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The aim of this paper is to investigate the dual problem of a generalized equilibrium problem in
the framework of a reflexive Banach space. By means of the Fenchel duality, we introduce the dual
problem defined via the Fitzpatrick transform of the bifunction involved, that turns out to be an
equilibrium problem itself in the dual space. We present conditions which entail the solvability of
both primal and dual problems.
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1. Introduction

The classical generalized equilibrium problem (EP) is the problem of finding a point
Z in C such that
f@y)+nh(y)>h(z), Vyel (EPy)

where C'is a nonempty, closed, and convex subset of a reflexive Banach space X, f is
a bifunction on X x X, real-valued on C'xC', and h is a proper function defined on X.

These problems have been extensively studied in the literature, including in more
general settings, as they encompass many well-known problems as special cases.
Such problems often arise in areas like optimization and variational inequalities.

Alongside the equilibrium problem (EP/), the so-called Minty problem has also been
considered in the literature, which consists in finding a point = € C such that

—f(y, ) + h(y) > W(E), YVyel (MEP;)

(see, for instance, [14]). Minty problems are sometimes referred to as “dual prob-
lems”, but this terminology can be misleading, as they do not involve any of the stan-
dard duality operations. The connections between equilibrium problems and their
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corresponding Minty problems have often been studied under assumptions of gen-
eralized monotonicity of the bifunction f. Inthiswork, monotonicity playsno role.

The goal of our study is to formulate a meaningful notion of duality for (EP;) by
interpreting the equilibrium problem as a particular optimization problem. This
perspective allows us to apply Fenchel duality theory to derive a corresponding dual
formulation.

Although similar approaches have been proposed by other authors (see, for instance,
[7] and [16]), a key feature of their formulations is that the resulting dual problems
are not themselves equilibrium problems.

In our investigation, starting from (EPy), we construct a dual equilibrium problem
(DEPy) in the dual space X*. This construction is based on reformulating the
original equilibrium problem as an optimization problem. By suitably applying
Fenchel conjugation in an iterative manner, we derive a dual problem that also
takes the form of an equilibrium problem, where the associated bifunction is defined
using the Fenchel transform of the Fitzpatrick function of f.

The paper is organized as follows: in Section 2 we introduce the mathematical set-
ting, and we recall several technical tools and properties of convex functions and
bifunctions useful to support the main constructions later. Section 3 provides solv-
ability conditions for both the equilibrium problem (EPy) and its Minty counterpart
(MEPy), and we prove existence and inclusion results between the respective solu-
tion sets. Section 4 presents the main theoretical contribution of the paper, that is a
rigorous formulation of the dual equilibrium problem (DEP/) using convex duality.
We establish strong duality results and we also explore the relationship between
solutions of EP;, DEP/, and a joint minimization problem involving the Fitzpatrick
transform. Section 5 extends the duality analysis to include the Minty dual equilib-
rium problem (MDEP/), based on the mirror bifunction. We establish conditions
under which the Minty and standard dual problems coincide and provide further
solvability results.

2. Preliminaries
Let X be a reflexive Banach space and denote by X* its dual.

Let us recall that a function h from X to | — 0o, +00] is said to be coercive on a set

CCXif
=4 lim  A(x) = +o0, (1)

lel|—+o0, zeC

while h is said to be supercoercive on C' if

LCARN 2)

el —+oo,zeC [zl
Remark 2.1. Let C be a nonempty, closed and convex subset of X. If the function
h : X —| — 00, +00] is proper, convex, lower semicontinuous and supercoercive on
C, and hy : X —] — 00, +0o0] is proper, convex and lower semicontinuous on C', then

the function h + hq, if it is proper on C, has a minimum on C, that is there exists
a point o in C such that h(xg) 4+ hi(xo) is real, and, for every z in C,

h(xo) + hi(xo) < h(z) + hy(z).
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This follows from the existence of an affine function (z*,-) + a minorizing h; [20,
Corollary 2.3.2] so it is easy to see that h + hy is lower semicontinuous and coercive.
Thus, it has a minimum [12, Cor. II1.20]. O

Given a function ¢ : X —] — 0o, +00] the Fenchel conjugate * : X* — [—o0, +00]
is defined as
¥i(@") = sup(a”, z) — (),
Te

where (-, ) denotes the usual duality product. For any function 1, the conjugate
1* is always a lower semicontinuous and convex function. If v is proper, that is,
(z) < +oo for some z € X, then ¢* never takes the value —oco. Moreover, if 1)
is bounded from below by an affine function (x,-) + «, then *(xf) < 400 and
therefore ¢* is proper.

It is worth noting that if ¢ is convex, lower semicontinuous, and supercoercive, then
the Remark 2.1 implies that the Fenchel transform of ¢ is real-valued on the whole
space X*.

In the sequel, we will use the biconjugate ™ : X — [—00, +00] defined as follows:

7 (x) = sup ((2%,x) — *(27)).

TreX*

It well known that, in case v is proper, convex and lower semicontinuous on X, then,
by the Fenchel-Moreau Theorem, * is proper as well, and the equality ¢ = ¢** holds
true.

