
Journal for Geometry and Graphics
Volume 1 (1997), No. 1, 23–29

Supporting CAE Parallel Computations with
IE-Graph Solid Representation

M. Flasiński1, R. Schaefer1,2, W. Toporkiewicz3

1Institute of Computer Science, Jagiellonian University,

ul. Nawojki 11, PL 30-072 Cracow, Poland

2Computer Center, Cracow University of Technology,
3PhD student, Cracow University of Technology,

ul. Warszawska 24, PL 31-155 Cracow, Poland

Abstract. An algorithm providing a decomposition of the lumped structure body
into arbitrary parts having minimal interface has been introduced. The presented
approach may be applied in parallel domain decomposition methods for mechan-
ical analysis. Optimal partitioning is provided before the computational mesh is
generated on the basis of its prescribed node density distribution. A new unam-
biguous solid representation is utilized.

1. Motivation

Because of technical and commercial limitations one processor-one memory computer is hardly
applicable for solving complicated engineering problems. In order to gain a better performance
computer architectures evolve towards multiprocessors systems with shared memory or arrays
of computers linked with a fast network. In order to use a heterogeneous distributed environ-
ment of a computer network flexibly, hardware development is followed by intensive evolution
of basic software (e.g. PVM, Linda, EMERALD). The successful utilization of multiprocessor
computer installations forces us to parallelize most complicated problems that appear in the
discrete mechanical analysis of structures.

One of progressive technologies in this area is PCD-SBS (Preconditioned Conjugate Gra-
dient tailored with Subdomain By Subdomain preconditioner) domain decomposition method,
which may be used to solve huge FE-equations issuing from linear or stepwise linearized prob-
lems (see [3]). The general idea of the PCD-SBS method is comprehended in partitioning of
the whole FE-mesh into several connected parts. Degrees of freedom are numbered along
the interfaces and then consecutively inside interiors of particular subdomains. The result-
ing stiffness matrix has the arrow-form (see Fig. 1). Upper bound coefficients are related to
degrees of freedom laying on interfaces, and diagonal blocks to coefficients that come from
degrees of freedom located inside interiors of subdomains. The PCG process contains two
types of operations:

ISSN 1433-8157/$ 2.50 c© 1997 Heldermann Verlag



24 M. Flasiński et al.: CAE Parallel Computations with IE-Graph Solid Representation

Non-zero coefficients

from solid's interior

Zeros

Non-zero coefficients

of interface nodes

Figure 1: The arrow-form stiffness matrix resulting from domain decomposition

• a computation of inverses of diagonal blocks, which is performed once,

• a sequence of products of above inverses and parts of upper stripe and a specific pre-
conditioner, which are provided parallely in each iteration step.
A rough analysis of PCD-SBS algorithm leads us to the conclusion that complexity of an

elementary task is proportional to the square, or to the cube of a diagonal block’s dimension,
and that the number of iterations grows when partitioning is more fine and the upper bound
becomes broader. Taking into account the above discussion, the problem of the optimal
domain partitioning may be formulated as follows:

Decompose the structure’s domain into subdomains containing prerequisited number of

degrees of freedom, minimizing simultaneously the number of degrees of freedom on interfaces.
During the entire process of parallel computations the stage of a domain decomposition

is one the of critical points. The main obstacle now seems to be lack of algorithms that
would allow effective partitioning of a domain into subparts, before the FE-computation
mesh is generated. It is partially due to the model used for representing a structure. If such
representation does not provide enough topological information, partitioning becomes very
complicated. So the choice of representation is crucial for constructing effective decomposing
algorithm. We would like to introduce a solid representation which may solve the problem.

2. IE-Graph Solid Representation

The IE-graph representation scheme is a one-to-one mapping between a specific subset of
lumped structures and a subset of indexed, edge-unambiguous graphs (see [2]). The scheme
under consideration is based on the new solid taxonomy which describes each structure as the
finite union of so-called simple solids (SS). Simple solids can be obtained from the arbitrary
given set of basic constructive solids (BCSs) by a sequence of subtracting operations called
features.

