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Abstract. The most important properties of Bézier and B-spline curves are the
convex hull property, the affine invariance, the possibility to subdivide and the
variation diminishing property. Therefore it would be of great interest to have a
larger class of point controlled curves with the same properties. It is known that
all corner cutting curves have the first two properties. In this paper we deal with
the subdivision of corner cutting curves, especially of linear corner cutting curves.
For uniformly tangent corner cutting curves (a subclass which contains B-spline
curves) we present a simple method for computing the control points of the new
curves.
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Preliminaries

Above all, the importance of Bézier and B-spline curves in Computer Aided Geometric Design
is based on the following properties.
(a) Convex hull property : Each curve is contained in the convex hull of its control points.

(b) Affine invariance: One gets the affine image of a curve by using the affine images of its
control points.

(c) Subdivision: The curve can be subdivided into two curves of the same type.

(d) Variation diminishing property : A straight line intersects the curve at most as many
times as it intersects its control polygon.

The points of a Bézier curve can be computed by the algorithm of de Casteljau, the points
of a B-spline curve by the algorithm of de Boor. Thus a Bézier curve and each restriction of
a B-spline curve to an interval limited by two knots is a special corner cutting curve (see [1]).
This means that there are control points P0, . . . , PN and strictly monotone increasing cutting

functions

αij : [a, b]→ [0, 1] (1 ≤ i ≤ j ≤ N)

so that we get each point X(u) of the curve as the terminal point PN
N of the following corner

cutting algorithm (see Figure 1).

ISSN 1433-8157/$ 2.50 c© 1997 Heldermann Verlag



92 G. Aumann: Subdivision of Linear Corner Cutting Curves

d

d

d d d

d

d

d

d
d

dd

d

P0

P1 P2

P3

P 1
1

P 1
2

P 1
3P 2

2

P 2
3

P 3
3 = X(u)

q

q q

q

q

Figure 1: The corner cutting algorithm

j = 0, . . . , N : p0
j := pj

i = 1, . . . , N : j = i, . . . , N : pij := (1− αij(u))p
i−1
j−1 + αij(u)p

i−1
j

(1)

Properties (a) and (b) apply to all corner cutting curves, but generally these curves are not
variation diminishing (see [1]). Therefore, we have to search for subsets of corner cutting
curves with properties (a)-(d).

We again start with the algorithms of de Casteljau and de Boor. Calling a corner cutting
curve linear if all cutting functions are polynomials of degree 1, we see that these algorithms
generate special linear corner cutting curves. So, the following question arises. Are properties
(a)-(d) inherent in all linear corner cutting curves? In this paper we deal with property (c).

Subdivision schemes can be found in several fields of applied mathematics (cf. [15]). In
CAGD, subdivision algorithms are used to split point controlled curves or surfaces by gen-
erating the control points of the two parts. By this means we get a refinement of the given
structure without changing the shape of the curve or surface. On the one hand, this can
be used for local modification of curves and surfaces. On the other hand, by repeating the
subdivision process a sequence of finer and finer polygonal (when dealing with curves) or
polyhedral (when dealing with surfaces) meshes is generated which converges to some limit.

As early as 1984 Boehm, Farin and Kahmann emphasized that subdivision is a central
tool in CAGD (see [3]). So, a large number of papers dealt with this topic. Here, only
one current example may be given. Subdivision strategies can be used when dealing with
the problem of filling an n-sided hole of a surface (see [12] or [13]). The resulting surface
should be tangent plane continuous or curvature continuous. The background of the second
by far more difficult case was pointed out by Reif in [14]. Also several generalizations of the
well-known subdivision algorithms were developed. In [5], Micchelli and Pinkus generalized
the scheme known from halving a Bézier curve to define their Matrix Subdivision Scheme.
Instead of the usual 2-point subdivision schemes, Dyn, Levin and Gregory studied 4-point
schemes (see [4]).

In most papers studying subdivision in CAGD the convergence of the infinite subdivision
process is analyzed (cf. [6, 7, 8, 10, 11]. In the present paper we proceed to the following
questions. Which corner cutting curves are subdivisible at any point? And: Is there a simple
method of computing the new control points? In a sense, this is the counterpart to a method
described by Prautzsch in [9]. Prautzsch considers a fixed transformation of control points and
searches for the corresponding cutting functions. In the present paper the cutting functions
are given and the corresponding transformation of control points is derived.

