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The Single Screw Reciprocal to the General
Plane-Symmetric Six-Screw Linkage
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Abstract. The degree of mobility of a given linkage depends upon the order
of its screw system, whereby a loop with six joint freedoms may be related to
its reciprocal screw system, a single screw axis with an associated pitch. It has
been postulated that this reciprocal screw can provide an alternative means of
identifying its parent linkage, and an investigation in this respect has been recently
carried out for the line-symmetric six-screw linkage. Here we undertake a similar
enquiry for the plane-symmetric six-screw loop and so determine the essential
characteristics of its reciprocal screw.
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1. Introduction

A mechanical linkage is an assemblage of rigid bodies interconnected by joints about or along
which relative motion is possible. The linkage is modelled mathematically as a kinematic

chain which has been studied extensively in diverse ways for various purposes. One area of
investigation is that of existence criteria for overconstrained chains, those which are mobile
in defiance of general criteria for their movability. Such chains possess singular geometrical
properties which result in additional freedom of movement. Multiloop chains have been
examined piecemeal, but single loops have received much systematic attention.

In general, a closed, spatial kinematic chain requires seven joint freedoms for (internal)
mobility, but many exceptions to this rule have been found. For fewer than five joint freedoms
it is believed that all cases are known. Several solutions of overconstrained loops with five or
six joint freedoms have also been established, but a comprehensive analysis is difficult because
of the large numbers of governing equations and variables involved. It may be necessary to
develop new mathematical means for studying these chains, and this paper is intended as a
contribution in that vein.

The relative motion capability between two rigid bodies can be expressed in terms of
a screw motor, and that of a kinematic loop as a series of such entities, thereby forming a
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screw system. For a loop with one degree of mobility, the order of its screw system is one
fewer than the number of its joint freedoms. Now, to any screw system there is a reciprocal

system such that the sum of the orders of the two systems is six. Consequently, as the
number of joint freedoms in a mobile loop increases, the order of the relevant reciprocal screw
system decreases. In particular, a mobile (overconstrained), single-loop linkage with six joint
freedoms has a reciprocal screw system of order one. It is plausible that each family of six-bar
linkages may be characterised by a unique reciprocal screw system, and it could be that this
system of order one provides an easier means of analysis or definition than does the linkage
itself.

Figure 1:

The reciprocal system of the generalised line-symmetric six-bar linkage has been recently
identified and described in Ref. [4]. The next most accessible six-screw linkage is the gener-
alised plane-symmetric one which is the subject of this paper. (A commercial example of a
very particular case of this chain is illustrated in Fig. 1.) We determine its reciprocal screw
system, obtaining thereby a surprising result for the pitch of the screw, and we report on its
salient geometrical features.

2. The general plane-symmetric chain

In Fig. 2 we make the xOy plane of reference the plane of symmetry for our six-bar loop
in its most general form [8], namely, that in which there are two symmetrically disposed
pairs of helical joints (3,5 and 6,2) and two unpaired (degenerate) revolute joints (1 and 4)
with zero offsets lying in the plane of symmetry. Opposed links and articulations will have
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Figure 2:

corresponding parameters of position and orientation. We choose to define each helical axis
by a point (xi, yi, zi) which it contains and its direction cosines li,mi, ni , and the paired
joints have assigned screw-pitches hi . In turn, the direction cosines may be identified with
the orientation

ω̂i = (li,mi, ni)

of an instantaneous screw axis (ISA) located by position vector

ri = (xi, yi, zi).

The motion screw effected by the joint is represented concisely by a screw motor expressed as

$i = (ω̂i, hiω̂i + ri×ω̂i).

The net motion experienced around the whole chain is, then,

(0 =) S =
6∑

i=1

ωi$i ,

where ωi is the magnitude of angular velocity about joint i. For the last equation to be
satisfied, the six screw motors must form a linearly dependent set. If we put

hiωi + ri×ωi = ui , where ωi = ωiω̂i ,
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we see that
ω̂i · ui = ωihi and ω̂i × ui = ωipi ,

pi being the perpendicular position vector for screw axis i .
Although a linkage possessing plane-symmetric parameters does not necessarily exhibit

plane-symmetric configurations, we may assume that, for the loop under examination here,
the closure mode selected guarantees the manifestation of plane-symmetric positions only.
Hence, the following vectors can be adopted.

r1 =




x1

y1

0


 r2 =




x2

y2

0


 r3 =




x3

y3

0


 r4 =




x4

y4

0


 r5 =




x3

y3

0


 r6 =




x2

y2

0




ω̂1 =




l1
m1

0


 ω̂2 =




l2
m2

n2


 ω̂3 =




l3
m3

n3




ω̂4 =




l4
m4

0


 ω̂5 =




l3
m3

−n3


 ω̂6 =




l2
m2

−n2


 .

