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The aim of this paper is to investigate the dual problem of a generalized equilibrium problem in
the framework of a reflexive Banach space. By means of the Fenchel duality, we introduce the dual
problem defined via the Fitzpatrick transform of the bifunction involved, that turns out to be an
equilibrium problem itself in the dual space. We present conditions which entail the solvability of
both primal and dual problems.
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1. Introduction

The classical generalized equilibrium problem (EPf ) is the problem of finding a point
x̄ in C such that

f (x̄, y) + h (y) ≥ h (x̄) , ∀y ∈ C (EPf )

where C is a nonempty, closed, and convex subset of a reflexive Banach space X, f is
a bifunction on X×X, real-valued on C×C, and h is a proper function defined onX.
These problems have been extensively studied in the literature, including in more
general settings, as they encompass many well-known problems as special cases.
Such problems often arise in areas like optimization and variational inequalities.
Alongside the equilibrium problem (EPf ), the so-called Minty problem has also been
considered in the literature, which consists in finding a point x ∈ C such that

−f(y, x) + h(y) ≥ h(x), ∀y ∈ C (MEPf )

(see, for instance, [14]). Minty problems are sometimes referred to as “dual prob-
lems”, but this terminology can be misleading, as they do not involve any of the stan-
dard duality operations. The connections between equilibrium problems and their
ISSN 0944-6532 / $ 2.50 © Heldermann Verlag
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corresponding Minty problems have often been studied under assumptions of gen-
eralized monotonicity of the bifunction f . In this work, monotonicity plays no role.
The goal of our study is to formulate a meaningful notion of duality for (EPf ) by
interpreting the equilibrium problem as a particular optimization problem. This
perspective allows us to apply Fenchel duality theory to derive a corresponding dual
formulation.
Although similar approaches have been proposed by other authors (see, for instance,
[7] and [16]), a key feature of their formulations is that the resulting dual problems
are not themselves equilibrium problems.
In our investigation, starting from (EPf ), we construct a dual equilibrium problem
(DEPf ) in the dual space X∗. This construction is based on reformulating the
original equilibrium problem as an optimization problem. By suitably applying
Fenchel conjugation in an iterative manner, we derive a dual problem that also
takes the form of an equilibrium problem, where the associated bifunction is defined
using the Fenchel transform of the Fitzpatrick function of f .
The paper is organized as follows: in Section 2 we introduce the mathematical set-
ting, and we recall several technical tools and properties of convex functions and
bifunctions useful to support the main constructions later. Section 3 provides solv-
ability conditions for both the equilibrium problem (EPf ) and its Minty counterpart
(MEPf ), and we prove existence and inclusion results between the respective solu-
tion sets. Section 4 presents the main theoretical contribution of the paper, that is a
rigorous formulation of the dual equilibrium problem (DEPf ) using convex duality.
We establish strong duality results and we also explore the relationship between
solutions of EPf , DEPf , and a joint minimization problem involving the Fitzpatrick
transform. Section 5 extends the duality analysis to include the Minty dual equilib-
rium problem (MDEPf ), based on the mirror bifunction. We establish conditions
under which the Minty and standard dual problems coincide and provide further
solvability results.

2. Preliminaries

Let X be a reflexive Banach space and denote by X∗ its dual.
Let us recall that a function h from X to ]−∞,+∞] is said to be coercive on a set
C ⊆ X if

lim
∥x∥→+∞, x∈C

h(x) = +∞, (1)

while h is said to be supercoercive on C if

lim
∥x∥→+∞, x∈C

h(x)

‖x‖
= +∞. (2)

Remark 2.1. Let C be a nonempty, closed and convex subset of X. If the function
h : X →] −∞,+∞] is proper, convex, lower semicontinuous and supercoercive on
C, and h1 : X →]−∞,+∞] is proper, convex and lower semicontinuous on C, then
the function h + h1, if it is proper on C, has a minimum on C, that is there exists
a point x0 in C such that h(x0) + h1(x0) is real, and, for every x in C,

h(x0) + h1(x0) ≤ h(x) + h1(x).
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This follows from the existence of an affine function 〈x∗, ·〉 + α minorizing h1 [20,
Corollary 2.3.2] so it is easy to see that h+h1 is lower semicontinuous and coercive.
Thus, it has a minimum [12, Cor. III.20].

Given a function ψ : X →]−∞,+∞] the Fenchel conjugate ψ∗ : X∗ → [−∞,+∞]
is defined as

ψ∗(x∗) = sup
x∈X

(〈x∗, x〉 − ψ(x)),

where 〈·, ·〉 denotes the usual duality product. For any function ψ, the conjugate
ψ∗ is always a lower semicontinuous and convex function. If ψ is proper, that is,
ψ(z) < +∞ for some z ∈ X, then ψ∗ never takes the value −∞. Moreover, if ψ
is bounded from below by an affine function 〈x∗0, ·〉 + α, then ψ∗(x∗0) < +∞ and
therefore ψ∗ is proper.
It is worth noting that if ψ is convex, lower semicontinuous, and supercoercive, then
the Remark 2.1 implies that the Fenchel transform of ψ is real-valued on the whole
space X∗.
In the sequel, we will use the biconjugate ψ∗∗ : X → [−∞,+∞] defined as follows:

ψ∗∗(x) = sup
x∗∈X∗

(〈x∗, x〉 − ψ∗(x∗)).

It well known that, in case ψ is proper, convex and lower semicontinuous on X, then,
by the Fenchel-Moreau Theorem, ψ∗ is proper as well, and the equality ψ ≡ ψ∗∗ holds
true.

Proposition 2.2. (see Proposition 13.47 in [3]) Let {ψi}i∈I be a family of proper,
lower semicontinuous and convex functions defined on X. Then(

sup
i∈I

ψi

)∗

=

(
inf
i∈I

ψ∗
i

)∗∗

.

If supi∈I ψi is not identically +∞, then(
sup
i∈I

ψi

)∗

=

(
inf
i∈I

ψ∗
i

)`

where ψ` denotes the lower semicontinuous and convex envelope of ψ.