An elementary (simple) feature is created by sweeping a prescribed contour of the sweeping
bases (SB) set. Both BCSs and SB elements are represented as graph nodes. Sweeping
parameters (e.g. depth, SB position and size with respect to the BCS initial face, number of
the initial face) constitute the labeled graph edges.

The solid representation graph provides very important topological information about re-
lationships between features carved inside a BCS, as well as about relationships between sim-
ple solids that may be glued together creating a complex solid. This information is contained
in edge labels. From them we learn about one wall adjacency of features, their catenation
along edges or interaction when their volumes intersect.

The labels indicate which walls of a BCS are affected by the particular feature. An
example of a solid and its representation graph is shown in the Figures 2a and 2b respectively.



M. Flasiński et al.: CAE Parallel Computations with IE-Graph Solid Representation 25

3.

2.5.

1.

4.
a.3.4

4.5

I.

1.
BCS

1.3

3.

C.

Figure 2: Example of a solid and its representation graph

Graph nodes are labeled either with BCSs or with features. The label ‘S.2.1’ means that two
volumes are glued together with their first and second wall respectively. Labels that consist
only of numbers indicate which walls are affected by the particular feature. Label ‘I’ indicates
interaction and ‘C’ catenation of features. Labels like ‘a.3.4’ inform that two features are
adjacent with their third and fourth walls.

Information provided by node and edge labels is of topological nature. The particular
geometry of BCSs and features is stored in graph attributes (see [2]).

Although this representation has been invented to describe mechanical parts, it is of a
descriptive power that allows one to represent structures. Another advantage is its uniqueness.
Thanks to this, we may be sure that the partitioning selected in effect of the optimization
process is really optimal.

3. Formulation of the optimization problem

3.1. Preliminary assumptions

For the sake of simplicity let us assume that the only BCS is a prism, features are also
prismatic, and normal to walls. Expanding these assumptions does not provide much difficulty
but forces us to consider many particular cases that make understanding of the general idea
harder. We have a complex solid (CS) that consists of several simple solids (SS). In terms of a
graph representation it means, that there are several graph nodes labeled with BCS-indicators
and linked with edges indicating catenation of solids.

Solving an engineering problem of mechanical analysis of structure generally consists of
two phases:

• a generation of the computational mesh,

• a calculation of the solution in the mesh points.
We suggest to provide the partitioning before the mesh is generated basing on some synthetic
information about the node distribution. This assumption frees us from multiple mesh gen-
eration during the optimal partitioning creation. We assume in particular that the degrees
of freedom density function, that indicates how many mesh nodes should be generated in the
particular place of the volume is given.

Both of above solving stages are comparably expensive in terms of required computer
performance. So we can additionally gain considerable time advantage paralleling also mesh
generation.



26 M. Flasiński et al.: CAE Parallel Computations with IE-Graph Solid Representation

3.2. The set of admissible controls

Let A indicate the set of admissible partitioning of a complex solid Ω. In our situation these
are all such partitionings where volumes constituting Ω are cut along planes. Let Pt ∈ A be
an admissible partitioning. Then

Pt = {Ωi}, i = 1 . . . n,

n⋃

i=1

Ωi = Ω,

∫

∂Ωi∩∂Ωj

dx = 0 for i, j = 1, . . . , n,

and Ωi are closed subdomains of Ω, and each consists of one or more simple solids.
Let ρ ∈ C(Ω) be the function which describes the spatial density of FE degrees of freedom

(see [1]) related to nodes of FE mesh that will be generated.

3.3. Decomposition indicators

There are two factors according to which we perform a decomposition. The first one is the
number of degrees of freedom on the interface of catenated volumes that we call interface

capacity It :

It =

n∑

i,j=1

∫

∂Ωi∩∂Ωj

dx, Ωi,Ωj ∈ Pt .

