Journal for Geometry and Graphics
Volume 1 (1997), No. 2, 157-167

(n,2)-Axonometries and the Contour of
Hyperspheres

Gunter Weiss

Institute for Geometry, Dresden University of Technology
Zellescher Weg 12-14, D-01062 Dresden, Germany
email: weiss@math.tu-dresden.de

Abstract. The paper deals with special axonometric mappings of an n-dimensional
euclidean space onto a plane n’. Such an (n,2)-axonometry is given by the im-
age of a cartesian n-frame in 7’ and it is especially an isocline or orthographic
axonometry, if the contour of a hypershere is a circle in 7’.

The paper discusses conditions under which the image of the cartesian n-frame
defines an orthographic axonometry. Also a recursive construction of the hyper-
sphere-contour in case of an arbitrary given oblique axonometry is presented.
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Introduction

In elementary Descriptive Geometry an axonometric mapping « or briefly an azonometry is
the product of a parallel projection v and an affinity’ x from an auxiliary projection plane
7 (in space) onto the drawing plane 7/. An axonometry « is well defined by the image of
a cartesian coordinate system. If the auxiliary image plane 7 is orthogonal to the fibers of
¥, (i.e. 1 is an orthogonal projection), we call @ an ortho-azonometry®. The well-known
3-dimensional engineer’s azonometry (cf. [3], p. 63, [10], p. 73, DIN 5, ONORM A 6061)
is an ortho-axonometry based on a particular axonometric reference system {z{,z5,2$} in
the drawing plane 7’ according to Fig. 1, which implies the distortion ratios 1 : 2 : 2 of the
x1-, To- and xz-axis. Thus the engineer’s axonometry merges the advantages of distortion

'Due to the well-known theorem of POHLKE there exists always a factorirzation of o as a product of a
parallel projection v and a similarity k. From a more general point of view axonometry is a linear mapping
acting on projective spaces and being the product of a (central) projection v of an n-space onto an auxiliary
projective subspace of dimension m and a collineation « of this subspace onto the m-dimensional image-space,
cf. [1].

2We will also use the word ‘normal’ instead of ‘orthographic’ and briefly speak of ‘ortho-axonometry’ or
‘ortho-projection’ instead of ‘orthographic axonometry’ or ‘orthographic projection’.
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ratio-based (oblique) axonometries with that of ortho-axonometries (i.e. circular contours of
spheres, ‘direct’ construction of the axes of the image-ellipses of circles).

The axonometric method is also a well suited tool to visualize objects of multidimensional
spaces (cf. [8, 14]) and one will appreciate the advantages of an orthographic or at least
isocline® projection, especially if one draws images of such objects by hand or by means of a
CAD-system. However, as there are no commercial ‘volume-based” CAD-systems for higher
dimensions, one is restricted to 2D-CAD systems and to Descriptive Geometry. Thus there
arises a need for constructive methods and of projections which are simple to handle.

In [29] WAN et al. gave a solution for an ortho-azonometry of the (euclidean) 4-space
E? onto the drawing plane 7 using an arbitrary axonometric 4-frame {z7, 2%, % 27} in the
plane 7 and (rounded) distortion ratio 1 : 0.6 : 0.6 : 1. They call such an axonometry an
‘optimal’ one: it can be factorized into an isometric ortho-projection 3 : E* — E? (mapping
the unit segments on the x;-, xo-, x3- and x4-axis of E* onto the ‘height segments’ of a
regular tetrahedron of E? with the orthocenter being the image of the origin O € E*) and an
ortho-projection 3 : E3 — 7 providing finally a di-metric axonometry o : E* — 7 with the
prechosen distortions.

Figure 1: Engineer’s axonometry Figure 2:

The underlying paper extends classical results concerning ortho-(3,2)-axonometries « :
E? — 7 to ortho-(n, m)-axonometries, (cf. e.g. [24, 20, 21, 22, 27]), with special emphasis
on (4,2)-axonometries. A consequence is a recursive construction of the contour-ellipse of a
hypersphere in any (n,2)-axonometry.

Analytical treatment of ortho-axonometries

Let a: E® — E™ be an ortho-(n, m)-axonometry from a euclidean n-space E" onto a euclidean
m-space E™ i.e. the product of a normal (n, m)-projection ¥ : E* — E™ (E™ C E"), and
a similarity o: E™ — E™.