We recall that a bifunction f : X ×X → [−∞,+∞] is said to be saddle if f(x, ·) is
convex for every x ∈ X, and f(·, y) is concave for every y ∈ X.
In the sequel we will mainly (but not always) consider bifunctions f that are real-
valued on C × C ⊆ X × X, where C is a nonempty, closed and convex set, and
satisfy the following conditions:

f(x, y) =

{
−∞ x /∈ C

+∞ x ∈ C, y /∈ C

Combining notions in [1, Remark 2] and [18, pg. 349], bifunctions with the properties
above will be called lower normal bifunctions on C.



546 M. Bianchi et al. / Dual Equilibrium Problems ...

The Fitzpatrick transform associated to a lower normal bifunction f is the bifunction
φf : X ×X∗ →]−∞,+∞] given by

φf (y, x
∗) = (−f(·, y))∗(x∗) = sup

x∈X
(〈x∗, x〉+ f(x, y)) = sup

x∈C
(〈x∗, x〉+ f(x, y))

(see [5], [11]). Note that, by construction, the Fitzpatrick transform of a lower
normal bifunction has the following properties:
P1 It satisfies the inequality

φf (y, x
∗) ≥ 〈x∗, x〉+ f(x, y) ∀x, y ∈ X. (3)

In particular, if f(x̃, ·) is (super)coercive for some x̃ ∈ C, then φf (·, x∗) is
(super)coercive for every x∗ ∈ X∗;

P2 if f(x, x) ≥ 0 for every x ∈ C, from (3) we have φf (y, x
∗) ≥ 〈x∗, y〉 for every

y ∈ C, x∗ ∈ X∗. In addition, φf (y, x
∗) = +∞ for every x∗ ∈ X∗ whenever

y /∈ C. Thus, φf (y, x
∗) ≥ 〈x∗, y〉 holds for every (y, x∗) ∈ X ×X∗;

P3 if f(x, ·) is convex (respectively, lower semicontinuous) for every x ∈ C, then
φf is convex (respectively, lower semicontinuous) on X ×X∗;

P4 the bifunction φf is proper if and only if for some y ∈ C, the function f (·, y)
is majorized by an affine function 〈x∗, ·〉 + α, where x∗ ∈ X∗. In this case,
φf (y,−x∗) ∈ R. For example, this happens if for some y ∈ C the function
f (·, y) is concave and upper semicontinuous.

The following theorem (actually, a version of Berge’s maximal theorem [4]) gives a
basic property of the marginal function of a bifunction under a technical condition,
that is fulfilled in some important cases of interest:

Theorem 2.3. Let X be a reflexive Banach space, and φ : X∗ ×X → ]−∞,+∞]
be a convex and lower semicontinuous function. Assume further that the following
condition holds:
(C) if {x∗n} ⊂ X∗ is a bounded sequence and {yn} ⊂ X is a sequence such that

‖yn‖ → +∞, then φ(x∗n, yn) → +∞.
Then the marginal function m defined by

m(x∗) = inf
y∈X

φ(x∗, y)

is convex, does not take the value −∞, and it is lower semicontinuous. In particular,
m∗∗ = m.

Proof. It is well known that the function m is convex (see, for instance, Th. 2.1.3(v)
in [20]). Let us now show that m(x∗) > −∞ for every x∗ ∈ X∗. Fix x∗ ∈ X∗.
If φ(x∗, y) = +∞ for every y ∈ X, then m(x∗) = +∞. Otherwise, suppose that
φ(x∗, ·) is proper. By taking in (C) x∗n = x∗ for every n, we deduce that the function
y 7→ φ(x∗, y) is coercive. Since it is also convex and lower semicontinuous, it attains
a minimum on X. In particular, m never takes the value −∞. To prove the lower
semicontinuity, we follow Aubin’s proof with some adjustements (see Prop. 1.7 in
[2]). If m is identically +∞, then there is nothing to prove.
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Otherwise, if m is proper, then it is sufficient to show that for every λ ∈ R, the set

Sm,λ := {x∗ ∈ X∗ : m (x∗) ≤ λ}

is closed. Since X is reflexive and Sm,λ is convex, we will use the norm topology.
Let {x∗n} be a sequence in Sm,λ, converging to x∗0. For each n ∈ N, since we have
m(x∗n) ≤ λ < +∞ and, as said before, the function y 7→ φ(x∗n, y) attains a minimum,
there exists yn ∈ X such that φ(x∗n, yn) = m (x∗n). We deduce that

λ ≥ m (x∗n) = φ(x∗n, yn),

and therefore, by condition (C), the sequence {yn} must be bounded. By the re-
flexivity of the space X, there exists a subsequence {yn′} converging weakly to some
y0 ∈ C. Then (x∗n′ , yn′), norm×w-converges to (x∗0, y0), and since φ (·, ·) is also
norm×w-lower semicontinuous, φ(x∗0, y0) ≤ λ so m (x∗0) ≤ λ. This proves that Sm,λ

is closed. Finally, the equality m∗∗ = m trivially holds if m(x) = +∞ for all x ∈ X,
and it follows from classical results in case m is proper.
Later on, we will apply Theorem 2.3 to the bifunction φ defined by

φ(x∗, y) = φf (y, x
∗) + h (y) (4)

where f : X ×X → [−∞,+∞] is a lower normal bifunction on C such that f (x, ·)
is convex and lower semicontinuous for all x ∈ C, and h : X → R∪{+∞} is proper,
convex, and lower semicontinuous.
Let us list some cases where condition (C) holds for the particular bifunction in (4).
Let {x∗n} ⊂ X∗ be a bounded sequence such that ‖x∗n‖ ≤ K, and {yn} ⊂ X with
‖yn‖ → +∞. Note that, from Property P2 of the Fitzpatrick transform, if yn /∈ C
then φf (yn, x

∗
n) = +∞. Thus without loss of generality, we can take {yn} ⊂ C.

(a) Suppose that h is supercoercive on C. Take any x̄ ∈ C. Then f(x̄, ·) is minorized
by an affine function of the form 〈y∗, ·〉+ α, so

φf (yn, x
∗
n) + h (yn) ≥ 〈x∗n, x̄〉+ f(x̄, yn) + h (yn)

≥ −‖x̄‖ ‖x∗n‖+ 〈y∗, yn〉+ α + h (yn)

≥ −K ‖x̄‖ − ‖y∗‖ ‖yn‖+ α + h(yn)

= ‖yn‖
(

−K ‖x̄‖+ α

‖yn‖
− ‖y∗‖+ h (yn)

‖yn‖

)
→ +∞.