Proposition 2.2. (see Proposition 13.47 in [3]) Let {1;}icr be a family of proper,
lower semicontinuous and convex functions defined on X. Then

(Sup wi) = (inf wf) )
icl el

If sup;c; i is not identically +o00, then

(sup wi) * = (i_nf 1/)1*) )
iel il

where ¥~ denotes the lower semicontinuous and convex envelope of 1.
We recall that a bifunction f: X x X — [—o00, +00] is said to be saddle if f(z,-) is
convex for every x € X, and f(-,y) is concave for every y € X.

In the sequel we will mainly (but not always) consider bifunctions f that are real-
valued on C' x C' € X x X, where C' is a nonempty, closed and convex set, and
satisfy the following conditions:

Jmoo xgC
f(x’y)_{%-oo reC,y¢C

Combining notions in [1, Remark 2] and [18, pg. 349], bifunctions with the properties
above will be called lower normal bifunctions on C.
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The Fitzpatrick transform associated to a lower normal bifunction f is the bifunction
wr: X X X* =] — 00, 400] given by

sy, 27) = (=) (@7) = sup({a”, 2) + f(z,9)) = sup({a”, 2) + f(2,9))
TEe e
(see [5], [11]). Note that, by construction, the Fitzpatrick transform of a lower
normal bifunction has the following properties:

P1 It satisfies the inequality
ey, z*) = (2%, 2) + f(z,y) Vr,yeX. (3)

In particular, if f(Z,-) is (super)coercive for some Z € C, then ¢;(-, x*) is
(super)coercive for every z* € X*;

P2 if f(z,z) > 0 for every x € C, from (3) we have ¢¢(y,x*) > (z*,y) for every
y € C,z* € X*. In addition, ¢(y,z*) = +oo for every z* € X* whenever
y ¢ C. Thus, ¢s(y,z*) > (z*,y) holds for every (y,z*) € X x X*;

P3 if f(x,-) is convex (respectively, lower semicontinuous) for every = € C', then
@y is convex (respectively, lower semicontinuous) on X x X*;

P4 the bifunction ¢y is proper if and only if for some y € C, the function f (-,y)
is majorized by an affine function (z*,-) + «, where z* € X*. In this case,
o7 (y,—2*) € R. For example, this happens if for some y € C the function
f (+,y) is concave and upper semicontinuous.

The following theorem (actually, a version of Berge’s maximal theorem [4]) gives a
basic property of the marginal function of a bifunction under a technical condition,
that is fulfilled in some important cases of interest:

Theorem 2.3. Let X be a reflerive Banach space, and ¢ : X* x X — |—00, +0]
be a conver and lower semicontinuous function. Assume further that the following
condition holds:

(C) if {a1} C X* is a bounded sequence and {y,} C X is a sequence such that
[ynll = +00, then (a7, yn) — +00.

Then the marginal function m defined by
* — : f *
m(z") = inf (a7, y)

is convex, does not take the value —oo, and it is lower semicontinuous. In particular,

m** =m.

Proof. It is well known that the function m is convex (see, for instance, Th. 2.1.3(v)
in [20]). Let us now show that m(z*) > —oo for every z* € X*. Fix z* € X*.
If p(z*,y) = +oo for every y € X, then m(z*) = +o00. Otherwise, suppose that
o(z*,-) is proper. By taking in (C) z¥ = z* for every n, we deduce that the function
y — p(x*,y) is coercive. Since it is also convex and lower semicontinuous, it attains
a minimum on X. In particular, m never takes the value —oo. To prove the lower
semicontinuity, we follow Aubin’s proof with some adjustements (see Prop. 1.7 in
2]). If m is identically 400, then there is nothing to prove.
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Otherwise, if m is proper, then it is sufficient to show that for every A € R, the set
Smai={r" € X" :m(z") <A}

is closed. Since X is reflexive and S,, ) is convex, we will use the norm topology.
Let {x}} be a sequence in S, , converging to xj. For each n € N, since we have
m(z:) < A < 400 and, as said before, the function y — (27, y) attains a minimum,
there exists y, € X such that o(z},y,) = m(x}). We deduce that

Az m () = (2, Un),

and therefore, by condition (C), the sequence {y,} must be bounded. By the re-
flexivity of the space X, there exists a subsequence {y,} converging weakly to some
yo € C. Then (x},,y,), normxw-converges to (zj,v), and since ¢ (-,-) is also
norm X w-lower semicontinuous, ¢(xf,yo) < A so m (z§) < A. This proves that S,
is closed. Finally, the equality m*™* = m trivially holds if m(x) = +oo for all x € X,
and it follows from classical results in case m is proper. O

Later on, we will apply Theorem 2.3 to the bifunction ¢ defined by
e(x*,y) = @r(y,27) + h(y) (4)

where f: X x X — [—o00,400] is a lower normal bifunction on C' such that f (z,-)
is convex and lower semicontinuous for all z € C', and h : X — RU{+o0} is proper,
convex, and lower semicontinuous.

Let us list some cases where condition (C) holds for the particular bifunction in (4).
Let {2} C X* be a bounded sequence such that ||z}| < K, and {y,} C X with
|lyn]| = +o00. Note that, from Property P2 of the Fitzpatrick transform, if vy, ¢ C
then ¢ (yn, z}) = +00. Thus without loss of generality, we can take {y,} C C.

