a1) if x € [a,ay),
1’221)(:6) if x € [ay, “1‘2“’1),
u(x) if o € [9dh b — 1),
w(e) 20 if g e by — L by)
)= { T
w xr
u(z) o + D) if # € [ag, a2 + 1),
u(z) if © € [ag + 3, 2E02),
ﬂEZQ)(x) if x € [GQ;bQ,bg),
La”) (by) if € [by, b]
Then (uz), C AC(Q) and (24) holds. Indeed, in order to prove (24), we now prove
that by
/H) |up, — u|wdx — 0 as h — oo, (29)
2
b1
and / . |ty | wde < C < 400, (30)
a1 1

2

since the proof of the analogous conditions on (as, “QQL”) are similar. Indeed, we
have by

by _
iy — ul b dz — 1— 2@ ) () da.
/aﬁb1 |up, — ul wdx /bl—}ll U < EOE] w(z)dx

2

Notice that @ is decreasing in [“£3% b,], and by (5)

R L C N (I | I C)) 2L, - _1
0<1 @ —D)] @b, = 1] < B0 = 1] 1Ch, T E <b1 h’b1>' (31)

Note that [w(by — +)| = |@(by)| # 0. Indeed,
a1tby a1tby

w(bl):/ i w(y)dy:/ i <Hw_1HLoo((‘”2+”1,y))>l dy < 0.

b1 bl



V. Chiado Piat et al. / Relazation for a Degenerate Functional ... 351

This implies that

b1 bl
/ ]ah—u\wdxgéh/ uwdr — 0as h — +o0o.

a1+by _1
2 bi—y

This proves (29). On the other hand, in order to prove (30) we note that

v () ifx e [‘“—;rbl,bl—%),

wp()=q 1 (/' (@) (z) + u()w'(z)) if € [br—,b).

Therefore

b1 bl—
/ |ay,| wdz = /
a1+b; aj+b;y
2

2

b1 b1 |’[Z)| b1 1
< Jwd — L wd L] [ wda.
—/ il ”/ -l “/bl-; ey e d

2 2

|u'w + | wdz

==
=
g
(o
&
+
\v

b1+ |w(by — %)|

Notice that the second integral is finite by (31). Let us prove that the last integral

tends to 0. Indeed,
_ A . 1

w = —w a.e. in (bl - ﬁ’bl)

and, since uw is bounded in (by — 1/h,by) (see Remark 2.9), we obtain

/b1 1 , by 1
———u||w | wdx = / ————|ul|w|w dx
bt [0(b1r = )] bt [0(br = 7))

1 b
<Ci—F— wdxr — 0as h — +oo.
@ (b = )| Sy, -2

Case 3. In the general case we have I, = Uf;i“i(aia b;) with b; < a;4q, for every
i =1,...,N,_1, it is sufficient to repeat the arguments of the 2nd case for every
i=1,.... Ny 1.

Step 2. We now prove that H < F. To this end, since

F = sup{G : G lower semicontinuous and G < F'},

its is enough to show that H is lower semicontinuous and H < F'. The last inequality
is trivially true, so, we now need to prove the liminf inequality for H. Let u;, — u
with respect to the (w, Dw)-convergence in Iq,,. Then we have that u,—u weakly
in LI, w). By Mazur Lemma there exists a function f : N — N and a sequence
{agn : h <k < f(h)} such that oy > 0, and

f(h) f(h)
Z arp =1 such that the sequence vy, := Z Qg U,
k=h k=h

strongly converges to u in L*(Iq ., w) and L'(Iq,,, |Dwl).
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Notice that (4) and the definition of w imply that £'(Ig,\supp(w)) = 0. Then
vp(x) = u(x) for Ll-a.e. z € Ig,,. Since w € Wb (In.) C Li2.(Io.,) and (4) hold

true, then for all compact K € I; := (a;, b;) one gets

1
/ lop, — uldx < / lop, — u|wdz < C/ |y, — u|de,
CGi,K JK K K

for some positive constant C. Then v, — u strongly in L (Iq., w), and thus
weakly in Li (Iq.w, w). Hence, since v, — u strongly in Li (Iq., |Dw|), and thus
weakly in L

loc
Le(Io,w, [Dw|) we conclude that vj, (w, §)-converges to u in the sense of
Definition A.5. Therefore, we may apply Theorem A.6 to conclude the desired lower
semicontinuity inequality. Indeed, by (41) we get

liminf H (v;,) > hl_igloo |(w, Dup)|(Ig,w) > [(w, Du)|(Igw) = H(u). (32)

h——o00

Now let us prove that (32) holds true for u;,. Suppose by contradiction that (32) is
not true for uy. By the definition of lim inf we have that