(b) Suppose that f(x, y) has the form f1 (y)− f1 (x), where f1 : X → R is convex,
lower semicontinuous, coercive, and h is bounded from below. In this case f is real-
valued in X×X, and φf (y, x

∗) = f1(y)+f
∗
1 (x

∗). In particular f ∗
1 is proper, convex,

lower semicontinuous so it is minorized by an affine function. Thus, it is bounded
from below on bounded sets. It follows that:

lim
n
(φf (yn, x

∗
n) + h (yn)) = lim

n
(f1 (yn) + f ∗

1 (x
∗
n) + h (yn)) = +∞.

(c) Suppose that there exists x̄ ∈ X such that f (x̄, ·) is coercive and h is bounded
from below. Under these assumptions,

φf (yn, x
∗
n) + h (yn) ≥ −‖x∗n‖ ‖x̄‖+ f (x̄, yn) + h (yn) → +∞

as ‖yn‖ → +∞. Cases like h ≡ 0, as well as case (b) are included.
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Remark 2.4. Suppose that h is supercoercive on C, dom(h)∩C 6= ∅, and f(·, y) is
concave and upper semicontinuous for every y ∈ C. Then, under the assumptions
of Theorem 2.3, the marginal function m of (4) is proper. In fact, let ȳ ∈ C be such
that h(y) ∈ R. By property P4 of the Fitzpatrick transform, there exists x∗ such
that φf (y, x

∗) ∈ R. Hence, m(x∗) ∈ R.

3. Existence results for EP and MEP

In this section we consider the (generalized) equilibrium problem (EPf ): Given a
nonempty, closed and convex subset C of X, find a point x̄ in C such that

f (x̄, y) + h (y) ≥ h (x̄) , ∀y ∈ C, (EPf )

where f is a bifunction real-valued on C×C, and h is a proper function defined in X.
Besides to (EPf ) one can consider the Minty (generalized) equilibrium problem
(MEPf ): find a point x̄ in C such that

−f (y, x̄) + h (y) ≥ h (x̄) , ∀y ∈ C. (MEPf )

We will denote by Sf
EP and Sf

MEP the solution sets of (EPf ) and (MEPf ), respectively.
Note that if we define the bifunction f̂ : X ×X → R by

f̂(x, y) = −f(y, x),

then (MEPf ) is nothing but (EPf̂ ), and

S f̂
MEP = Sf

EP, S f̂
EP = Sf

MEP. (5)

We call f̂ the mirror bifunction of f . Note that if f is lower normal with respect to
C, then f̂ is not lower normal; in the language of [18, pg. 349] it is the upper simple
extension of the bifunction (x, y) ∈ C × C 7→ −f(y, x).
Let us recall the following existence result for an equilibrium problem (see [17,
Theorem 2.1]):

Theorem 3.1. Let E be a Hausdorff topological vector space, and C be a nonempty,
closed and convex subset of E. Suppose that the function ψ1 : C → ]−∞,+∞] is
proper, lower semicontinuous and convex, and that the function ψ : C → R satisfies
the following assumptions:
(A1) ψ(v, v) ≤ 0 for every v ∈ C,
(A2) ψ(v, ·) is concave for each v ∈ C,
(A3) ψ(·, w) is lower semicontinuous on C for each w ∈ C.
If there exists a compact subset B of E, and a vector w0 ∈ B ∩ C such that

ψ1(w0) < +∞ and ψ1(v) + ψ(v, w0) > ψ1(w0) (6)

for all v in C \B, then the set of solutions to the problem: find a point v in C with

ψ1(v) + ψ(v, w) ≤ ψ1(w) ∀w ∈ C

is a nonempty and compact subset of B ∩ C.
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The following conditions on f and h will be taken into account in the sequel:
(A) f is a saddle bifunction, real-valued on C × C, such that for each x in C,

f(x, x) ≥ 0, f (x, ·) is lower semicontinuous, and f(·, x) is upper semicontinuous;
(B) h : X → ]−∞,+∞] is convex, lower semicontinuous, and dom(h) ∩ C 6= ∅.

Proposition 3.2. Suppose that conditions (A) and (B) hold. Then Sf
MEP ⊆ Sf

EP.
Furthermore, if h is supercoercive, the set Sf

EP is nonempty.

Proof. Set C1 := dom(h) ∩ C. By the assumptions, C1 is nonempty and convex.
To show that Sf

MEP ⊆ Sf
EP, define the bifunction F : C1 × C1 → R by

F (x, y) = f(x, y) + h(y)− h(x).

We assume that Sf
MEP 6= ∅, otherwise the inclusion is trivial. Let x̄ ∈ Sf

MEP; then
x̄ ∈ C1 and F (x, x̄) ≤ 0 for all x ∈ C1. For every x ∈ C1 the function F (x, ·) is
convex, so setting xt = (1− t)x+ tx, 0 ≤ t ≤ 1, we find

0 ≤ F (xt, xt) ≤ (1− t)F (xt, x) + tF (xt, x). (7)

Since F (xt, x) ≤ 0, (7) implies that F (xt, x) ≥ 0, 0 < t ≤ 1. By upper semicontinuity
of F (·, x) we have

F (x̄, x) ≥ lim sup
t→0+

F (xt, x) ≥ 0.

This means that f(x̄, x)+h(x) ≥ h (x̄), i.e., x̄ ∈ Sf
EP and Sf

MEP ⊆ Sf
EP. Let us show

that (EP) is solvable. Setting ψ1 := h and ψ(v, w) := −f(v, w), it is easy to check
that assumptions (A1-A3) in Theorem 3.1 are fulfilled when we consider the weak
topology on X. Choose x ∈ C1, and for each r > 0 define the weakly compact set

Br = {x ∈ X : ‖x− x‖ ≤ r}.

Since h is supercoercive and −f(·, x) is convex and lower semicontinuous, there
exists a point x∗ in X∗ and a real number α such that for all x ∈ C,

h(x)− f(x, x) ≥ h(x) + 〈x∗, x〉+ α ≥ ‖x‖
(

h(x)

‖x‖
− ‖x∗‖+ α

‖x‖

)
−→

∥x∥→+∞
+∞. (8)

Therefore, there exists a positive number r̂ such that

h(x)− f(x, x) > h(x)

for all x ∈ C satisfying the inequality ‖x− x‖ > r̂. Since Br̂ is weakly compact, by
Theorem 3.1, Sf

EP 6= ∅.