The index t indicates that the interface capacity refers to a particular partitioning. The other
factor is the volume capacity Vt :

V t
i =

∫

Ωi

ρdx, Ωi ∈ Pt

It expresses the number of degrees of freedom in the interior of Ωi, where Ωi ∈ Pt.

3.4. The goal of optimization

Let {V̂1, . . . , V̂n} constitute the volume capacity decomposition that is best suited to the
current performance distribution. We intend to find a partitioning Pt ∈ A that generates
{V t

1
, . . . , V t

n} sufficiently close to the prescribed {V̂1, . . . V̂n} and that offers possibly small
interface capacity It.

3.5. Discussion of the problem formulation

The choice of the set of admissible partitionings was dictated by the requirement of simplicity.
Decomposition itself can not put much overhead on the entire computation and in case of
planes parallel to walls, it is easy to detect whether the particular feature falls entirely into
one part of the divided volume or is intersected, etc. However, in our opinion this solution is
acceptable.

We assume that load balancing is the leading factor of a decomposition. It is good, if a
minimal interface accords with load balancing but it may happen that this second requirement
forces us to choose a dividing plane with a nonoptimal interface capacity.

It must be mentioned here that the decomposition problem formulated this way is in a
general case NP-complete, because it requires checking all possible sequences of decomposi-
tion. For instance, if we have to decompose a volume into three, mutually unequal parts, we
do not know whether to start from subtracting the biggest or the smallest one, etc. We must
test all possible combinations. Fortunately there are approximating strategies available that
allow to check only one sequence of partitioning and provide a suboptimal solution.



M. Flasiński et al.: CAE Parallel Computations with IE-Graph Solid Representation 27

4. The suggested course of decomposition

The search for the optimal decomposition would start from checking, whether some of the
simple solids constituting the CS fit into volume capacities specified in the load balancing
requirements. Such solids could be, at the very beginning, assigned to particular computers.
However, at most cases, partitioning of a SS is unavoidable. It is easy to notice, that the
only nontrivial remaining problem is to divide a volume into two parts according to the given
proportion. For instance, if we need to decompose a volume into three parts in proportion
1:1:2, we may, at first, divide it into two equal parts, and then repeat this operation for one of
them. All further considerations refer to dividing a volume into parts according to the given
proportion.

Search for the optimal plane dividing a volume would be carried along three mutually
normal directions. It is necessary to test especially these planes that include at least one
feature wall – either the begin or the end of a feature along the given direction, because along
the whole length of a feature the loss of the interface area that it introduces is constant.
Moreover, such planes offer a very good proportion of interface capacity to the subtracted
volume capacity what makes us consider them as possibly optimal surfaces of division. On
each of the three directions we would choose the plane that provides the minimal interface
capacity and volume capacities of divided parts according to the load balancing requirements.
Then from these three results the best one would be elected.

5. Possible optimization strategies

There are many optimization strategies that deal with dividing a volume. Let us introduce
two of them. They differ in the functional to be minimized and in the way that load balancing
requirements are involved. Because of previously motivated reasons, formulation of strategies
is restricted to the case of partitioning a SS into two subparts subtracting one volume. The
functional I indicates now the interface capacity of the dividing plane, and V stands for
volume capacity of the subtracted part.

Strict strategy: min
Vmin≤V≤Vmax

I(V )

where Vmin and Vmax express load balancing requirements. In this strategy the constraints
with regard to the load balancing are strict; the volume capacity V of the subtracted solid
must fit exactly into the given interval.

Flexible strategy: min
0≤V≤VW

a1I
2(V ) + a2(V − VD)

2

where VD is the desired capacity of a subtracted volume, VW is the node capacity of the
entire volume and a1, a2 are tuning factors, that say whether we insist more on minimizing
the interface or on balancing the load. The penalty function a2(V − VD)

2 grows with the
difference between the subtracted volume’s capacity and the desired capacity.