(a) Suppose that h is supercoercive on C. Take any z € C. Then f(z, -) is minorized
by an affine function of the form (y*,-) + «, so

@5 Yn, 3) + B (yn) = (23, Z) + f(Z,9n) + 1 (Yn)
> — 1zl 1zl + W yn) + @+ 2 (yn)

> =K 2l = Iy lynll + o + 2yn)

_ —K|z|+« * h (yn)

= ol (L — g+ 5
(b) Suppose that f(z,y) has the form f; (y) — fi1 (x), where f; : X — R is convex,
lower semicontinuous, coercive, and h is bounded from below. In this case f is real-
valued in X x X, and ¢y (y,2*) = fi(y)+ f{(«*). In particular f{ is proper, convex,
lower semicontinuous so it is minorized by an affine function. Thus, it is bounded
from below on bounded sets. It follows that:

(@ (yn, 27,) + 1 (yn)) = Hm(fy (yn) + f7 (27) + 1 (yn)) = +o00.

)—)—i—oo.

(c) Suppose that there exists z € X such that f (z,-) is coercive and h is bounded
from below. Under these assumptions,

25 Wno 05) + h(yn) = = 2 121 + £ (7, yn) + b (yn) = Fo00

as ||yn|| = 4o00. Cases like h = 0, as well as case (b) are included.
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Remark 2.4. Suppose that h is supercoercive on C', dom(h)NC # ), and f(-,y) is
concave and upper semicontinuous for every y € C'. Then, under the assumptions
of Theorem 2.3, the marginal function m of (4) is proper. In fact, let ¥ € C be such
that h(y) € R. By property P4 of the Fitzpatrick transform, there exists z* such
that ¢;(7,2*) € R. Hence, m(z*) € R.

3. Existence results for EP and MEP

In this section we consider the (generalized) equilibrium problem (EP): Given a
nonempty, closed and convex subset C' of X, find a point z in C' such that

f@y)+h(y) =h(z), Vyel, (EPy)
where f is a bifunction real-valued on C'xC', and h is a proper function defined in X.

Besides to (EPf) one can consider the Minty (generalized) equilibrium problem
(MEPy): find a point Z in C' such that

—f(y,2)+h(y) > h(z), Vyel. (MEPy)

We will denote by S, and S, the solution sets of (EP ;) and (MEP ), respectively.
Note that if we define the bifunction f : X x X = R by

fA('TJy) = _f(y7x>7
then (MEP;) is nothing but (EP;), and

51{41313 = Sépa S]{:cP = SI{/IEP‘ (5)

We call fA the mirror bifunction of f. Note that if f is lower normal with respect to
C, then f is not lower normal; in the language of [18, pg. 349] it is the upper simple
extension of the bifunction (z,y) € C' x C'+— —f(y, z).

Let us recall the following existence result for an equilibrium problem (see [17,
Theorem 2.1]):

Theorem 3.1. Let E be a Hausdorff topological vector space, and C' be a nonempty,
closed and conver subset of E. Suppose that the function 1 : C' — ]—o00, +00]| is
proper, lower semicontinuous and convex, and that the function v : C' — R satisfies
the following assumptions:

(A1) ¥(v,v) <0 for every v € C,
(Ag) ¥(v,-) is concave for each v € C,

(As) (-, w) is lower semicontinuous on C for each w € C.

If there exists a compact subset B of E, and a vector wy € BN C' such that
Y1 (wg) < 400 and ¥1(v) + (v, wo) > 1 (wo) (6)
for allv in C'\ B, then the set of solutions to the problem: find a point v in C with
() + (0, w) < Yy(w) Yw el

is a nonempty and compact subset of B N C'.
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The following conditions on f and h will be taken into account in the sequel:

(A) f is a saddle bifunction, real-valued on C' x C, such that for each z in C,
f(z,x) >0, f (z,-) is lower semicontinuous, and f(+, ) is upper semicontinuous;
(B) h: X — ]—00,400] is convex, lower semicontinuous, and dom(h) N C # (.

Proposition 3.2. Suppose that conditions §A) and (B) hold. Then Sip C SL..
Furthermore, if h is supercoercive, the set Sgp is nonempty.

Proof. Set C := dom(h) N C. By the assumptions, ] is nonempty and convex.
To show that S{/[EP C SéP’ define the bifunction F': ¢ x C; — R by

F(x,y) = f(z,y) + h(y) — h(z).

We assume that Sjpp # 0, otherwise the inclusion is trivial. Let Z € SJzp; then
z € Cy and F(z,z) < 0 for all z € C,. For every x € C; the function F(z,-) is
convex, so setting z; = (1 — )T +tx, 0 <t <1, we find

0 < F(zy,my) < (1 —1t)F (x4, T) + tF(ay, x). (7)

Since F'(z;,7) <0, (7) implies that F'(z;,x) > 0,0 < t < 1. By upper semicontinuity
of F(-,z) we have

F(z,z) > limsup F(z,x) > 0.
t—0t

This means that f(Z,z)+h(z) > h(Z), ie., Z € Siy and Slzp C Sip. Let us show
that (EP) is solvable. Setting ¢4 := h and ¥(v,w) := —f(v,w), it is easy to check
that assumptions (A;-Aj) in Theorem 3.1 are fulfilled when we consider the weak
topology on X. Choose T € (', and for each r > 0 define the weakly compact set

B, ={reX:|z—7| <r}.