Proposition 3.3. Suppose that conditions (A) and (B) hold. Furthermore, assume
that f(x, x) = 0 for every x ∈ C, and one of the following conditions holds:
(a) for some x̃ ∈ dom(h) ∩ C, f (x̃, ·) is coercive and h is bounded from below;
(b) for some x̃ ∈ dom(h) ∩ C, −f (·, x̃) is coercive and h is bounded from below;
(c) h is supercoercive.
Then Sf

EP = Sf
MEP, both sets are nonempty, and they are included in dom(h) ∩ C.
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Proof. The mirror bifunction f̂(x, y) = −f (y, x) satisfies the assumptions of the
first part of Proposition 3.2. Thus, S f̂

MEP ⊆ S f̂
EP. It follows immediately from (5)

that Sf
EP ⊆ Sf

MEP, so finally Sf
MEP = Sf

EP. To finish the proof, it is enough to show
that at least one of the sets Sf

EP, Sf
MEP is nonempty.

Assume that (a) holds, i.e., f(x̃, ·) is coercive for some x̃ ∈ C1, and h is bounded
from below. We set ψ1 := h and ψ (v, w) := f (w, v). The assumptions (A1)–(A3)
in Theorem 3.1 are fulfilled for the functions ψ1 and ψ when we consider the weak
topology on X. Since f(x̃, ·) + h(·) is coercive, we deduce that there exists r̂ > 0
such that

f(x̃, x) + h(x) > h(x̃)

for all x ∈ C\Br̂. This means that all conditions of Theorem 3.1 are fulfilled and
Sf
MEP 6= ∅.

Let us now consider condition (b), and observe that this is equivalent to say that f̂
satisfies (a). Thus, following the same steps, we obtain S f̂

MEP = Sf
EP 6= ∅.

As for condition (c), we know already from Proposition 3.2 that Sf
EP 6= ∅. Thus, the

solution sets are nonempty in all cases.

4. Dual equilibrium problem

In this section, we introduce and investigate a suitable notion of the dual problem
for (EPf ), which is itself an equilibrium problem. Our study builds on results
obtained in finite-dimensional settings (see [6]), while also extending them in several
directions. The bifunction f may take extended real values, the function h is not
necessarily the indicator function of a compact convex set C; instead, C is now
assumed to be convex and closed, rather than convex and compact.
In the sequel we will assume that f is lower normal on C, that h is proper and that
C1 := dom(h) ∩ C 6= ∅.
It is well-known that equilibrium problems are strictly related to optimization prob-
lems. To this purpose, set

g (x) = sup
y∈C1

(−f (x, y)− h (y)) , x ∈ X. (9)

Under our assumptions, the function g takes values within ]−∞,+∞].

Let us consider the following optimization problem:

inf
x∈X

(g(x) + h(x)). (P)

Note that a point x̄ is a solution to (EPf ) if and only if g(x̄) + h(x̄) ≤ 0. In fact, if
x̄ is a solution, then it belongs to C1 and

sup
y∈C

(−f(x̄, y)− h(y)) ≤ −h(x̄).

Since we have supy∈C(−f(x̄, y) − h(y)) = supy∈C1
(−f(x̄, y) − h(y)), we conclude

g(x̄) + h(x̄) ≤ 0. The converse works in a similar way. In addition, if f(x, x) = 0
for every x ∈ C, then g (x) + h(x) ≥ 0; in fact, if x /∈ C1 the inequality is trivial.
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Otherwise, if x ∈ C1, we have

g(x) = sup
y∈C1

(−f(x, y)− h(y)) ≥ −f(x, x)− h(x) = −h(x).

We summarize the above discussion in the following proposition:

Proposition 4.1. Let f be a lower normal bifunction such that f(x, x) = 0 for all
x ∈ C, and h be proper and such that C1 6= ∅. Then x̄ is a solution of (EPf ) if
and only if it is a solution of (P). In this case, the infimum of g+ h equals 0 and is
achieved at x̄.

Remark 4.2. Some properties of f affect g :
(i) g is convex if f(·, y) is concave, for all y ∈ C;

(ii) g is real-valued on C under one of the following conditions:
(a) f(x, ·) is convex and lower semicontinuous for all x ∈ C, and h is proper,

convex, lower semicontinuous and supercoercive on C;
(b) f(x, ·) is convex, lower semicontinuous and coercive for all x ∈ C, and h

is proper, convex, lower semicontinuous and bounded from below.
In fact, in both cases, the supremum in (9) is a maximum; this follows because
f(x, ·) + h(·) is proper, convex, lower semicontinuous and coercive.

Let us now consider the bifunction Φf : X∗ × X∗ → [−∞,+∞] associated to a
bifunction f and defined as follows:

Φf (x
∗, y∗) = sup

y∈X
inf
x∈X

(〈y∗, y〉 − 〈x∗, x〉 − f (x, y))

= sup
y∈X

(〈y∗, y〉 − φf (y, x
∗)) = (φf (·, x∗))∗ (y∗) . (10)

We first investigate some properties of Φf . We will assume that f is lower normal
with respect to a nonempty, closed and convex set C, and we will add further
properties on f when needed.
(a) Φf (x

∗, ·) is convex on X∗ for every x∗ ∈ X∗, since it is the Fenchel transform of
a function. Moreover, if f(x, ·) is convex for every x ∈ X, then Φf (·, y∗) is concave
for every y∗ ∈ X∗, and thus Φf is a saddle function.
(b) Φf (x

∗, ·) is lower semicontinuous on X∗ for every x∗ ∈ X∗, since it is the Fenchel
transform of a function.
Furthermore, if f(x, ·) is lower semicontinuous and convex for every x ∈ X, and
there exists x̃ ∈ X such that f(x̃, ·) is supercoercive, then
(i) Φf (·, y∗) is upper semicontinuous for every y∗ in X∗;
(ii) Φf is real-valued on X∗ ×X∗.
In fact, by relation (10), we get −Φf (x

∗, y∗) = infx∈X(−〈y∗, x〉+ φf (x, x
∗)).