The paper is organized as follows. In the first section we recapitulate the most important
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definitions about corner cutting curves. Further we note some results about Bernstein poly-
nomials. Then we study the subdivision of linear corner cutting curves. In Theorem 1 we give
a sufficient condition for a linear corner cutting curve to be subdivisible and we show how the
control points of the two parts depend on the control points of the entire curve. In section
3 we specialize the obtained results on uniformly tangent corner cutting curves. An example
will show the applicability of the proved Theorems. We conclude with some remarks.

1. Introduction

We start with a concise summary of results about corner cutting curves which will be needed
in the following sections. Details can be found in [1]. Further, we give two Lemmata about
Bernstein polynomials.

1.1. Corner cutting curves

First of all we need a parametric representation of the curve resulting from algorithm (1). To
get such a representation we have to accumulate the single steps of this algorithm. Proceeding
so and denoting the differentiation with respect to u by a dot we get the following definition
of a corner cutting curve (short: cc curve).

Let P0, . . . , PN be points of the Euclidean 3-space E3 and let αij (i = 1, . . . , N ; j =
i, . . . , N) be Cr-functions (r ≥ 1) with

∀u ∈ [a, b] : αij(u) ∈ [0, 1] and α̇ij(u) > 0 (1 ≤ i ≤ j ≤ N). (2)

Further, let the (N + 2− i, N + 1− i) matrices Ai
N = Ai

N (u) for i = 1, . . . , N be defined by

Ai
N =











1− αii 0 · · · 0

αii
. . . . . .

. . . . . .

...

0
. . . . . .

. . . . . .
0

...
. . . . . .

. . . . . .
1− αiN

0 · · · 0 αiN











.

Then the Cr-curve

c : x(u) =
(

p0 . . . pN

)

A1
N (u)A

2
N(u) · · ·A

N
N (u)

︸ ︷︷ ︸

(N+1,1)-matrix

=: (p0 . . . pN )






f0(u)
...

fN (u)




 , u ∈ [a, b]

is called a corner cutting curve or cc curve of degree N with cutting functions αi
j and blend-

ing functions fk. The points P0, . . . , PN are the control points of c. If all functions αi
j are

polynomials of degree 1, c is called linear.
For u ∈ [a, b] the matrices Ai

N = Ai
N (u) have nonnegative entries and their columns sum

to one. We call such matrices stochastic.
Linear cc curves will be the main topic of the next sections. It should be mentioned that

each linear cc curve has a “Casteljau-type evaluation algorithm” as defined in [2] by Barry
and Goldman.

An interesting subset of linear cc curves is given by the uniformly tangent cc curves, which
are defined by certain contact conditions (see [1]). Examples of uniformly tangent cc curves
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are Bézier curves and restrictions of B-spline curves to an interval limited by two knots. A cc
curve is uniformly tangent iff

Ai−1
N (u)Ȧi

N(u) = Ȧi−1
N (u)Ai

N (u) (i = 2, . . . , N). (3)

1.2. Something about Bernstein polynomials

The following results about the Bernstein polynomials

BN
i (u) =

(
N

i

)

(1− u)N−iui (i = 0, . . . , N)

will be used in the next sections. The proofs are straightforward.

Lemma 1: For the Bernstein polynomials the following is true.






BN
0 (u0u)

...

BN
N (u0u)




 =






B0
0(u0) · · · BN

0 (u0)
. . .

...

0 BN
N (u0)











BN
0 (u)
...

BN
N (u)




 , (4)






BN
0 (u0(1− u) + u)

...

BN
N (u0(1− u) + u)




 =






BN
0 (u0) 0

...
. . .

BN
N (u0) · · · B0

0(u0)











BN
0 (u)
...

BN
N (u)




 . (5)

Lemma 2: For the Bernstein polynomials it holds

dkBN
j

duk
(u) = N(N − 1) · · · (N − k + 1)

k∑

λ=0

(−1)k−λ
(
k

λ

)

BN−k
j−λ (u) (6)

with Bi
j ≡ 0 if i < 0 or j /∈ {0, . . . , i}.