Cy ::sup{inf{/ wlul,|dz - m > h};h eN} </ wlu'|de, — (33)
IQ,w IQ,w

Cy = sup{inf{/ w]v;\dx:th’};h’eN} 2/ wlu'|dz. (34)
IQ,w IQ,w

In (34), we use the definition of sup, so that for all £ > 0, there exists ' € N such

that
inf{/ w|v;|dx:j2h’} >C’2—5Z/ wlu'|dz — €.
Iow Io

,w

Moreover, by (33), for all h € N, we get

inf {/ wlu,|dx :m > h} < / wlu'|dz.
IQﬂU Iﬂ,w

It implies that [ I, wlu'|dz is not the infimum, so that there exists § > 0, such that

for each m > h

/ wlup,|dz 4+ 6 < / wlu'|dz, (35)
I Io

,w W

and the same inequality holds true for all m’ > m > h. Now let us choose such
h > h'. Then

f)
/ wlu'|de—e < inf {/ wlvilde : j > h’} < inf { Za;w/ wluy|dz : j > h'}
IQ,w IQ,w IQ,w

k=j

f(G)
Sinf{Zakjj(/ w|u'|dx—5> 2 Zh’} :/ wlu'|dz — 6.
k=] IQ,w IQ,w

Then 6 < e. Since € > 0 is arbitrary, we get that 0 < 0, and thus a contradiction
because d > 0. ]
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A. A pairing beyond BV

In this section, we recall the notion of pairing (w, Du) for functions u that may
not be of bounded variation, and we introduce the larger space BV*(2), where this

pairing make sense. In the definition, we will use a precise representative u? defined
for functions u € Li ().

A.1. Precise representatives

Firstly, we recall some basic definitions and results about the precise representatives
of u € LL (Q) (see [1, Sections 3.6 and 4.5]), where 2 C R™ is an open set.

loc

1
loc

We say that a function u € Ly () has an approzimate limit z € R at z € Q if

. 1
lim — L | dy=0:
Tl}gh L (B (x)) /B;r(x) |u<y) Z| y=0;

and we say that x is a Lebesque point of u. The set S, C € of points where
this property does not hold is called the approzimate discontinuity set of u, and
L"(S,) = 0. For any z € Q\ S, the approximate limit z is uniquely determined
and is denoted by z =: @(z). Let u = xg, for a measurable set £ C R"; in this case
the approximate limit at a point x € R" is also called density of E at z, and it is
defined by

) £(ENB@)
D)= o =)

whenever this limit exists.

For every Borel function u : €2 — R, we denote the sublevel and superlevel sets of u
as

{u<ty={reQ:ulx) <t} and {u>t}={reQ:ulx) >t}

and we give the definition of the approximate liminf and limsup at a point x € €2 in
the following way

u™(z) :=sup {t € R: D({u < t};z) =0},

and ut(z) :=inf {t € R: D({u > t};z) =0}

(see [1, Definition 4.28]), where R := R U {£oc}.
We note further that ut,u™ : Q — [—o0, +00| are Borel functions and that the set
Sti={reQ:u (z) <u'(z)} satisfies

L(5,) =0,

so that u™(z) = u™(z) for L"a.e. z € Q (see [1, Definition 4.28]). If u € L (Q),
we have

ut(z) =u (2) =a(z) forallz e Q\S,,

and so S C S,. Therefore, in Q \ S* we shall write @(z) := v (z) = v (x), with
an abuse of notation.
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On the other hand, for every u € LL (), we say that x € Q is an approzimate jump

loc

point of u if there exist a,b € R, a # b, and a unit vector v € R"™ such that

r—0+ L(Bi(z)) / L) ) = aldy =0 (36)

: 1
lim —— b dy =
ro0+ L7(BE()) /Bg(x) [uly) = bl dy =0,

T

where
Bi(x):={yeB.(z): (y—2)-v>0}, Bi(r):={yeB(z):(y—2) -v<0}

The triplet (a,b,v), uniquely determined by (36) up to a permutation of (a,b) and
a change of sign of v, is denoted by (u'(z),u®(z), v, (x)). We observe that

u” (z) = min{u'(z),u*(r)} and u'(z) = max{u'(z),u’(x)} for all x € J,.
Finally, for u € L .(Q) we define the precise representative of u in x € ) as

oo 1
Y (:E) T rli>r(1)1+ L7 (B(x)) /BT(QC) U(y) @y,

whenever the limit exists. It is then clear that

a(x) r € Q\ S,
@) = o) 4 e (37)
— 7 xeJ,

A priori, it is not clear whether u* is well posed in S, \ J,, in general. However, for
u € BVioe(9), it is well known that we have J#"~1(S, \ J,) = 0, so that u*(x) exists
for " 1-a.e x € Q and, up to a " L-negligible set, is given by (37).