Since h is supercoercive and —f(-,T) is convex and lower semicontinuous, there
exists a point £* in X* and a real number « such that for all x € C,

_ ¥ h(x) « o
h(z) — f(z,T) > h(z) + (=", 2) + a > ||z]| ( — ||lz*|| + ”x”> mem +oo. (8)

IE
Therefore, there exists a positive number 7 such that
hz) — f(z,T) > h(T)

for all x € C satisfying the inequality || — Z|| > 7. Since B; is weakly compact, by
Theorem 3.1, S, # 0. O

Proposition 3.3. Suppose that conditions (A) and (B) hold. Furthermore, assume
that f(x,x) =0 for every x € C, and one of the following conditions holds:

(a)  for some T € dom(h) NC, f(Z,-) is coercive and h is bounded from below;
(b)  for some & € dom(h) N C, —f (-, %) is coercive and h is bounded from below;

(¢)  h is supercoercive.

Then SLp = Sligp, both sets are nonempty, and they are included in dom(h) N C.
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Proof. The mirror bifunction f(:z:,y) = —f (y, x) satisfies the assumptions of the
first part of Proposition 3.2. Thus, SI{;IEP - Sép. It follows immediately from (5)
that Sf, C S up, so finally S{., = SI.. To finish the proof, it is enough to show
that at least one of the sets Sép, S{/IEP is nonempty.

Assume that (a) holds, i.e., f(Z,-) is coercive for some & € C}, and h is bounded
from below. We set ¢y := h and ¢ (v,w) := f (w,v). The assumptions (A;)—(Az3)
in Theorem 3.1 are fulfilled for the functions ¢, and ¥ when we consider the weak
topology on X. Since f(Z,-) + h(-) is coercive, we deduce that there exists # > 0

such that
f(&,2) + h(z) > h(7)
for all x € C\B;. This means that all conditions of Theorem 3.1 are fulfilled and
e # 0.
Let us now consider condition (b), and observe that this is equivalent to say that f

satisfies (a). Thus, following the same steps, we obtain S{CIEP = Sép # ().

As for condition (c), we know already from Proposition 3.2 that S, # . Thus, the
solution sets are nonempty in all cases. [

4. Dual equilibrium problem

In this section, we introduce and investigate a suitable notion of the dual problem
for (EPy), which is itself an equilibrium problem. Our study builds on results
obtained in finite-dimensional settings (see [6]), while also extending them in several
directions. The bifunction f may take extended real values, the function h is not
necessarily the indicator function of a compact convex set C'; instead, C' is now
assumed to be convex and closed, rather than convex and compact.

In the sequel we will assume that f is lower normal on C, that h is proper and that

C1 :=dom(h) N C # 0.

It is well-known that equilibrium problems are strictly related to optimization prob-
lems. To this purpose, set

g(x)=sup (=f(z,y) —h(y), veX (9)

yeCi
Under our assumptions, the function g takes values within | — oo, +00].

Let us consider the following optimization problem:
inf (g() + h(a)). ()

Note that a point z is a solution to (EP) if and only if ¢(z) + h(z) < 0. In fact, if
Z is a solution, then it belongs to € and

sup(—f(Z,y) — h(y)) < —h(2).

yeC

Since we have sup,cc(—f(7,y) — h(y)) = sup,ec, (—f(Z,y) — h(y)), we conclude
9(Z) + h(z) < 0. The converse works in a similar way. In addition, if f(z,z) =0

for every = € C, then g (x) + h(x) > 0; in fact, if x ¢ C; the inequality is trivial.
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Otherwise, if x € (', we have

g(a) = sup(=f(z,y) = h(y)) = = f(z,x) = h(x) = —h(z).

yeC

We summarize the above discussion in the following proposition:

Proposition 4.1. Let f be a lower normal bifunction such that f(x,z) =0 for all
x € C, and h be proper and such that Cy # (0. Then T is a solution of (EPy) if
and only if it is a solution of (P). In this case, the infimum of g + h equals 0 and is
achieved at .

Remark 4.2. Some properties of f affect g :
(i) g is convex if f(-,y) is concave, for all y € C;
(ii) g is real-valued on C' under one of the following conditions:

(a) f(z,-) is convex and lower semicontinuous for all x € C', and h is proper,
convex, lower semicontinuous and supercoercive on C';

(b) f(z,-) is convex, lower semicontinuous and coercive for all z € C, and h
is proper, convex, lower semicontinuous and bounded from below.

In fact, in both cases, the supremum in (9) is a maximum; this follows because
f(z,-) + k() is proper, convex, lower semicontinuous and coercive. ]

Let us now consider the bifunction ®; : X* x X* — [—o00,+00] associated to a
bifunction f and defined as follows:

Oy (¢%,y7) = sup inf ((y",y) — (27, 2) = [ (2,9))
yEX‘TE

=sup ((5",0) = o5 (1:0) = (or (22)" () (10)

We first investigate some properties of ®;. We will assume that f is lower normal
with respect to a nonempty, closed and convex set ', and we will add further
properties on f when needed.