As well, we may take the respective screw-pitches to be 0, h2, h3, 0,−h3,−h2 . In consequence,
the six screw motors are as follows.

$1 =




l1
m1

0
0
0

m1x1 − l1y1



=




L1

M1

0
0
0
R1




$2 =




l2
m2

n2

h2l2 + n2y2

h2m2 − n2x2

h2n2 +m2x2 − l2y2



=




L2

M2

N2

P2

Q2

R2




$3 =




l3
m3

n3

h3l3 + n3y3

h3m3 − n3x3

h3n3 +m3x3 − l3y3



=




L3

M3

N3

P3

Q3

R3




$4 =




l4
m4

0
0
0

m4x4 − l4y4



=




L4

M4

0
0
0
R4




$5 =




l3
m3

−n3

−h3l3 − n3y3

−h3m3 + n3x3

h3n3 +m3x3 − l3y3



=




L3

M3

−N3

−P3

−Q3

R3




$6 =




l2
m2

−n2

−h2l2 − n2y2

−h2m2 + n2x2

h2n2 +m2x2 − l2y2



=




L2

M2

−N2

−P2

−Q2

R2




.

Digressing briefly, we draw attention to the fact that, in a loop which functions plane-
symmetrically, and for the representation employed here, two symmetrically disposed motion
screws experience the same rate of angular displacement at any time, and so they may be
combined by addition to produce a resultant screw in the plane of symmetry. Thus, screws 2
and 6 yield the motor

(l2,m2, 0, 0, 0, h2n2 +m2x2 − l2y2)

and screws 3 and 5 the motor

(l3,m3, 0, 0, 0, h3n3 +m3x3 − l3y3) .
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Both of these resultant screws have zero pitch and are of the same form as $1 and $4 , all
effectively three-dimensional entities. That is, the four screws so determined are linearly
dependent, belonging to the same three-dimensional ”simplified screw system” [8], thereby
establishing mobility of the chain.

Taking now all six of the linkage’s motors obtained above, let us define the matrix

S = $1$2$3$4$5$6 .

Then the screws will be linearly dependent, and so belong to the same five-system, when

|S| = 0 .

But it is clear that we can write
S ′ = SC,

where C is a (non-singular) matrix composed of elementary column operators, and

S ′ =




L1 0 0 L4 L3 L2

M1 0 0 M4 M3 M2

0 2N2 2N3 0 0 0
0 2P2 2P3 0 0 0
0 2Q2 2Q3 0 0 0
R1 0 0 R4 R3 R2




.

Because S ′ is singular so too is S. Thus, the mobility of the loop is alternatively proved and
the rank of the matrix cannot exceed 5. This maximum value applies when the linkage has
mobility 1, the case of interest here.

3. The reciprocal screw

Two screws (ω̂k,uk) and (ω̂l,ul) are said to be reciprocal if and only if

ω̂k · ul + ω̂l · uk = 0 .

Given a screw system, the reciprocal system is that consisting of all the screws which are
reciprocal to every screw in the system provided. The sum of the orders of a pair of reciprocal
systems is 6. Consequently, in the general case for which the screws of our six-bar belong to
the same five-system, there is a single screw reciprocal to all screws of the linkage and we
denote it by

$r = (Ωx,Ωy,Ωz, Ux, Uy, Uz) .

The axis of this screw is also coincident with the central axis of any linear complex defined
by the joint axes of the kinematic chain [1].

Following some minor operations on the columns of S ′, we can state the requirement of
reciprocity by means of the equation




L1 M1 0 0 0 R1

0 0 N2 P2 Q2 0
0 0 N3 P3 Q3 0
L4 M4 0 0 0 R4

L3 M3 0 0 0 R3

L2 M2 0 0 0 R2







Ux

Uy

Uz

Ωx

Ωy

Ωz



=




0
0
0
0
0
0




.
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The equation may be immediately partitioned into the two separate ones,




L1 M1 R1

L4 M4 R4

L3 M3 R3

L2 M2 R2







Ux

Uy

Ωz


 =




0
0
0
0


 and

(
N2 P2 Q2

N3 P3 Q3

)


Uz

Ωx

Ωy


 =

(
0
0

)
.

The first of these equations expresses the fact that $r is reciprocal to each of the screws of
the simplified screw system, only three of which can be independent. The second equation
expresses reciprocity to the difference motors

$2 − $6, $3 − $5

of the pairs of opposed screws, the axes of which are normal to the plane of symmetry. In the
first equation the rank of the 4×3 matrix is generally 3, so that the solution must be

Ux = Uy = 0 = Ωz .