We will apply Theorem 2.3 to the bifunction φ(x∗, x) = φf (x, x
∗)−〈y∗, x〉, for every

y∗ ∈ X∗. By the properties of the Fitzpatrick transform, we know that φ is convex,
lower semicontinuous, and never takes the value −∞. Let us prove that condition
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(C) is fulfilled. Take any bounded sequence {x∗n} ⊂ X∗, and {xn} ⊂ X such that
‖xn‖ → +∞. Then

φ(x∗n, xn) ≥ 〈x∗n, x̃〉+ f(x̃, xn)− 〈y∗, xn〉
≥ −‖x∗n‖ · ‖x̃‖+ f(x̃, xn)− ‖y∗‖ · ‖xn‖

= −‖x∗n‖ · ‖x̃‖+ ‖xn‖
(

f(x̃, xn)

‖xn‖
− ‖y∗‖

)
,

and thus φ(x∗n, xn) → +∞. Application of Theorem 2.3 now gives point (i).
Point (ii) easily follows from Properties P1 and P3 of the Fitzpatrick transform.
Indeed, under our assumptions, φf (·, x∗) is supercoercive and lower semicontinuous,
for every x∗ ∈ X∗, and therefore the supremum is achieved in some point.
(c) To analyze the behaviour of Φf on the diagonal, note that

Φf (x
∗, x∗) = sup

x∈X
inf
y∈X

(〈x∗, x− y〉 − f (y, x)) .

Since f is lower normal with respect to the set C, we have

inf
y∈X

(〈x∗, x− y〉 − f (y, x)) = inf
y∈C

(〈x∗, x− y〉 − f (y, x)) ,

for every x ∈ C, while, if x /∈ C,

inf
y∈X

(〈x∗, x− y〉 − f (y, x)) = −∞.

Therefore, if f(x, x) ≥ 0 for all x ∈ C, it follows for all x∗ ∈ X∗ that

Φf (x
∗, x∗) = sup

x∈C
inf
y∈C

(〈x∗, x− y〉 − f (y, x)) ≤ sup
x∈C

(−f(x, x)) ≤ 0.

In order to satisfy the reverse inequality Φf (x
∗, x∗) ≥ 0, it is enough to show that

there exists x = x(x∗) in X such that

〈x∗, x− y〉 − f (y, x) ≥ 0, ∀y ∈ X. (11)

Suppose that f is null on the diagonal, f(·, y) is concave for every y in X, f(x, ·) is
lower semicontinuous for every x in X, and there exists x̃ in X such that the function
f(x̃, ·) is supercoercive. Then, if we set ψ(x, y) = f(y, x) and ψ1(x) = −〈x∗, x〉, we
can apply Theorem 3.1 to get (11) fulfilled for a suitable x = x(x∗).
Our aim is to relate the bifunction Φf to an equilibrium problem that can be con-
sidered to be the dual of the original one.
Let h be a function on X such that h∗ is real-valued on X∗. We define the dual
equilibrium problem to (EPf ) to be the problem of finding a point x∗ in X∗ such
that

Φf (x
∗, y∗) + h∗(−y∗) ≥ h∗(−x∗) ∀y∗ ∈ X∗. (DEPf )

The solutions to the dual problem will be denoted by Sf
DEP.

Note that for every x∗ ∈ Sf
DEP, (DEPf ) implies Φf (x

∗, x∗) ≥ 0. From property (c)
above, we deduce:

Φf (x
∗, x∗) = 0, ∀x∗ ∈ Sf

DEP (12)
provided that f(x, x) ≥ 0 for all x ∈ C.
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In order to state our main results, let us consider the optimization problem (P) with
value

p = inf
x∈X

(g(x) + h(x)),

and denote by d the value of the dual concave optimization problem according to
Fenchel (see, for instance, [10], Chapter 4):

d = sup
x∗∈X∗

(−g∗(x∗)− h∗(−x∗)). (D)

Then the following result holds:

Theorem 4.3. Let f, h satisfy the assumptions (A) and (B), with f(x, x) = 0 on
C. In addition, suppose that h is supercoercive on C. Then

0 = p = d = sup
x∗∈X∗

inf
y∗∈X∗

(Φf (x
∗, y∗) + h∗(−y∗)− h∗(−x∗)) . (13)

Proof. First of all note that the supercoercivity of h implies that h∗ is real-valued.
By Proposition 3.2, Sf

EP 6= ∅, hence by Proposition 4.1, p = 0. By Remark 4.2, g is
convex and real-valued on C. By the assumption on f(·, y), g is lower semicontinuous
on X. Hence, g∗∗ = g and h∗∗ = h.
If we define h1(x) = h(−x), then h∗1(x

∗) = h∗(−x∗). Now we apply strong Fenchel
duality (see for instance [10, Theorem 4.4.3]) to the functions g∗ and h∗1, defined on
the space X∗. We deduce that

inf
x∗∈X∗

(g∗(x∗) + h∗1(x
∗)) = sup

x∈X
(−g(x)− h1(−x)) (14)

which immediately gives p = d. It remains to show the last equality in (13). We
first calculate g∗(x∗). Since C1 = C ∩ dom(h) we find, using Proposition 2.2:

g∗(x∗) =
(
sup
y∈C1

(−f(·, y)− h(y))
)∗
(x∗)

=
(

inf
y∈C1

(−f(·, y)− h(y))∗
)∗∗

(x∗)

Now we note that

inf
y∈C1

(−f(·, y)− h(y))∗ (x∗) = inf
y∈C1

((−f(·, y))∗ (x∗) + h(y))

= inf
y∈C1

(φf (y, x
∗) + h(y)) .

From Theorem 2.3 and the discussion that follows it, we know that the function

m(x∗) := inf
y∈C1

(φf (y, x
∗) + h(y)) = inf

y∈X
(φf (y, x

∗) + h(y))

is convex and lower semicontinuous, so m = m∗∗. Thus,

g∗(x∗) = m(x∗) = inf
y∈X

(φf (y, x
∗) + h(y)) (15)

Now given x∗, we apply again strong Fenchel duality to the functions (φf (·, x∗))∗ and
h∗(−·). This is possible because they are both convex and lower semicontinuous, h∗
is real valued, and (φf (·, x∗))∗ is proper by property P4.
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We deduce that

inf
y∗∈X∗

((φf (·, x∗))∗(y∗) + h∗(−y∗)) = sup
y∈X

(−φf (y, x
∗)− h(y)). (16)

Combining with (15) we obtain

g∗(x∗) = − inf
y∗∈X∗

((φf (·, x∗))∗(y∗) + h∗(−y∗))

= − inf
y∗∈X∗

(Φf (x
∗, y∗) + h∗(−y∗)) .