(a) @g(x*,-)is convex on X* for every z* € X*, since it is the Fenchel transform of
a function. Moreover, if f(z,-) is convex for every x € X, then ®¢(-,y*) is concave
for every y* € X*, and thus ®; is a saddle function.

(b) @f(x*,-) is lower semicontinuous on X* for every x* € X*, since it is the Fenchel
transform of a function.

Furthermore, if f(z,-) is lower semicontinuous and convex for every z € X, and
there exists & € X such that f(Z,-) is supercoercive, then

(i) Py(-,y*) is upper semicontinuous for every y* in X*;

(ii) @y is real-valued on X* x X*.

In fact, by relation (10), we get —®@g(x*, y*) = infex (— (¥, z) + @f(z, 2*)).

We will apply Theorem 2.3 to the bifunction ¢(z*, x) = ¢s(z, 2*) — (y*, ), for every

y* € X*. By the properties of the Fitzpatrick transform, we know that ¢ is convex,
lower semicontinuous, and never takes the value —oo. Let us prove that condition
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(C) is fulfilled. Take any bounded sequence {z}} C X*, and {z,} C X such that
|zn|| = +o00. Then

(T, Tn) > <x;kwa~7> + f(@,2n) — (Y, 0)
> —lznll - 2]+ £ 20) — Iyl - |2l

* ~ f jvmn *
=zl 1+ el (22220~ ).

and thus p(z}, x,) — +o0o0. Application of Theorem 2.3 now gives point (i).

Point (ii) easily follows from Properties P1 and P3 of the Fitzpatrick transform.
Indeed, under our assumptions, ¢ (-, 2*) is supercoercive and lower semicontinuous,
for every x* € X*, and therefore the supremum is achieved in some point.

(c) To analyze the behaviour of ®; on the diagonal, note that
Oy (27, 2%) = sup inf ((z", 2 —y) = [ (y,7)).
zeX YeX

Since f is lower normal with respect to the set C, we have

yig)f( ("2 —y) - f(y, 7)) = ;gg ("0 —y) — f(y,7)),

for every x € C, while, if z ¢ C,

inf ((z% 2 —y) = f(y,2)) = —c0.

Therefore, if f(z,z) > 0 for all = € C, it follows for all * € X* that

Dy (27,27) =sup inf (2", 2 —y) — f (y,2)) < igg(—f(ﬂf, x)) < 0.

f

zeC YeC

In order to satisfy the reverse inequality ® (2*,2*) > 0, it is enough to show that
there exists © = x(z*) in X such that

("2 —y) — f(y,x) 20, VyeX (11)

Suppose that f is null on the diagonal, f(-,y) is concave for every y in X, f(x,-) is
lower semicontinuous for every z in X, and there exists £ in X such that the function
f(z,-) is supercoercive. Then, if we set ¥(z,y) = f(y,x) and ¢y (z) = —(z*, =), we
can apply Theorem 3.1 to get (11) fulfilled for a suitable x = z(x*).

Our aim is to relate the bifunction ®; to an equilibrium problem that can be con-
sidered to be the dual of the original one.

Let h be a function on X such that A* is real-valued on X*. We define the dual
equilibrium problem to (EPf) to be the problem of finding a point Z* in X* such

that
Qp(z",y") + R (—y*) > b (=z") Vy* e X" (DEPy)

The solutions to the dual problem will be denoted by S]’;EP.

Note that for every z* € S]’;EP, (DEPy) implies ®¢(z*,2*) > 0. From property (c)

above, we deduce: - x f
Qp(x*,2*) =0, V" e Shgp (12)

provided that f(xz,x) >0 for all x € C.
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In order to state our main results, let us consider the optimization problem (P) with
value .
p= inf(g(z) + h(z)),

and denote by d the value of the dual concave optimization problem according to
Fenchel (see, for instance, [10], Chapter 4):

d = sup (=g"(z") = h*(=2")). (D)

r*eX*
Then the following result holds:

Theorem 4.3. Let f,h satisfy the assumptions (A) and (B), with f(z,z) =0 on
C. In addition, suppose that h is supercoercive on C'. Then
D=p=d= sup inf (Ds(a"y")+ W (")~ h(~a")). (13)
TreEX* Y
Proof. First of all note that the supercoercivity of h implies that hA* is real-valued.
By Proposition 3.2, Sép # (), hence by Proposition 4.1, p = 0. By Remark 4.2, g is
convex and real-valued on C'. By the assumption on f(-,y), ¢ is lower semicontinuous
on X. Hence, g** = g and h** =