Any (n,m)-axonometry « of a euclidean n-space E" onto a euclidean m-space E™' is
uniquely defined by the image 8% C E™ of a cartesian frame B := {A¢; A1,..., A, } C E",
whereby e.g. {A$; A}, ..., A%} span the image space E™ (cf. [2]). Following [20] we choose
an additional frame B := {Ao; Zl, e ,gn} such that ¢, becomes the ortho-projection onto
the coordinate subspace E™ = Aj V A; V.-V A, The congruence transformation replacing

3CE. [20]
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the original basis B by %B defines a certain orthogonal matrix

@11 Qa2 - Alp a1
Qo1 Q22 -+ Aoy _ _ a2

m = : : : = (a1,32,...,3,) = |- (1)
An1 Ap2 - Ann an

We notice that the columns 3; as well as the rows a; fulfill the conditions

a;-a = Ok, Aj - Ak = Ojk, i7k€{17"'7n} (2)

a Fo xe
17a27... ’an

Hence the matrix 91 =: (3
m rows a; of M. With

) of the (affine linear) mapping « consists of the first

)\?I:a%j‘f‘af%j—f—"'—}_a?nj?jz]‘""’”’ (3)

follows
S N=3 = m. (1)
j=1 k=1

Especially for an ortho-axonometry which is congruent® to an ortho-projection the values \;
(3) are the distortions along the j™ coordinate axis Ay V A; of B. With respect to given
unit segments in E™ and E™', (4) is a necessary condition for « being an ortho-axonometry.
According to [20] (4) is also sufficient (cf. also [28]); so we state

Lemma 1: Let o be an (n, m)-axonometry of a euclidean n-space E™ onto a euclidean m-
space E™ defined by the image B* € E™ of a cartesian frame B € E". Then « is an
ortho-axonometry, if and only if the distortions A; (j = 1,...,n) along the coordinate axes
fulfill the condition

AN +A+ o+ A =m.

Let the image-space E™ =: 7’ be two-dimensional, so it admits the interpretation as
GaAussian plane: Put AY =z; := a5 +iay €C, (j=1,...,n), and AF=0¢€ C. Then, from
(2) follows the ‘GAUSS-condition’

n

2 _ =2 2 -2 =2
E z; =a)+2ia;ra—a, =3 —a, =0, (5)
=1

which is independent from an arbitrary dilatation-factor of o: E? — 7, (E* C E"). For n = 3
this result is well-known (cf. [3]), for n > 4 it is mentioned in [21].
While the GAUSs-condition characterizes a parallel-projection % for being an ortho-
projection this is not true for parallel-azonometries, if n > 3, as it is proved in the following:
Let a (n,2)-axonometry « be product of an ortho-projection % : E* — E? = (21 V z5)
(with matrix M according to (3)) and a similarity o: E? — 7’ (with dilatation-factor d and an
orthogonal matrix S). Then « is described by the matrix 2 = S - 9. On the other hand, the

4This will make sense, if we embed E™' into E™ such that we use the ‘same’ unit segments in E” and in
the image-space E™'. From a more general point of view, if we refrain from embedding E™ into E™', we may
still use the concept ‘congruent’ with respect to chosen unit segments in E* and in E™'. Cf. [20].
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gblz'que projection QZS of E™ parallel to the coordinate space Ag V 113 VARERY, ﬁn onto the plane
E? := AgV BV By (By := (1,0,b,)", By :=(0,1,by)", b; € R"2) (cf. Fig. 2), is described by
the transformation matrix

- 1 00 -+ 0
M= 0 1 0 --- 0], b,oecR"2 (6)
b1 b2 o -+ O

and differs from the orthogonal projection 1% : E® — E? by an affine mapping, namely the
perspectivity o:= %|E?. This affine mapping o obviously turns out to be a similarity if and
only if

by by =0 A b} =b3. (7)

Thus follows that conditions (7) can become true only if dimE" > 4!
Let conditions (7) be fulfilled. Then, o is described by

s (40), am et 0

and, in the subspace E4 := E2 v E2 C E”, the planes E? and E2 are “isocline’ with the
(two equal) main angles ¢, = @, with cosg; = 1/4/1+b3. Hence an_ortho-axonometry
a: E" — 7’ can always be factorized into an isocline oblique projection® 1% and a (suitable)
similarity o.

Lemma 2: The GAuss-condition (5) characterizes (n, 2)-axonometries of a euclidean n-space
E", n > 4, onto the drawing plane 7’ for being isocline® axonometries.