The strict strategy fits better for environments where computers differ much in their
performance. Then it is important not to overload weaker machines. The flexible strategy will
demonstrate its efficiency in a well balanced environment where computers have a considerable
‘safety margin’ of performance.



28 M. Flasiński et al.: CAE Parallel Computations with IE-Graph Solid Representation

6. Computational solutions

The search for the optimal decomposition would start from checking whether some of the
simple solids constituting the CS fit into volume capacities specified in the load balancing
requirements. Such solids could be, at the very beginning, assigned to particular computers.
But in most of the cases, partitioning of a SS is unavoidable. For the purpose of volume
partitioning, it is convenient to extract from the Solid Representation Graph a list of positive
and negative volumes, i.e. BCSs and features, that constitute the Complex Solid. In this list
three sequences of volumes would be built, according to the coefficients of their characteristic
points along the X-, Y and Z-direction.

This approach may decrease the number of tests which are necessary in order to determine
which features fall entirely into divided parts of the particular BCS, and which are intersected.
For instance, when checking along the X-axis encounters a feature with the minimal X-
coefficient bigger than that of the division plane, then without further tests it is known that
all subsequent features in the list belong entirely to the other half of the divided BCS. It turns
out that volume partitioning is in fact reduced to a variation of a sorting algorithm, which
offers a very acceptable computational complexity.

The optimization of this division is a harder task, because it requires the integration of the
node density function. To do this, some variation of the Monte Carlo method seems suitable,
because it does not require the computation of the volume boundary. It allows to perform
integration knowing only the geometry of the BCS and features, without taking care for their
intersections, adjacency or catenation. This shifts the reconstruction of the solid boundary
to the end of the entire decomposition process. Reconstruction of the solid boundary is
performed by the host which accepts the particular part of the CS for calculations.

The search for the optimal plane dividing a volume would be carried along three mutually
normal directions. The suggested approach is based on bisection. At the first step the volume
capacity of the entire SS would be calculated. In case it does not meet the load balancing
requirements, the testing division plane would be placed at the half of its length. This process
would iterate on volume parts until a satisfactory outcome is obtained. As stop condition
for this process may serve some combination of difference of minimized functional value and
step length in subsequent iterations. In this way – along each of the three mutually normal
directions – the plane would be figured out that provides the minimal value of the optimized
functional. After the decomposition is made, the remaining task is the reconstruction of the
SRG (Solid Representation Graph) structure. In general, it consists in relinking graph edges,
and/or changing their labels. It is not complicated but requires the consideration of several
special cases.

7. General conclusions

• While using the parallel approach in engineering computations, an effective decomposi-
tion of the problem’s domain is crucial. Due to the IE-graph representation, a relatively
simple algorithm provides a suboptimal solution (optimal in the restricted class of par-
titionings) of this problem. We would like to emphasize the great advantages of the
IE-graph representation like descriptive power and uniqueness of volume’s description.

• An approximation strategy was introduced. As it was mentioned, finding the optimal
decomposition is an NP-complete problem. What we suggest is a sequential decomposi-
tion of a volume and an optimization of interface capacity at each step, but for simpler



M. Flasiński et al.: CAE Parallel Computations with IE-Graph Solid Representation 29

cases checking all possible decomposition sequences may prove acceptable.

• The strategy of a decomposition should be adjusted to a distribution of computer per-
formance over a network. Two strategies (strict and flexible) were formulated that fit
to variously balanced environments.

• Only a scheme of the algorithm was presented. There are still many technical problems
to be solved, like an effective computation of volume and interface capacity functions,
for instance.

References

[1] G. Ciarlet: The Finite Element Method for Elliptic Problems. North Holland 1978.

[2] M. Flasinski: Use of graph grammars for the description of mechanical parts.
Computer-Aided Design 27, No. 6, 403-433 (1995).

[3] M. Papadrakakis, S. Bitzarakis: Domain Decomposition PCG methods for serial

and parallel processing. Computing Systems in Engineering 1995.

Received November 26, 1996, final form June 12, 1997