If we define hy(z) = h(—z), then hj(z*) = h*(—2*). Now we apply strong Fenchel
duality (see for instance [10, Theorem 4.4.3]) to the functions ¢* and h}, defined on
the space X*. We deduce that
inf (9"(2") + hi(27)) = sup (=g(2) — hu (=) (14)
z €
which immediately gives p = d. It remains to show the last equality in (13). We
first calculate g*(x*). Since C; = C' Ndom(h) we find, using Proposition 2.2:

g = (sup (= £(,9) — hiy)) ) (=)

yeCy

= (inf (/) = h(w)") @)

yeCy
Now we note that

inf (—f(-,y) = h(y))" (z") = inf ((=f(,y))" (=) + h(y))

yeCr yeCy

= inf (pr(y,2") + h(y))-

yeCy

From Theorem 2.3 and the discussion that follows it, we know that the function

m(z") = mf (pr(y,2%) + h(y)) = ik (or(y, 27) + h(y))

yeCy

is convex and lower semicontinuous, so m = m**. Thus,

g (@7) =m(a7) = inf (ps(y,27) + h(y)) (15)
Now given z*, we apply again strong Fenchel duality to the functions (¢ (-, 2*))" and
h*(—-). This is possible because they are both convex and lower semicontinuous, h*
is real valued, and (¢¢(-,z*))" is proper by property P4.
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We deduce that

b (e (5 20)" (W) + h (=) = 22)}3(-%(% ") = h(y)). (16)

Combining with (15) we obtain

g (") = - ot (s ") (") + 1 (=y"))
= - y}g)f(* (Dr(z",y") + h*(=y")).

Substituting into (D) we find
d= sup (inf (@s(a,y7) + B (—y) - h*(=a"))

reX* yreX*

= sup inf (®(a",y") +h*(=y") — b (=2")) (17)

rrEX* YreEX™
thereby obtaining the desired representation for the dual optimal value d. [

Theorem 4.4. Suppose that the assumptions of Theorem 4.3 are fulfilled. If, in
addition, intdom(h) N C # O, then the dual equilibrium problem (DEP;) has a
solution.

Proof. Note that, under the assumptions, strong Fenchel duality can be applied
directly to problem (P). We deduce that p = d and in addition, given that p = 0,
the supremum in (D) is attained [10, Theorem 4.4.3]. From the proof of Theorem
4.3 one sees that the supremum in (17) is attained. Since d = 0, this means that
there exists * € X* such that
Qp(x™,y") + R (—y") —h*"(—2") >0 Vy* e X"

Hence, (DEP/) has a solution. O
Remark 4.5. Under the assumptions of Theorem 4.3,

(i)  for every z* € X* the infimum in (15) is effectively a minimum, since the
function y — ¢s(y,2*) + h(y) is proper, lower semicontinuous, convex and
coercive on the nonempty, closed and convex set C

(ii)) from the last part of the proof of Theorem 4.4 we obtain that a point z* in
X* is a solution to (DEPy) if and only if the equality ¢*(z*) + h*(—2*) =0 is
satisfied. O

We will now investigate the relationships between the set
S = {(,2") € X x X* 1 plw,a") + h() + h*(~2*) = 0}

and the solution sets of the primal equilibrium problem (EP;) and of the dual
equilibrium problem (DEPy). We define the function £ : X x X* —] — 00, 4+00] by

E(x,x") == pp(x,2") + h(z) + h™(—x").

Note that, assuming only that f(z,z) > 0 for every x € C, property P2 of ¢y gives
that for all (z,z*) € X x X*,

op(z,z*) > (2", z) .
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Since we also have h(z) + h*(—z*) > — (z*,x2) we deduce that &(x,z*) > 0 for
all (z,z*) € X x X*. Thus, if S is nonempty, then S = argmin¢ is a closed and
convex subset of X x X* since £ is convex and lower semicontinuous. Also, by
Proposition 4.1, Sép = argmin(g + h), so this set is also closed and convex. Finally,
from Theorem 4.3 we see that

Shee = argsup (inf(@7(y7) + h(—y") ~ B (=) ).
Assuming that f is lower normal and f(z,-) is convex for every z, we know that ®;
is a saddle function (see property (a) of ®¢). It follows easily that S{;EP, being the
argsup of a concave function, is convex. It is also closed, if we assume in addition
that f(z,-) is lower semicontinuous for every = € C, and supercoercive for some
& € C (see property (b) of ®y).
According to the definitions above, we have

(z,2%) € § <= &(x,2™) = 0.

Let us now relate S, and S, with the function ¢&.

Proposition 4.6. Suppose that the assumptions of Theorem 4.3 are fulfilled and,
in addition, int dom(h) N C # (. Then

r € Slp — min §(z,2%) =0 (18)
" € Slpp <= Hél)r(lf(x,l'*) = 0. (19)

Proof. We have the equivalences:

x € S}ép = SI{/IEP < —f(y,x) +h(y) > h(z), VYyeX
)

= inf (~(y,2) + h(y) = hla (20)

where we used f(x,z) = 0. The infimum in (20) is attained (in particular, it is
finite) because h is assumed supercoercive. Now we apply strong Fenchel duality to
the convex functions — f(,z) and h, to find:

v € Sl e max (— (~f(2))" (1) — W*(—2") = h(x) (21)
= xngfl (pf(z,2") + h*(—x")) + h(z) =0

: o
<:>x£rél)r(1*f(x,x )=0

where the maximum in (21) is attained by [10, Theorem 4.4.3]. This proves (18).
As for (19), if z* € Slf)EP, then we know that ®¢(z*,2*) = 0, so the following
equivalences hold:

v € Shpp = Il (47,57 + W (—y")) = B'(~a")
= ok ((pr(5a")" (07) + (=) = (=)
= min (p(z,2°) + h(2)) + B (=2) =0

where we have used relation (16) (i.e., Fenchel duality again) and Remark 4.5. This
shows (19). O
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We deduce a relation between S, Sép and SIJSEP:

Proposition 4.7. Suppose that the assumptions of Theorem 4.3 are fulfilled and,
in addition, int dom(h) N C # 0. Then:

() 0#SC Sk x Shep;

(i)  for every x € SL, there exists x* € S{ . such that (z,2*) € S;

(iii) for every x* € SL.p there exists x € SL, such that (z,2*) € S.