Substituting into (D) we find
d = sup

x∗∈X∗

(
inf

y∗∈X∗
(Φf (x

∗, y∗) + h∗(−y∗))− h∗(−x∗)
)

= sup
x∗∈X∗

inf
y∗∈X∗

(Φf (x
∗, y∗) + h∗(−y∗)− h∗(−x∗)) (17)

thereby obtaining the desired representation for the dual optimal value d.
Theorem 4.4. Suppose that the assumptions of Theorem 4.3 are fulfilled. If, in
addition, int dom(h) ∩ C 6= ∅, then the dual equilibrium problem (DEPf ) has a
solution.

Proof. Note that, under the assumptions, strong Fenchel duality can be applied
directly to problem (P). We deduce that p = d and in addition, given that p = 0,
the supremum in (D) is attained [10, Theorem 4.4.3]. From the proof of Theorem
4.3 one sees that the supremum in (17) is attained. Since d = 0, this means that
there exists x∗ ∈ X∗ such that

Φf (x
∗, y∗) + h∗(−y∗)− h∗(−x∗) ≥ 0 ∀y∗ ∈ X∗.

Hence, (DEPf ) has a solution.
Remark 4.5. Under the assumptions of Theorem 4.3,
(i) for every x∗ ∈ X∗ the infimum in (15) is effectively a minimum, since the

function y 7→ φf (y, x
∗) + h(y) is proper, lower semicontinuous, convex and

coercive on the nonempty, closed and convex set C;
(ii) from the last part of the proof of Theorem 4.4 we obtain that a point z∗ in

X∗ is a solution to (DEPf ) if and only if the equality g∗(z∗) + h∗(−z∗) = 0 is
satisfied.

We will now investigate the relationships between the set

S = {(x, x∗) ∈ X ×X∗ : φf (x, x
∗) + h(x) + h∗(−x∗) = 0}

and the solution sets of the primal equilibrium problem (EPf ) and of the dual
equilibrium problem (DEPf ). We define the function ξ : X ×X∗ →]−∞,+∞] by

ξ(x, x∗) := φf (x, x
∗) + h(x) + h∗(−x∗).

Note that, assuming only that f(x, x) ≥ 0 for every x ∈ C, property P2 of φf gives
that for all (x, x∗) ∈ X ×X∗,

φf (x, x
∗) ≥ 〈x∗, x〉 .
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Since we also have h(x) + h∗(−x∗) ≥ −〈x∗, x〉 we deduce that ξ(x, x∗) ≥ 0 for
all (x, x∗) ∈ X × X∗. Thus, if S is nonempty, then S = argmin ξ is a closed and
convex subset of X × X∗, since ξ is convex and lower semicontinuous. Also, by
Proposition 4.1, Sf

EP = argmin(g+ h), so this set is also closed and convex. Finally,
from Theorem 4.3 we see that

Sf
DEP = argsup

(
inf

y∗∈X∗
(Φf (·, y∗) + h(−y∗)− h∗(−·))

)
.

Assuming that f is lower normal and f(x, ·) is convex for every x, we know that Φf

is a saddle function (see property (a) of Φf ). It follows easily that Sf
DEP, being the

argsup of a concave function, is convex. It is also closed, if we assume in addition
that f(x, ·) is lower semicontinuous for every x ∈ C, and supercoercive for some
x̂ ∈ C (see property (b) of Φf ).
According to the definitions above, we have

(x, x∗) ∈ S ⇐⇒ ξ(x, x∗) = 0.

Let us now relate Sf
EP and Sf

DEP with the function ξ.
Proposition 4.6. Suppose that the assumptions of Theorem 4.3 are fulfilled and,
in addition, int dom(h) ∩ C 6= ∅. Then

x ∈ Sf
EP ⇐⇒ min

x∗∈X∗
ξ(x, x∗) = 0 (18)

x∗ ∈ Sf
DEP ⇐⇒ min

x∈X
ξ(x, x∗) = 0. (19)

Proof. We have the equivalences:

x ∈ Sf
EP = Sf

MEP ⇐⇒ −f(y, x) + h(y) ≥ h(x), ∀y ∈ X

⇐⇒ inf
y∈X

(−f(y, x) + h(y)) = h(x) (20)

where we used f(x, x) = 0. The infimum in (20) is attained (in particular, it is
finite) because h is assumed supercoercive. Now we apply strong Fenchel duality to
the convex functions −f(·, x) and h, to find:

x ∈ Sf
EP ⇐⇒ max

x∗∈X∗
(− (−f(·, x))∗ (x∗)− h∗(−x∗)) = h(x) (21)

⇐⇒ min
x∗∈X∗

(φf (x, x
∗) + h∗(−x∗)) + h(x) = 0

⇐⇒ min
x∗∈X∗

ξ(x, x∗) = 0

where the maximum in (21) is attained by [10, Theorem 4.4.3]. This proves (18).
As for (19), if x∗ ∈ Sf

DEP , then we know that Φf (x
∗, x∗) = 0, so the following

equivalences hold:

x∗ ∈ Sf
DEP ⇐⇒ inf

y∗∈X∗
(Φf (x

∗, y∗) + h∗(−y∗)) = h∗(−x∗)

⇐⇒ inf
y∗∈X∗

((φf (·, x∗))∗ (y∗) + h∗(−y∗)) = h∗(−x∗)

⇐⇒ min
x∈X

(φf (x, x
∗) + h(x)) + h∗(−x∗) = 0

where we have used relation (16) (i.e., Fenchel duality again) and Remark 4.5. This
shows (19).
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We deduce a relation between S, Sf
EP and Sf

DEP:
Proposition 4.7. Suppose that the assumptions of Theorem 4.3 are fulfilled and,
in addition, int dom(h) ∩ C 6= ∅. Then:
(i) ∅ 6= S ⊆ Sf

EP × Sf
DEP;

(ii) for every x ∈ Sf
EP there exists x∗ ∈ Sf

DEP such that (x, x∗) ∈ S;
(iii) for every x∗ ∈ Sf

DEP there exists x ∈ Sf
EP such that (x, x∗) ∈ S.