2. Subdivision

In the following, we consider a linear cc curve c. Without loss of generality we take the
parameter interval [a, b] = [0, 1], i.e. c may have the parametric representation

c : x(u) =
(
p0 . . . pN

)
A1
N (u) · · ·A

N
N (u) =

(
p0 . . . pN

)






f0(u)
...

fN (u)




 , u ∈ [0, 1] . (7)

As the Bernstein polynomials BN
j form a basis of the linear space of the polynomials of degree

less or equal N , there is a unique representation

A1
N (u) · · ·A

N
N (u) =






f0(u)
...

fN(u)




 = R






BN
0 (u)
...

BN
N (u)




 (8)
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with a (N + 1, N + 1) matrix R which does not depend on u.
In section 2 we demand that R is a regular matrix. Now we split the curve c atX(u0), u0 ∈

]0, 1[ into two curves

c1 : y(u) = x(u0u) =
(
p0 . . . pN

)






f0(u0u)
...

fN (u0u)




 , u ∈ [0, 1] (9)

and

c2 : z(u) = x(u0(1− u) + u) =
(
p0 . . . pN

)






f0(u0(1− u) + u)
...

fN (u0(1− u) + u)




 , u ∈ [0, 1] .

(10)

We are searching for type (7) representations of c1 and c2, i.e. we are searching for control
points Q0, . . . , QN with

c1 : y(u) =
(
q0 . . . qN

)






f0(u)
...

fN (u)




 , u ∈ [0, 1]

and for control points S0, . . . , SN with

c2 : z(u) =
(
s0 . . . sN

)






f0(u)
...

fN(u)




 , u ∈ [0, 1] .

We start with c1. For this curve we have

c1 : y(u) = x(u0u) =
(
p0 . . . pN

)






f0(u0u)
...

fN (u0u)






(8)
=

(
p0 . . . pN

)
R






BN
0 (u0u)

...

BN
N (u0u)






(4)
=

(
p0 . . . pN

)
R






B0
0(u0) · · · BN

0 (u0)
. . .

...

0 BN
N (u0)











BN
0 (u)
...

BN
N (u)




 (11)

(8)
=

(
p0 . . . pN

)
R






B0
0(u0) · · · BN

0 (u0)
. . .

...

0 BN
N (u0)




R−1






f0(u)
...

fN (u)






=:
(
p0 . . . pN

)
T1(u0)






f0(u)
...

fN (u)




 =:

(
q0 . . . qN

)






f0(u)
...

fN (u)




 .
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For c2 we get from (5) and (8)

c2 : z(u) = x(u0(1− u) + u)

=
(
p0 . . . pN

)
R






BN
0 (u0) 0
...

. . .

BN
N (u0) · · · B0

0(u0)




R−1






f0(u)
...

fN(u)




 (12)

=:
(
p0 . . . pN

)
T2(u0)






f0(u)
...

fN (u)




 =:

(
s0 . . . sN

)






f0(u)
...

fN (u)




 .

We summarize these results in

Theorem 1: Let

c : x(u) =
(
p0 . . . pN

)






f0(u)
...

fN (u)




 , u ∈ [0, 1]

be a linear cc curve with





f0(u)
...

fN(u)




 = R






BN
0 (u)
...

BN
N (u)




 , detR 6= 0 ,

and let u0 ∈]0, 1[. Then the curve c1 given by (9) has the parametric representation

c1 : y(u) =
(
p0 . . . pN

)
T1(u0)






f0(u)
...

fN (u)




 , u ∈ [0, 1]

with

T1(u0) = R






B0
0(u0) · · · BN

0 (u0)
. . .

...

0 BN
N (u0)




R−1 =: R∆1(u0)R

−1 .

The curve c2 given by (10) has the parametric representation

c2 : z(u) =
(
p0 . . . pN

)
T2(u0)






f0(u)
...

fN(u)




 , u ∈ [0, 1]

with

T2(u0) = R






BN
0 (u0) 0

...
. . .

BN
N (u0) · · · B0

0(u0)




R−1 =: R∆2(u0)R

−1 .