Proof. (ii) is an immediate consequences of Proposition 4.6. Indeed, if x € Sép,
then by (18) there exists z* € X* such that {(x,2*) = 0. This means that (z,2*)€S.
Likewise for (iii).

Since by Proposition 6, Si, # 0, we see that (ii) implies that S # 0.

Finally, for every (z,z*) € S, since &(z,z*) = 0, (18) and (19) imply that z € Si,
and z* € SL.p, ie., (x,2%) € SLy x S{.p. This finishes the proof. O
We deduce an immediate corollary:

Corollary 4.8. Assumptions as in Proposition 4.7. If St or SL.o is a singleton,
then S = SL, x S{ ..

Proof. Assume, for instance, that Sép is a singleton, say {x}. For every x* € S{;EP,
Proposition 4.7(iii) implies the existence of an element y € X such that (y,z*) € S.
Obviously, y = x, so (z,z*) € S and S]{;P X S{;EP C S. The case S]’;EP is a singleton
is similar. [

The equality S = Sép X S{;EP also holds in case the bifunction f actually stems from
an optimization problem:

Example 4.9. Let F,h be proper convex lower semicontinuous functions and set
C = dom(F). Assume that C'Ndom(h) # 0 and h is supercoercive. Define the lower
normal bifunction f by

flxy)=F(y) — F(z), (z,y)e X xX

where we use the convention 400 — 0o = —oo. A standard computation (using the
same convention) gives

er(y, ") = Fy) + F*(a7),
(", y") = (op(-,27)" (y") = F*(y") — F*(z").

Therefore, the dual equilibrium problem is exactly the dual optimization problem
according to Fenchel: find T8 € X* such that

—F*(z") = h*(—=7%) > —F*(y*) — h*(—y") forall y* € X
Thus, the set S has the following characterization:
S={(z,2") e X x X*: F(x) + h(z) + F(z*) + h*(—2*) = 0}
= argminy, v« (F(x) + h(z) + F(z*) + h*(—z"))
— (argminy (F(z) + h(2))) x (argminy. (F(z) + h*(—2")))
=51, xS
EP DEP
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Example 4.10. A particular example of the above, where both S, and S, are
not singletons, is the following. Define ¢ : R — R by ¢(x) = max {0, 2? — 1}. Then
1) is supercoercive, thus 1* is real-valued, and in fact

y2
* Tyl >2
wy—{4 ’ ~
) lyl, [yl <2

Now define F,h: R?> = R and f: R? x R? = R by
F(z,y) = h(z,y) = ¢(z) + ¢ (y)
@y, 2, 01) = F(an,y1) — Fz,y).
Since h is separable with respect to its variables, it is easy to see that h*(u,v) =
*(u) + ¢ (v) (that is, h*(u,v) = h(v,u)) so

L1 ful>2

h* (u,v) —maX{O,v2—1}+{ wl,  Jul < 2.

According to the calculations above and F' = h,
or(@1,y1,u,0) = Fa, 1) + F*(u,v) = h(zy, 1) + B (u,v)
Q(u,v,ur,v1) = F*(ug,v1) — F*(u,v) = h*(uq,v1) — h*(u, v).
Now consider (EP) and (DEPy): For (EPy),

fly, w,y) + W@y, pn) = bz, y) = 2 (h(ey,91) — (2, y))
so SL, = argminh = [~1,1] x {0}. As for (DEP;), noting that 1,* are even
functions (and thus the same is true for h and h*) we find
D (u,v,ur,v1) + h*(—uy, —v1) — A" (—u, —v)
= h*(uy,v1) — h*(u,v) + h*(—uy, —vy) — K (—u, —v)
= 2(h*(uy,v1) — h*(u,v)).

Thus, S.p = argmin 2* = {0} x [—1,1].

So SIS, are not singletons. Yet, according to Example 4.9, S = SL, x Sf ..

5. The Minty dual equilibrium problem

In the previous section we introduced the dual equilibrium problem (DEP;) and
demonstrated its solvability. We now aim to establish the solvability of the dual
equilibrium problem directly by applying Theorem 3.1 under different conditions.

As we can associate a Minty counterpart with any equilibrium problem related to a
bifunction f through the mirror bifunction f , we can similarly associate the Minty
dual equilibrium problem (MDEP;) with the dual equilibrium problem (DEPj)
through the mirror bifunction. If f is lower normal, then

(e, y") = —Ps (v, 2%) = — (o7 (")) (27)

= infsup () = (@,2) + £ (5,2))

= inf sup ((y*,y) — (2", 2) + [ (y,2)) (22)

zeC yec
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Then, the (MDEP/) consists in finding a point Z* in X* such that
O, (T, y") + b (—y*) > B (-T") Wyt € X*. (MDEP,)
The solutions to the Minty dual problem will be denoted by SIGDEP.