Finally, for every Borel function we define the representative uz : Q= R as

(2) = {%(u‘ (x) +ut(x)) ifxeQ\Z, (38)

0 ifee Z,

where Z,, := {x € Q: u"(z) = +00 and v~ (z) = —oo} and

=

u

(x) =u(x) forall z € Q\ S

If u € LL_(Q), we notice that uz(z) = a(z) for all z € Q\ S, and uz(z) = u*(x)

for all z € Q\ (S, \ J..), but we might have u*(z) # uz(z) for some z € S, \ J,, (sce
Example in [13] Section 2.2).

A.2. Pairing in the n-dimensional case

In this subsection, we need to recall a general notion of pairing for divergence mea-
sure fields, as introduced in [13, Section 3.
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We define DML () as the space of all vector fields w € L (2, R™) whose diver-

loc
gence divw in the sense of distributions belongs to M..(€2).

First of all, we need suitable ambient classes of summable functions, which naturally
depend on the chosen Borel field w. Given w € DM, (), we set

XY(Q2) = {u Borel function : u € Ll(Q,w),u% c L'(Q, \divw|)} ,

XP.(Q) = {u Borel function : u € LIIOC(Q,w),u% € Li (9, |divw|)} :

We now recall the definition of pairing for functions in X“.(2).
Definition A.1. Let w € DML (), and u € X{*.(Q). We define the pairing
between w and w as the distribution
(w, Du) : C°(Q2) - R
acting as

((w, Du).g) =~ |

u? o ddivew — / uVep-wdr  for p € CZ(Q). (39)
Q

Q

A.3. Pairing in the one-dimensional case

Let us notice that for n = 1, 2 C R and we have divw = Dw. Furthermore, we
have that

DMio(2) = BVioe(2) C Lz (2)
and ((w, Du), ) = — / uzpdDw — / uVe-wdz  for p € C(Q). (40)
Q Q

Then, recalling that if u € BV.(R2), then u*(z) = u%(x) for every = € Q and by
Proposition 3.5 (3) in [13] since BV),.(£2) C L. (€2

{u € BVioe(Q) : uz € LL (Q, |Dw])} = BVi0e(9).

We will also need the following classes of functions which are the analogue of BV-
type functions when working with the pairing.

Definition A.2. Given w € BV,.(2), we define the classes
BV*(Q) :={u e X" (Q) : (w, Du) € M(Q)},
BVE.(Q) :={u € X2.(Q) : (w, Du) € Moe(Q)}.

Remark A.3. By Proposition 3.5 in [13] since w € L2 (€2) , then

loc

BV (2) © BV (€2).

loc

Remark A.4. As noted in [13, Remark 3.4], the set BV}2.(Q2) is not a linear space.
This is due to the fact that the pairing is, in fact, a nonlinear operation in the second
component, representing a departure from the classical BV-setup. Nevertheless, if
w € W,hHQ), then BVY (Q) is a linear space (see Corollary 5.3 in [13]).
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Since the pairing (w, Du) is affected by the pointwise value of u%, then a suitable
notion of convergence involving these representatives is introduced in [13].

Definition A.5. Let w € BV(€2). We say that a sequence (u,)nen C X[%(92)

(w, 3)-converges to u € X% (Q) if

(i)  w,—uin LL . (Q,w),
1
(i) w2—u2 in LL (9, |Dwl).
When w € WiL(Q), then (ii) is equivalent to u,—u in LL (€, |Dw]).
The following lower semicontinuity of the pairing holds true.

Theorem A.6. [13, Theorem 4.3] Let w € BV),(2). Then for every sequence
(Un)nen C X12.(Q) and for every u € X%(), and such that (u,), (w,3)-converges
to u, it holds

{(w, Du), ) = lim ((w, Duy),@) for all ¢ € C()

n—-+00

in the sense of distributions. Further, if u,u, € BV .(2) for all n € N, then

(. D) () < liminf | Du,)| (€. (a1)
If ilelg |(w, Duy,)| () < 400,
we get |(w, Duy)[(€2)—=[(w, Du)|(2)

weakly in the sense of measures.

B. Weighted BV-spaces

In this part, for the sake of completeness, we recall the definition of weighted
BV (€; w)-spaces introduced in [6], where the weight w belongs to the global Muck-
enhoupt’s A; := A;(Q2). Suppose that €2 is an open subset of R, and let €y be a
neighborhood of Q.