Isocline- and ortho-(4,2)-axonometries

In the following we restrict the discussion to dimensions n = 4 and m = 2. Then, in the
GAussian plane 7', (5) is represented by a quadrangle Q with bars parallel to the vectors (E?
(cf. Fig. 3). Assuming a given unit segment in 7’ then, because of (4) and |2?| = A2, an ortho-
axonometry is characterized by a quadrangle O with a circumference of length 2. Note that
four segments with lengths |z2| can form a quadrangle only if a set of quadrangle-conditions

holds; i.e.
Z1< D 1Zl (T={1,...,4}). (9)

jel\i

As we may commute the numbers 2?2, the quadrangle Q is determined only up to the sequence
of its sides. As a quadrangle with given side lengths still is flexing, we may interpret Q as a
four-bar mechanism (cf. Fig. 3). Let one axis (e.g. the axis xz§ with unit point A$) coincide
with the imaginary axis in 7, then the ‘base pivots’ 0 and 2% of the four-bar linkage Q are
the origin and an arbitrary point on the negative real axis. To make sure that o becomes an
ortho-axonometry, @ must have bars with total length 2, according to Lemma 1.

Thus follows

5We call an oblique projection 9§ ‘isocline’, if its image plane is isocline (cf. [20]) to a plane E2 (totally)
orthogonal to the fibers of 15 and therefore isocline to the fibers themselves.
6Cf. [20]; of course ‘isocline’ includes ‘orthogonal’ as a subcase.
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Figure 3: Axonometric image of a 4-frame and the corresponding four-bar linkage

Lemma 3: To any (labelled) quadrangle in m with circumference 2, interpreted as zero-sum
of four complex numbers 2?2, there exists a unique ortho-axonometric 4-frame with the origin
A§ =0 and unit points A} = z;.

Lemma 3 provides an easy exact construction” of an ortho-axonometric 4-frame by just
determining square-roots of complex numbers, a process that easely can be implemented in

computer software. E.g. to prescribed distortion ratios A; : --- : Ay and one angle between
two axes (e.g. < (z¥,z¢)) the corresponding coupler linkage is (over the field C of complex
numbers) ambiguously determined (cf. Fig. 4 with A\ : -+ : Ay = 1:2:2: 2 and <

) (2, x%) = 135°. The corresponding ortho-axonometric 4-frame is di-metric and generalizes
the engineer’s axonometry Fig. 1).

The axonometry a belonging to such a 4-frame is (in general) similar to an ortho-
projection of E* onto 7. (The factor of similarity is equal to the radius of the contour
circle of the unit sphere Q4 C E*; in the latter we present a construction of this contour.)

With regard to the set of four-bar linkages we conclude that apart from similarities there
exists a four-parametric set of essentially different ortho-(4,2)-axonometries.

Special examples of ortho-(4,2)-axonometries

Let us demand that the restriction of a to one coordinate plane (e.g. the xjxs-plane) is a
similarity. Then we obtain equally distorted and orthogonal axes =, x§, hence

2, .2 _
21+ 25 =0.

Then, from (5) follows 23 + 27 = 0. In other words, the restriction of a to the z3x4-plane also
is a similarity and « turns out to be di-metric. These special axonometries « are subcases of
di-metric axonometries with two pairs of equal distortions; the corresponding four-bar linkages
have two pairs of bars of equal length too. For the special subcases the four-bar linkages form
a twice covered two-bar linkage, cf. Fig. 5. (The coupler motion ramifies in case of such di-
metric linkages.) Furthermore, from Fig. 5 follows immediately that any two isosceles right

Tcontrary to WAN’s construction of the ‘optimal (4,2)-axonometry’.
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T 4 ‘ 4 ‘ i
Figure 4: A 4D-version of engineer’s axonometry

angle hooks (with common vertex A§) in the euclidean plane w form the axonometric 4-frame
of an ortho-(4,2)-axonometry.

As the restriction of a to any coordinate-3-space of B is an ordinary ‘frontal (3,2)-
axonometry’, i.e. similar to an oblique projection onto a coordinate plane, constructive treat-
ment of objects of E* becomes extremely well-arranged. But the most important advantage
seems to be that, generalizing the usual top- and front-projection, one can handle construc-
tions according to e.g. KRUPPA [12] in the ‘system of two images’ based on the restrictions of
« to the z1x9- and the z3z4-plane (cf. also [6, 25, 26, 30]).