Proposition 5.1. Let f be a saddle, lower normal bifunction with respect to a
nonempty, closed and conver set C, such that f(x,z) = 0 and f(z,-) is lower
semicontinuous for all x € C. Let h be a proper and convex function. If f(z,-) is
supercoercive for some & € C, then SLo = S{iap-

Proof. We apply the first part of Proposition 3.2 to the space X*, the function
hy(z*) = h*(—2z*), and the bifunction fi(z*,y*) := ®,(z*,y*). To avoid confusion,
we denote by S{L" and S{1™ the solutions of the equilibrium problem and the
Minty equilibrium problem for f; and hy in the space X*. According to Properties
(a)—(c) of the bifunction ®¢, f; is a saddle function, real-valued on X*, such that
fi(z*,2*) = 0 for all z* € X*. Also, fi(z*,-) is lower semicontinuous and fi(-,y*)
is upper semicontinuous. Finally, h; is proper, convex and lower semicontinuous.

Hence, the first part of Proposition 3.2 implies that S/LM C SfL" Since SILM =
S{ippe and Sgp™ = Sfgp, we have S{ipgp S Shp-

Now we apply Proposition 3.2 to the bifunction fo(z*, y*) := @(m*, y*) and the same
function hy. Again fy and h; satisfy the assumptions of the first part of Proposition
3.2, so SPM C SPM. Since S = ST, and SIBM = S we obtain the
reverse inclusion Spgp € Sypep- O]

Theorem 5.2. Let f be a saddle, lower normal bifunction with respect to a nonempty,
closed and convex set C, such that f(z,z) =0 and f(x,-) is lower semicontinuous
for all x € C. Let h be proper, convex, lower semicontinuous. Assume that there
exists a point yo € intdom(h) N C such that f(-,yo) is bounded from above by a
continuous affine function (y5,-) + a. If f(Z,-) is supercoercive for some & € C,
then the dual equilibrium problem is solvable.

Proof. By Proposition 5.1 it suffices to prove that S{/IDEP is nonempty. We will

apply Theorem 3.1 to the space X*, the bifunction —@, and the function h*(—-).
All assumptions (A;-Aj) are satisfied. The remaining task is to check the coercivity
condition (6). To do so, it is enough to show that
lim (b (=27) = (2", —45)) = +o0. (23)
le*]|—-+oo
Since h is continuous at yo, we know that h*(—-) 4 (-, yo) is coercive (see Corollary

4.4.11 in [9]). Thus,
lim  (h*(—2") + (2", yo)) = +00. (24)
fl*]|—+o0
On the other hand,
- <CL’*, y0> - (I)f(x*a _yg) - = <I*7y0> + (I)f (—yS,x*)
= — (2", o) +sup inf ((z",y) — (—y5.2) — [ (z,9))
yeX reX

> — (@, yo) + inf (2", 90) — (3 2) — [ (,0) >~ (25)
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From (24) and (25) we obtain (23). Thus, Theorem 3.1 applies, so (MDEPy) is
solvable. O

Remark 5.3. The assumptions of the two existence results for the dual equilibrium
problem in Theorem 4.4 and 5.2 can be compared: if we drop the condition of upper
semicontinuity of f(-,x) and supercoercivity of h, then we need to require some
boundedness from above for f(-,y) together with a supercoercivity of f(z,-) for
suitable x, y. Il

In this section, we considered the Minty problem of the dual equilibrium problem
(MDEPy). What if we consider the dual of the original Minty problem? The Minty

problem is simply the equilibrium problem corresponding to the bifunction f . Hence
its dual, that we denote by (DMEP), consists in finding a point * in X* such that

@f(f*,y*) + h*(=y*) > h*(=T") Yy e X" (DMEPy)
Here, assuming that f is lower normal on C,

D 4(2",y") = (¢5 (y)" (z%) = Sg}ggg{ (" y) = (@, 2) + f (y,0))

= sup inf ((y" y) — (2" 2) + f(y,2))  (26)

Comparing with (22) we see that

Pp(a”,y") < Qp(a”,y") V(z¥y") € X*x X"
To obtain the equality, we can apply a minimax result due to Tuy (see Theorem 3
in [19)):

Proposition 5.4. Let f be a saddle, lower normal bifunction on C', such that for
each x in C, f(x,-) is lower semicontinuous, and f(-,x) is upper semicontinuous.

If there exists & € X such that f(Z,-) is supercoercive, then we have ;= CTD\f and
Shver = S,
DMEP MDEP -

Proof. Take any (z*,y*) € X* x X*. We apply Theorem 3 in [19] taking M = {7}
and F(z,y) = —(y*,z) + (z*,y) — f(x,y), (x,y) € C x C. This F satisfies all the
requirements, so

ingsup (-(y*,$> + <{L‘*7y> - f(x,y)) = sup 1n£ (—<y*,$> + <I*,y> - f(xay)) :
e yeC yeC S

Now we exchange x and y and then change the sign, to find

sup inf ((y7",y) = (@",2) + f (g, ) = inf sup ({y", ) — (", 2) + [ (4,2))
yeC xe S yeC

that is, ® (2, y*) = @(:r*, y*). Tt follows immediately that Y .0 = Sfpge. O
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