Proof. (ii) is an immediate consequences of Proposition 4.6. Indeed, if x ∈ Sf
EP,

then by (18) there exists x∗∈X∗ such that ξ(x, x∗) = 0. This means that (x, x∗)∈S.
Likewise for (iii).
Since by Proposition 6, Sf

EP 6= ∅, we see that (ii) implies that S 6= ∅.
Finally, for every (x, x∗) ∈ S, since ξ(x, x∗) = 0, (18) and (19) imply that x ∈ Sf

EP

and x∗ ∈ Sf
DEP, i.e., (x, x∗) ∈ Sf

EP × Sf
DEP. This finishes the proof.

We deduce an immediate corollary:

Corollary 4.8. Assumptions as in Proposition 4.7. If Sf
EP or Sf

DEP is a singleton,
then S = Sf

EP × Sf
DEP.

Proof. Assume, for instance, that Sf
EP is a singleton, say {x}. For every x∗ ∈ Sf

DEP,
Proposition 4.7(iii) implies the existence of an element y ∈ X such that (y, x∗) ∈ S.
Obviously, y = x, so (x, x∗) ∈ S and Sf

EP × Sf
DEP ⊆ S. The case Sf

DEP is a singleton
is similar.

The equality S = Sf
EP×S

f
DEP also holds in case the bifunction f actually stems from

an optimization problem:

Example 4.9. Let F, h be proper convex lower semicontinuous functions and set
C = dom(F ). Assume that C∩dom(h) 6= ∅ and h is supercoercive. Define the lower
normal bifunction f by

f(x, y) = F (y)− F (x), (x, y) ∈ X ×X

where we use the convention +∞−∞ = −∞. A standard computation (using the
same convention) gives

φf (y, x
∗) = F (y) + F ∗(x∗),

Φf (x
∗, y∗) = (φf (·, x∗))∗ (y∗) = F ∗(y∗)− F ∗(x∗).

Therefore, the dual equilibrium problem is exactly the dual optimization problem
according to Fenchel: find x∗ ∈ X∗ such that

−F ∗(x∗)− h∗(−x∗) ≥ −F ∗(y∗)− h∗(−y∗) for all y∗ ∈ X∗.

Thus, the set S has the following characterization:

S = {(x, x∗) ∈ X ×X∗ : F (x) + h(x) + F (x∗) + h∗(−x∗) = 0}
= argminX×X∗(F (x) + h(x) + F (x∗) + h∗(−x∗))
= (argminX(F (x) + h(x)))× (argminX∗(F (x∗) + h∗(−x∗)))
= Sf

EP × Sf
DEP
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Example 4.10. A particular example of the above, where both Sf
EP and Sf

DEP are
not singletons, is the following. Define ψ : R → R by ψ(x) = max {0, x2 − 1}. Then
ψ is supercoercive, thus ψ∗ is real-valued, and in fact

ψ∗(y) =

{
y2

4
+ 1, |y| ≥ 2
|y| , |y| < 2.

Now define F, h : R2 → R and f : R2 × R2 → R by
F (x, y) = h(x, y) = ψ(x) + ψ∗(y)

f(x, y, x1, y1) = F (x1, y1)− F (x, y).

Since h is separable with respect to its variables, it is easy to see that h∗(u, v) =
ψ∗(u) + ψ(v) (that is, h∗(u, v) = h(v, u)) so

h∗(u, v) = max
{
0, v2 − 1

}
+

{
u2

4
+ 1, |u| ≥ 2
|u| , |u| < 2.

According to the calculations above and F = h,
φf (x1, y1, u, v) = F (x1, y1) + F ∗(u, v) = h(x1, y1) + h∗(u, v)

Φf (u, v, u1, v1) = F ∗(u1, v1)− F ∗(u, v) = h∗(u1, v1)− h∗(u, v).

Now consider (EPf ) and (DEPf ): For (EPf ),
f(x, y, x1, y1) + h(x1, y1)− h (x, y) = 2 (h(x1, y1)− h (x, y))

so Sf
EP = argminh = [−1, 1] × {0}. As for (DEPf ), noting that ψ, ψ∗ are even

functions (and thus the same is true for h and h∗) we find
Φf (u, v, u1, v1) + h∗(−u1,−v1)− h∗(−u,−v)
= h∗(u1, v1)− h∗(u, v) + h∗(−u1,−v1)− h∗(−u,−v)
= 2(h∗(u1, v1)− h∗(u, v)).

Thus, Sf
DEP = argminh∗ = {0} × [−1, 1].

So Sf
EP, S

f
DEP are not singletons. Yet, according to Example 4.9, S = Sf

EP × Sf
DEP.

5. The Minty dual equilibrium problem

In the previous section we introduced the dual equilibrium problem (DEPf ) and
demonstrated its solvability. We now aim to establish the solvability of the dual
equilibrium problem directly by applying Theorem 3.1 under different conditions.
As we can associate a Minty counterpart with any equilibrium problem related to a
bifunction f through the mirror bifunction f̂ , we can similarly associate the Minty
dual equilibrium problem (MDEPf ) with the dual equilibrium problem (DEPf )
through the mirror bifunction. If f is lower normal, then

Φ̂f (x
∗, y∗) = −Φf (y

∗, x∗) = − (φf (·, y∗))∗ (x∗)
= inf

x∈X
sup
y∈X

(〈y∗, y〉 − 〈x∗, x〉+ f (y, x))

= inf
x∈C

sup
y∈C

(〈y∗, y〉 − 〈x∗, x〉+ f (y, x)) (22)
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Then, the (MDEPf ) consists in finding a point x∗ in X∗ such that
Φ̂f (x

∗, y∗) + h∗(−y∗) ≥ h∗(−x∗) ∀y∗ ∈ X∗. (MDEPf )
The solutions to the Minty dual problem will be denoted by Sf

MDEP.

Proposition 5.1. Let f be a saddle, lower normal bifunction with respect to a
nonempty, closed and convex set C, such that f(x, x) = 0 and f(x, ·) is lower
semicontinuous for all x ∈ C. Let h be a proper and convex function. If f(x̃, ·) is
supercoercive for some x̃ ∈ C, then Sf

DEP = Sf
MDEP.