Definition B.1. Let w € L (Q), w > 0. We say that w € A; if there exists a
constant ¢ > 0 such that

w(x) > c][ w(y)dy a.e. in any ball B(x,r) C Q. (42)
B(z,r)

In[6], given v € L'(Q;w), the weighted total variation of u with respect to w is
defined as

TV (u;w) := sup { / ug' dz : ¢ € CHQR),|p(z)] < w(x) for all x € Q}
0

Denote by BV (£2; w) the set of all functions u€ L'(Q; w) for which TV (u; w) < +o0,
and we equip it with the norm

HUHBV(Q,w) = Hu”Ll(Q;w) + TV (u;w).
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In particular, when w = 1 we recover the usual space BV(£2). For a measurable set
B C (), we then define the perimeter in 2 as the weighted total variation of the
characteristic function of B, that is, Per(B;w) := TV (xp;w).

Remark B.2. Let us recall that in the definition of weighted Sobolev spaces, the
weight is usually defined a.e. (almost everywhere) because functions in these spaces
have derivatives that, as measures, are absolutely continuous with respect to the
Lebesgue measure. Nevertheless, in the case of weighted BV-spaces, the situation is
completely different. Indeed, derivatives can be concentrated on sets of null Lebesgue
measure. A proper definition of a weighted BV-space requires a pointwise definition
of w. In fact, requiring that w € A; reflects this, as it captures a pointwise definition
in each ball B(z,r) for which the inequality (42) holds.

In [6], it is shown that it not necessary to assume that w is lower semicontinuous to
define a weighted Sobolev space. However, in the case where w € Ay, it is possible
to show that we can find an auxiliary weight w* that is lower semicontinuous and

such that BV(Q;w) = BV(Q; w*).

Lemma B.3. [6, Lemma 3.1] Suppose that w € A;. The following assertions hold true.

(i)  Let us set Lo(Q2,R) the set of Lipschitz continuous functions with compact
support. Define

w' = sup |¢|.
$ELG(Q,R)
lp|<w

Then BV (§2; w) = BV(€; w*).

(ii)  Let us consider the relaxed function w** associated to w, that is,
w*™ :=sup{g:g:Q— (0,4+00) is lower semicontinuous, and g < w}.

Then w** =w* in Q, and BV(Q;w) = BV(Q; w*) = BV (Q; w*).

(iii) w*™ € A;.
Let us set w(zx) = sup][ w(y)dy.
B(z,r)

r>0

Since w € Ay, note that w € A; with the same constant ¢ > 0. Indeed, observe that

~ 1 1
f ot wtay< o)
B(z,r) ¢ B(z,r) ¢

Furthermore, since the integral is a continuous operation, then by taking the supre-
mum of continuous functions we obtain a lower semicontinuous function, and w > 0.
Hence, in order to obtain suitable density results, it is customary to replace w with
an appropriate lower semicontinuous function when defining weighted BV-spaces.

Definition B.4. Let w € A, and define A as

N w is lower semicontinuous, and
ATl =qwe A : .

condition A; is satisfied at any point
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The following holds true.

Proposition B.5. [6, Theorem 3.3] Let w € A}, and u € BV(Q;w). Then there

exist a finite Radon measure |Dul, and a |Dul,-measurable function o: Q@ — R such
that |o(x)| = 1 for |Dul,-almost every x € Q0 and such that

/Qu(x)gb'(x) dz = —/Qdemw(x). (43)

The measure |Dul, and the function o are uniquely determined by (43) and the
weighted total variation TV (u;w) is equal to | Dul,(€2).

Note that, using (43), one can check that |Dul,, = w|Dul, so that

TV(u;w)—/w(:U) d|Dul(z).

Q

Since the functional TV (-;w) is defined as the supremum of linear continuous func-
tionals in L'(Q;w), it is lower semicontinuous with respect to the L'(2;w) metric.
The following density theorem for weighted BV functions holds true.

Theorem B.6. [6, Theorem 3.4] Let Q be an open subset of R with Lipschitz
boundary. Suppose w € Lip(f2), and w € A;. Then for every u € BV(Q;w)
there exists a sequence {uy, tnen € C°(R) such that w, — u in L'(Q) and we have
Jo luhlwde — TV (u;w) as n— oo.

A similar version of this density result can be found in [18, Proposition 2.4]. In what
follows, we recall a Poincaré inequality proved in [6, Theorem 4.2].

Theorem B.7. [6, Theorem 4.2] Let u € BV(Q;w), with w € A}, and ¢ > 1.
Suppose that the local growth condition

<c
/ w(y)dy
B(z,s)

holds for any pair of balls B(x,r) C B(z,s) in R. Then there exist two positive
constants C1, Cy such that the following inequalities hold true:

(44)

S

: (f ju— uB!qw(y)dy); < "NV (u50)(B)

for all balls B = B(z,r) C R, where ug := ][ u(y)dy, and
B

TV (u;w)(B) = /Bw(x)d]Dqu).
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. Suppose that

1
limsup R (/ w(y)dy) < +00.
R—+o0 B(z,R)

Then sl gy < CoTV () (R).
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