The presented subdividing method using Bernstein polynomials seems to be a detour.
But this method has several advantages:
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R ∆i(u0)

blending functions of c yes NO

parameter value u0 NO yes

Table 1: Dependences

• The matrices Ti(u0) (i = 1, 2) supplying the new control points depend on both the
blending functions of c and the parameter value u0 (see also Equation (1.3) in [9]). The
described method resolves these dependences as shown in Table 1.

• For a Bézier curve, R is the (N + 1, N + 1) unit matrix.

• In the case of degree elevation, in ∆i(u0) only one new column has to be computed.

• The matrices ∆i(u0) can be written down immediately. So we know the matrices
Ti(u0), if we know the matrix R which describes the transformation between the basis
{f0, . . . , fN} and the basis {BN

0 , . . . , BN
N }.

• If we have c1, for c2 no new computation is necessary. To get ∆2(u0), we only have to
rearrange the elements of ∆1(u0).

Two questions remain open.

• Which linear cc curves have linearly independent blending functions, i.e. a regular matrix
R?

• How can the matrix R be computed in a simple way?

We will answer these questions for uniformly tangent cc curves in the following section.

3. Uniformly tangent cc curves

Let c be a uniformly tangent cc curve. Uniformly tangent cc curves are linear cc curves (see
Theorem 7 of [1]). So, without loss of generality c may be given by (7) and (8). In section
2 we demanded that R is a regular matrix. In this section, i.e. for the subset of uniformly
tangent cc curves, we can drop this assumption and prove the regularity of R.

At first we prove two simple algorithms for the computation of R. Let rj be column j of
R (j = 0, . . . , N) and let the forward differences ∆i be given by

∆0rj = rj and ∆irj = ∆i−1rj+1 −∆i−1rj .

To get shorter formulations we define for i = 0, . . . , N

Ci(u) := Ȧ1
N(u) · · · Ȧ

i
N (u)

︸ ︷︷ ︸

empty if i = 0

Ai+1
N (u) · · ·AN

N (u)
︸ ︷︷ ︸

empty if i = N

.
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Then we have

Ci(u)
(3)
=

1

N(N − 1) · · · (N − i+ 1)

diC0

dui
(u)

(8)
=

1

N(N − 1) · · · (N − i+ 1)

N∑

j=0

rj
diBN

j

dui
(u) (13)

(6)
=

N∑

j=0

rj

i∑

λ=0

(−1)i−λ
(
i

λ

)

BN−i
j−λ (u) .

Using the arguments 0 and 1 we get the following results.

Theorem 2: Let c be a uniformly tangent cc curve given by (7) and (8). Then for i =
0, . . . , N it holds

Ci(0) = Ȧ1
N (0) · · · Ȧ

i
N (0)A

i+1
N (0) · · ·AN

N (0) = ∆ir0 .

So matrix R can be computed by

ri = Ci(0)−
i−1∑

j=0

(−1)i−j
(
i

j

)

rj (i = 0, . . . , N) . (14)

Proof: For i = 0 we get from (8)

C0(0) =
N∑

j=0

rjB
N
j (0) = r0 .

For i ≥ 1 we have

Ci(0)
(13)
=

N∑

j=0

rj

i∑

λ=0

(−1)i−λ
(
i

λ

)

BN−i
j−λ (0)

=
N∑

j=0

rj(−1)
i−j

(
i

j

)

BN−i
0 (0) =

i∑

j=0

(−1)i−j
(
i

j

)

rj = ∆ir0 . 2

Theorem 3: Let c be a uniformly tangent cc curve given by (7) and (8). Then for i =
0, . . . , N it holds

Ci(1) = Ȧ1
N (1) · · · Ȧ

i
N (1)A

i+1
N (1) · · ·AN

N(1) = ∆irN−i .

So matrix R can be computed by

ri = (−1)N−iCN−i(1)−
N−i∑

j=1

(−1)j
(
N − i

j

)

ri+j (i = N, . . . , 0) . (15)

Proof: For i = 0 we get from (8)

C0(1) =
N∑

j=0

rjB
N
j (1) = rN .
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For i ≥ 1 we have

Ci(1)
(13)
=

N∑

j=0

rj(−1)
N−j

(
i

i+ j −N

)

BN−i
N−i(1) =

N∑

j=N−i

(−1)N−j
(

i

i+ j −N

)

rj

=
i∑

j=0

(−1)i−j
(
i

j

)

rj+(N−i) = ∆irN−i .