Proof. We apply the first part of Proposition 3.2 to the space X∗, the function
h1(x

∗) = h∗(−x∗), and the bifunction f1(x
∗, y∗) := Φf (x

∗, y∗). To avoid confusion,
we denote by Sf1,h1

EP and Sf1,h1

MEP the solutions of the equilibrium problem and the
Minty equilibrium problem for f1 and h1 in the space X∗. According to Properties
(a)–(c) of the bifunction Φf , f1 is a saddle function, real-valued on X∗, such that
f1(x

∗, x∗) = 0 for all x∗ ∈ X∗. Also, f1(x∗, ·) is lower semicontinuous and f1(·, y∗)
is upper semicontinuous. Finally, h1 is proper, convex and lower semicontinuous.
Hence, the first part of Proposition 3.2 implies that Sf1,h1

MEP ⊆ Sf1,h1

EP . Since Sf1,h1

MEP =
Sf
MDEP and Sf1,h1

EP = Sf
DEP, we have Sf

MDEP ⊆ Sf
DEP.

Now we apply Proposition 3.2 to the bifunction f2(x∗, y∗) := Φ̂f (x
∗, y∗) and the same

function h1. Again f2 and h1 satisfy the assumptions of the first part of Proposition
3.2, so Sf2,h1

MEP ⊆ Sf2,h1

EP . Since Sf2,h1

MEP = Sf
DEP and Sf2,h1

EP = Sf
MDEP, we obtain the

reverse inclusion Sf
DEP ⊆ Sf

MDEP.

Theorem 5.2. Let f be a saddle, lower normal bifunction with respect to a nonempty,
closed and convex set C, such that f(x, x) = 0 and f(x, ·) is lower semicontinuous
for all x ∈ C. Let h be proper, convex, lower semicontinuous. Assume that there
exists a point y0 ∈ int dom(h) ∩ C such that f(·, y0) is bounded from above by a
continuous affine function 〈y∗0, ·〉 + α. If f(x̃, ·) is supercoercive for some x̃ ∈ C,
then the dual equilibrium problem is solvable.

Proof. By Proposition 5.1 it suffices to prove that Sf
MDEP is nonempty. We will

apply Theorem 3.1 to the space X∗, the bifunction −Φ̂f , and the function h∗(−·).
All assumptions (A1-A3) are satisfied. The remaining task is to check the coercivity
condition (6). To do so, it is enough to show that

lim
∥x∗∥→+∞

(h∗(−x∗)− Φ̂f (x
∗,−y∗0)) = +∞. (23)

Since h is continuous at y0, we know that h∗(−·) + 〈·, y0〉 is coercive (see Corollary
4.4.11 in [9]). Thus,

lim
∥x∗∥→+∞

(h∗(−x∗) + 〈x∗, y0〉) = +∞. (24)

On the other hand,

− 〈x∗, y0〉 − Φ̂f (x
∗,−y∗0) = −〈x∗, y0〉+ Φf (−y∗0, x∗)

= −〈x∗, y0〉+ sup
y∈X

inf
x∈X

(〈x∗, y〉 − 〈−y∗0, x〉 − f (x, y))

≥ −〈x∗, y0〉+ inf
x∈X

(〈x∗, y0〉 − 〈−y∗0, x〉 − f (x, y0)) ≥ −α. (25)
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From (24) and (25) we obtain (23). Thus, Theorem 3.1 applies, so (MDEPf ) is
solvable.

Remark 5.3. The assumptions of the two existence results for the dual equilibrium
problem in Theorem 4.4 and 5.2 can be compared: if we drop the condition of upper
semicontinuity of f(·, x) and supercoercivity of h, then we need to require some
boundedness from above for f(·, y) together with a supercoercivity of f(x, ·) for
suitable x, y.

In this section, we considered the Minty problem of the dual equilibrium problem
(MDEPf ). What if we consider the dual of the original Minty problem? The Minty
problem is simply the equilibrium problem corresponding to the bifunction f̂ . Hence
its dual, that we denote by (DMEPf ), consists in finding a point x∗ in X∗ such that

Φf̂ (x
∗, y∗) + h∗(−y∗) ≥ h∗(−x∗) ∀y∗ ∈ X∗. (DMEPf )

Here, assuming that f is lower normal on C,

Φf̂ (x
∗, y∗) = (φf (·, y∗))∗ (x∗) = sup

y∈X
inf
x∈X

(〈y∗, y〉 − 〈x∗, x〉+ f (y, x))

= sup
y∈C

inf
x∈C

(〈y∗, y〉 − 〈x∗, x〉+ f (y, x)) (26)

Comparing with (22) we see that

Φf̂ (x
∗, y∗) ≤ Φ̂f (x

∗, y∗) ∀(x∗, y∗) ∈ X∗ ×X∗.

To obtain the equality, we can apply a minimax result due to Tuy (see Theorem 3
in [19]):

Proposition 5.4. Let f be a saddle, lower normal bifunction on C, such that for
each x in C, f (x, ·) is lower semicontinuous, and f(·, x) is upper semicontinuous.
If there exists x̃ ∈ X such that f(x̃, ·) is supercoercive, then we have Φf̂ = Φ̂f and
Sf
DMEP = Sf

MDEP.

Proof. Take any (x∗, y∗) ∈ X∗ ×X∗. We apply Theorem 3 in [19] taking M = {x̃}
and F (x, y) = −〈y∗, x〉 + 〈x∗, y〉 − f(x, y), (x, y) ∈ C × C. This F satisfies all the
requirements, so

inf
x∈C

sup
y∈C

(−〈y∗, x〉+ 〈x∗, y〉 − f(x, y)) = sup
y∈C

inf
x∈C

(−〈y∗, x〉+ 〈x∗, y〉 − f(x, y)) .

Now we exchange x and y and then change the sign, to find

sup
y∈C

inf
x∈C

(〈y∗, y〉 − 〈x∗, x〉+ f (y, x)) = inf
x∈C

sup
y∈C

(〈y∗, y〉 − 〈x∗, x〉+ f (y, x)) ,

that is, Φf̂ (x
∗, y∗) = Φ̂f (x

∗, y∗). It follows immediately that Sf
DMEP = Sf

MDEP.
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