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Abstract. One of the important questions of central axonometry is to give a
condition under which a central axonometric mapping is a central projection.
The aim of this paper is to prove that the well-known Stiefel’s condition can
be considered as a limiting case of a recent theorem proved by Szabó, Stachel
and Vogel.

1. Introduction

Central axonometry, as a projective generalization of the classical axonometric mapping, plays
an important role in descriptive geometry and computer graphics. A central axonometric
mapping of the projective space onto the projective plane π can be defined as follows: Let a
point O in the plane π be given as the image of the spatial origin. Three arbitrary lines x, y
and z through O are in π the given images of the axes of a spatial cartesian coordinate system.
Furthermore, let two distinct points on each axis, Ex, Ux, Ey, Uy and Ez, Uz be the images of
the unit points and the vanishing points of the spatial axes, respectively (cf. Figure 2). Now
the image of a spatial point P = (px, py, pz) is obtained by completing the projective scales on
the axes. This means that the i-th coordinate pi of P equals the cross ratio pi = (PiEiOUi) on
the axis, when Pi denotes the orthogonal projection of point P onto the i-th axis. The seven
points O,Ex, Ey, Ez, Ux, Uy, Uz form the so-called reference system of the central axonometric
mapping.

One of the central questions in this field is the following: Under which conditions is a
central axonometric mapping of an object a central projection of this object ? Or — in other
words — in which way can the reference system of central projection be characterized ? The
first (rather complicated) result has been given by Kruppa [1], but this characterization is
synthetic, so it cannot be applied immediately in computer graphics. An analytical condition
for a particular case has been given by Stiefel [2] (Theorem 1 of this paper), while finally
Szabó et al. [3] proved a general theorem (Theorem 2 of this paper) with a simple analytical
condition. In this paper we prove that Stiefel’s condition can be considered as a limiting
case of this general theorem.
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2. The Theorems

With the notations introduced above, Stiefel’s condition can be expressed as follows:
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Figure 1: Stiefel’s particular case

Theorem 1 (Stiefel): If the vanishing point Uz of the central axonometric reference system
O,Ex, Ey, Ez, Ux, Uy, Uz is infinite and perpendicular to the line joining the vanishing points
Ux, Uy of the x- and y-axis (see Figure 1), then this central axonometric mapping is a central
projection if and only if the mutual distances obey

(

ExUx

OEx

)2

+

(

EyUy

OEy

)2

=

(

UxUy

OEz

)2

. (1)

Theorem (Szabó, Stachel, Vogel): When all points O,Ex, Ey, Ez, Ux, Uy, Uz of a central
axonometric reference system are finite, then the defined mapping is a central projection if
and only if

(

OEx

ExUx

)2

:

(

OEy

EyUy

)2

:

(

OEz

EzUz

)2

= tanα : tan β : tan γ , (2)

where α = ∠UzUxUy, β = ∠UxUyUz, γ = ∠UyUzUx (see Figure 2).

3. The Limiting Process

Now we will prove that the general Theorem 2 implies Theorem 1 as its limiting case. First
a lemma will be stated.

Lemma: When the vertex C of a triangle ABC tends to infinity along the fixed altitude of
C, then according to the notation in Figure 3

lim
C→∞

mc sin γ = c .

Proof of the Lemma: From the area of the triangle ABC in Figure 3 we obtain

ab sin γ = mc c or mc sin γ = c
m2

c

ab
.
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Figure 2: Central axonometric reference system O,Ex, Ey, Ez, Ux, Uy, Uz
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Figure 4:

Using this equation and the fact that C →∞ implies mc →∞ we obtain

lim
C→∞

mc sin γ = lim
C→∞

c
m2

c

ab
= c lim

C→∞

mc
2

ab
= c lim

C→∞

1√
m2

c
+x2

mc

√
m2

c
+y2

mc

= c · 1 = c

where x and y according to Figure 3 denote the lengths of the sections of AB separated by
the altitude of C.

Now we can prove the main result:
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Proof (Theorem 2 ⇒ Theorem 1): From formula (2) we deduce

cotα =

(

ExUx

OEx

)2(

OEz

EzUz

)2

cot γ and cot β =

(

EyUy

OEy

)2(

OEz

EzUz

)2

cot γ

which imply

cotα + cotβ =

[

(

ExUx

OEx

)2

+

(

EyUy

OEy

)2
]

(

OEz

EzUz

)2

cot γ . (3)

On the other hand, let us consider a special case of the coordinate system, which is
partially equal to Stiefel’s case: Let the z-axis be perpendicular to the line UxUy, but let
the point Uz be finite (see Figure 4). Then the point T of intersection between the z-axis and
the line UxUy obeys

cotα =
UxT

UzT
and cotβ =

UyT

UzT
,

therefore

cotα + cotβ =
UxUy

UzT
.

The right side of this equation must be equal to the right side of (3):

UxUy

UzT
=

[

(

ExUx

OEx

)2

+

(

EyUy

OEy

)2
]

(

OEz

EzUz

)2

cot γ.

Multiply both sides of the equation with
UxUy · UzT

OEz
2

:

(

UxUy

OEz

)2

=

[

(

ExUx

OEx

)2

+

(

EyUy

OEy

)2
]

UxUy · UzT · cos γ
EzUz

2 · sin γ
.

Note that this latter equation is the same as (1) apart from the last factor of the right side.
Hence it is sufficient to prove that if the point Uz tends to infinity along the fixed z-axis, then
this factor tends to 1, that is

lim
Uz→∞

UxUy · UzT · cos γ
EzUz

2 · sin γ
= 1 .

From Figure 4 one can deduce that EzUz = UzT ± TEz . So this formula can be written as

UzT

EzUz

· UxUy · cos γ
UzT · sin γ ± TEz · sin γ

.

Now in order to compute this limit we decompose the term into the following parts:

1. lim
U→∞

UzT

EzUz

= 1, since EzUz = UzT ± TEz and TEz is constant.

2. lim
U→∞

UxUy · cos γ = UxUy , since lim
U→∞

γ = 0 .

3. lim
U→∞

TEz · sin γ = 0 .

4. lim
U→∞

UzT · sin γ = UxUy due to the Lemma.

Finally 1–4 imply

lim
U→∞

UxUy · UzT · cos γ
EzUz

2 · sin γ
=

UxUy

UxUy

= 1

which completes the proof.
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