Whatever the pitch hr of the reciprocal screw, therefore, we may present the set of line
coordinates of the central axis (to the various complexes which comprise the five-system) as

ĉ = (Ωx,Ωy, 0, 0, 0, Vz), where Vz = Uz − hrΩz = Uz

and we have been free to impose the condition that

Ω2

x + Ω
2

y = 1 .

So ĉ lies in the plane of symmetry.
The second of the foregoing matrix equations can be used to determine the relationships

between

Ω̂ =



Ωx

Ωy

0


 and U =



0
0
Uz


 .

Writing the equation in the expanded form

P2Ωx +Q2Ωy = −N2Uz

P3Ωx +Q3Ωy = −N3Uz ,

we have that

Ωx = −
DP

DN

Uz , Ωy = −
DQ

DN

Uz ,

where

DP =

∣∣∣∣
N2 Q2

N3 Q3

∣∣∣∣ , DN =

∣∣∣∣
P2 Q2

P3 Q3

∣∣∣∣ , DQ =

∣∣∣∣
P2 N2

P3 N3

∣∣∣∣ .

Hence,

$r = ĉ =
Uz

DN

(−DP ,−DQ, 0, 0, 0, DN ) =
1√

D2
P +D2

Q

(−DP ,−DQ, 0, 0, 0, DN ) ,
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which is entirely independent of the locations and orientations of joint axes 1 and 4. It is
immediate that

hr = Ω̂ ·U = 0

and

pr = Ω̂×U =
U2

z

DN

(−DQ, DP , 0) =
DN

D2

P +D2

Q

(−DQ, DP , 0) .

The pitches h2, h3 of the screws contributing to the five-system are arbitrary, and so
the result of permanently zero pitch to be associated with the central axis is unexpected.
This is especially so because it is known that a reciprocal screw of permanently zero pitch is
characteristic of a six-revolute linkage for which the joint axes have a common transversal,
typically Bricard’s trihedral linkage [5] which is not generally plane-symmetric. Here, of
course, the central axis does not generally intersect any of the four screw axes inclined to the
plane of symmetry. If, for example, it were to intersect screw axis 2, we should require that

(
x2

y2

)
= pr + r2Ω̂,

where r2 is some parameter of length to be determined. That is,
(

x2

y2

)
=

DN

D2

P +D2

Q

(
−DQ

DP

)
+

r2√
D2

P +D2

Q

(
−DP

−DQ

)
,

whence
y2DP − x2DQ = DN .

Upon substitution and simplification this condition becomes

h2h3(l2m3 − l3m2) = h2 {n3l2(x3 − x2) +m2n3(y3 − y2)} .

The two possible implications are that h2 = 0 or, as can be easily demonstrated, the central
axis is orthogonal to axis 2. [This conclusion may be reached alternatively by means of
a reciprocity relationship such as that given in Ref. [6].] The first possibility only arises
for a special form of the linkage. The second can, conceivably, be realised at a particular
configuration of the loop. Interestingly, if both circumstances were to obtain, it would entail
a singular position of part-chain mobility owing to the coincidence of two screws of zero
pitch; there could follow a degenerate motion of the loop in which the other four joints were
permanently locked. Such a form of behaviour has been pointed out elsewhere, in Ref. [3],
for instance.

In the (degenerate) case where all loop screws are of zero pitch, namely, Bricard’s
[5] plane-symmetric linkage, the reciprocal screw is immediately determined by the points
(x2, y2), (x3, y3), independently of any other parameters, and the central axis is a common
transversal to the six joint axes. This result cannot be generally related to that for Bricard’s
trihedral loop, because of the individual character of the former and the probability that the
latter is itself a special case of a larger linkage grouping [2], [5].

4. Closing remarks

We have now established apparently distinguishing features of the screw system reciprocal to
each of the line-symmetric and plane-symmetric families of six-screw linkages. We can add to
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these the fairly obvious result that, for the physically varied family of parallel-screw chains
[7], of which a particular case is the Sarrus linkage, the single reciprocal screw is of infinite
pitch and is directed normal to the planes defined by the rotary joint axes. It is by no means
certain that this approach to the study of overconstrained loops will be of value, but it seems
to be worth pursuing at this stage. One must be vigilant in doing so that broad inferences
be not drawn from particular solutions of mobile loops. As the other known six-bars are not
necessarily the most general representatives of their respective families, this caution must be
highly respected.
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