This gives

rN−i = (−1)iCi(1)−

i∑

j=1

(−1)j
(
i

j

)

rN−i+j . (16)

Replacing i by N − i, algorithm (16) becomes (15). 2

Now we are able to prove the following important result.

Theorem 4: The blending functions f0, . . . , fN of a uniformly tangent cc curve are linearly

independent.

Proof: We have

f0, . . . , fN linearly independent ⇐⇒ rank R = N + 1

(14)
⇐⇒ det

(
C0(0) C1(0) . . . CN(0)

)
6= 0 .

Further, because of rank Ȧj
N = N + 1− j the mappings

{
R
N+1−j → R

N+2−j

x 7→ Ȧj
Nx

are injective. So, the mappings

{
R
N−i+2 → R

N+1

x 7→ Ȧ1
N · · · Ȧ

i−1
N x

are injective, too. Thus, for i = N, . . . , 1 we can conclude as follows.

Ȧ1
N · · · Ȧ

i−1
N Ai

N (0) · · ·A
N
N (0) ∈

[

Ȧ1
N · · · Ȧ

i
NA

i+1
N (0) · · ·AN

N (0), . . . , Ȧ1
N · · · Ȧ

N
N

]

⇐⇒ ∃λi, . . . , λN : Ȧ1
N · · · Ȧ

i−1
N

(

Ai
N (0) · · ·A

N
N (0)−

N∑

k=i

λkȦ
i
N · · · Ȧ

k
NA

k+1
N (0) · · ·AN

N (0)
)

= o

⇐⇒ ∃λi, . . . , λN : Ai
N (0) · · ·A

N
N (0) =

N∑

k=i

λkȦ
i
N · · · Ȧ

k
NA

k+1
N (0) · · ·AN

N (0) .

But this is impossible, as the elements of the vector on the left sum to 1, while the elements
of each vector on the right sum to 0. 2

We note some results and questions.
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• The elements of each column of R sum to 1. This follows from (14) because of

sum of elements of Ci(0) = δ0i

and

−
i−1∑

j=0

(−1)i−j
(
i

j

)

= (−1)i+1

i−1∑

j=0

(−1)j
(
i

j

)

= (−1)i+1(−1)i+1 = 1 .

Is R a stochastic matrix? The matrix R−1 is generally not stochastic (see the following
example).

• We know

r0 = A1
N (0) · · ·A

N
N(0) , rN = A1

N (1) · · ·A
N
N (1) .

• (11) shows

1 =
N∑

i=0

fi(u0u) = f0(u)×
(

sum of the elements of column 1 of T1(u0)
)

+ · · · +

fN(u)×
(

sum of the elements of column N + 1 of T1(u0)
)

.

So, because of
∑N

i=0 fi(u) ≡ 1 and because of the uniqueness of the basis representation,
the elements of each column of T1(u0) (and of T2(u0)) sum to 1. But the matrices Ti(u0)
are generally not stochastic (see the following example).

4. Example

For [a, b] = [0, 1] the most general uniformly tangent cc curve of degree 2 is given by

α2
2(u) = λu+ µ (0 < λ ≤ λ+ µ ≤ 1) ,

α1
1(u) = dα2

2(u) + (1− d) (0 < d ≤
1

1− µ
) ,

α1
2(u) = cα2

2(u) (0 < c ≤
1

λ+ µ
)

(see [1]). In this case we have

C0(0) =





d(1− µ)2

1− d(1− µ)2 − cµ2

cµ2



 ,

C1(0) = λ





−d(1− µ)
d(1− µ)− cµ

cµ



 ,

C2(0) = λ2





d
−c− d

c



 .
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So, with ν := λ+ µ we get from (14)

R =






d(1− µ)2 d(1− µ)(1− ν) d(1− ν)2

1− d(1− µ)2 − cµ2 1− d(1− µ)(1− ν)− cµν 1− d(1− ν)2 − cν2

cµ2 cµν cν2






and from this

R−1 =
1

cdλ2
·






cν
(
1− d(1− ν)

)
−cdν(1− ν) d(1− ν)(1− cν)

cd(µ+ ν − 2µν)− c(µ+ ν) cd(µ+ ν − 2µν) cd(µ+ ν − 2µν)− d(2− µ− ν)

cµ
(
1− d(1− µ)

)
−cdµ(1− µ) d(1− µ)(1− cµ)




 .

For λ = 1 and µ = 0 (which gives ν = 1) these equations become

R =






d 0 0

1− d 1 1− c

0 0 c




 , R−1 =

1

cd






c 0 0

c(d− 1) cd (c− 1)d

0 0 d






(0 < c, d ≤ 1). In this case we get

T1(u0) =
1

c






c
(
u0 + d(1− u0)

)
cd(1− u0) d(1− u0)(c− u0)

c(1− u0)(1− d) c
(
1− d(1− u0)

)
(1− u0)

(
u0(c+ d) + c(1− d)

)

0 0 cu2
0






(17)

and

T2(u0) =
1

d






d(1− u0)
2 0 0

u0

(
(1− u0)(c+ d) + (1− c)d

)
d(1− cu0) du0(1− c)

cu0(u0 + d− 1) cdu0 d
(
1− u0(1− c)

)




 .

(18)

Figures 2 and 3 show the resulting curves and control points for different parameters. There
we use the notation of (11) and (12). From (17) and (18) we get
• Q0, Q1 ∈ P0P1,

• S1, S2 ∈ P1P2,

• Q2 ∈ conv {P0, P1, P2} ⇐⇒ u0 ∈ [0, c],

• S0 ∈ conv {P0, P1, P2} ⇐⇒ u0 ∈ [1− d, 1].

5. Conclusion

We have shown that the blending functions of each uniformly tangent cc curve are linearly
independent. So, uniformly tangent cc curves have property (c) of the beginning of the paper.
In a forthcoming paper it will be shown that these curves also have property (d). Altogether,
the uniformly tangent cc curves form a subset of corner cutting curves which have - as Bézier
and B-spline curves - all properties (a)-(d).
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c =0.80
d =0.50
u0 =0.60
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Figure 2: Subdivision of a uniformly tangent cc curve - Example 1

c =0.50
d =0.30
u0 =0.60
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cP0

P1

P2

ss
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b

b

c

c

c

Q0

Q1

Q2

s

s

b

b

b

c

c

c
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S1

S2

Figure 3: Subdivision of a uniformly tangent cc curve - Example 2

I conjecture that each linear corner cutting curve has these properties. The following
examples will show that the cutting functions αi

j of a linear cc curve have to meet both
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assumptions

∀u ∈ [a, b] : αij(u) ∈ [0, 1] (19)

and

α̇ij(u) > 0 (20)

(1 ≤ i ≤ j ≤ N ; see (2)) to get linearly independent blending functions fk. Let [a, b] = [0, 1]
and let c be a linear cc curve of degree 2 with cutting functions α1

1(u) = λu+ µ and α1
2(u) =

α2
2(u) = u. Then the blending functions of c are linearly dependent iff µ = λ + 1. In Figure

4 (a) where (20) is not true we have λ = −0.1 and µ = 0.9. In Figure 4 (b) where (19) is not
true we have λ = 0.1 and µ = 1.1. Further, we cannot conclude as follows: Let a < b and let

c

c

c(a)P0

P1

P2

c

c

c

c(b)P0

P1

P2

c

Figure 4: Counterexamples

f0, . . . , fN be polynomials of degree N with the property that fi has i zeros ≤ a and N − i
zeros ≥ b. Then f0, . . . , fN are linearly independent. We give the following counterexample.
For [a, b] = [0, 1] and

f0(x) = (x− 3)(x− 6) ,

f1(x) = (x− 1)(x+ 2) ,

f2(x) = x2

it holds f0 + 9f1 − 10f2 = Ω.
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curves. Computer Aided Geometric Design 14, 449–474 (1997).

[2] P.J. Barry, R.N. Goldman: De Casteljau-type subdivision is peculiar to Bézier
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