Figure 5: A ‘frontal’ (4,2)-axonometry
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The contour of a hypersphere

Let B C 7 be the (plane) image of a cartesian n-frame B C E" under an arbitrary (n,2)-
axonometry o: E® — 7. Note that in case of m = 2 there always exist planes E? C E" such
that a generalized version of theorem of POHLKE holds, i.e. « is the product of a parallel
projection v : E" — E? and a similarity o: E* — 7 (cf. [23, 20]). In the following we describe
an iterative construction of the contour-ellipse u{ of the unit-hypersphere €2,, based on the
well-known construction of the axonometric image of an ordinary sphere Q3 (cf. [15], p. 244):

The great circle k3 C €23 in the projecting plane through the axis AyAs is mapped onto
a segment [UP, U] with center A§, cf. Fig. 6. Choose B € k3 such that 4 (A3A4¢B) = 7/2.
Then, if v measures the angle between the projecting rays s and the segment [U{, US|, and

with 8 :=49 (s, AgB) follows
cos(9)

d(Ag, AS) = d(Ag, BY) = 10
( 0> 3) COS("}/)7 ( 0> ) COS(’}/)’ ( )

and a contour point U; € k3 is mapped onto Uy* with
d*(A7, UY) = d*(A7, B®) + d*(Af, A3). (11)

Assume that the great circle €25 through the unit points A;, A has an elliptic a-image
ug. If V denotes the image of one of the two contour points of s, (the tangent to ug is
parallel to AJA$), then the contour ellipse u® of €3 is determined by the pair of conjugate
half-diameters ([Ag, Uy, [AG, Vi]).

Figure 6: Axonometric contour of the unit-sphere

Remark 1): The length of the minor semiaxis of u® equals the factor of the similarity o: E? —
.

Remark 2): For any pair of conjugate half diameters [Ag, AY] =: z; and [A§, AY] =: 23 of e.g.
the ellipse u§ in the GAUSSIAN plane 7" with origin A§ yields (cf. [24])

f12 1=/ 2} + 23 = const. ,

whereby the complex numbers f; and fo describe the focal points Fy, Fy of ug.
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Thus, according to Fig. 6, the conjugate half diameters [A§, V}*] =: v, [Af, B*] =: w of
ug fulfill

zf%—zg:vz—l—wz.

As the contour ellipse u® of the unit sphere Q23 possesses the conjugate half diameters [AS, V|
and [Ag, U] =: u with u* = w? + 23 because of (11) and collinearity of {u,w, 23}, the focal
points Ey, Ey of u® are described by the complex numbers

€10 = \/u2+v2:\/zf+z§+z§:\/fz—l—z%. (12)

From the GAuss-condition (5), the construction in Fig. 6, and using the concept of anti-focal
points® Fy, Fy of u§ we can conclude (cf. [3]),

Lemma 4: The contour u® of the unit sphere Q3 under a general (3,2)-axonometry « is an
ellipse in the image-plane ' and the focal points E1, E5 of u® are represented by the complex

numbers
€19 =1/2] + 25+ 22.

(The complex numbers z; and 0 represent the unit points A% and the origin A§ of the axono-
metric three-frame in 7'.)

The contour u® of 3 is a circle, i.e. « is an ortho-(3,2)-axonometry, if and only if A§
happens to coincide with an antifocus of the image u$§ of the ‘equator’ {25 of 2s.

A construction of the length a of the main axis of u®, in case u® is an ellipse with the focal
points Ej, Ey, can be based on the ortho-projection of the axonometric frame {Ag,..., A3}
onto the axis AjE; of u®:

Let r; be the distance from Af to the image point AJO." of AF and let ¢; be the angle
between the axis A§FE; and A§A{. According to (3) yields

AFAG = |z] = Aj and 1; = \; cos ¢;. (13)

Then the half semiaxis of u® has the length?

a= /4713473 (14)

8 Applying a quarter-turn to the focal points Fy, F, of an ellipse uo about its center we obtain the so called
anti-focal points of us. They are the focal points of the ‘antipolarity’ with respect to the conic uy. (The
antipolarity to a conic us possessing a center is the product of the polarity with respect to us and the central
reflection in the conic’s center (cf. [2]).)

9The transpose of the matrix M7 (2) maps any unit vector y of the image plane 7’ onto a vector x of
E" which is orthogonal to the fibers of a. It turns out that x? equals the momentum a?, of the point set

{..., A%, ...} with respect to the line yR, cf. [2], p. 22. The vector a;ly ends in a point of the ‘ellipsoid
of inertia’, while ay 1x describes a point of the contour subsphere of the unit hypersphere €, in E". The
a-image of the last vector is a point of the contour u® of €2,,. In this manner HAVLICEK (unpublished exercise
material to a lecture on ‘Geometry with Maple’, Vienna 1997) constructs u® of €2,, with respect to any given
(n,2)-axonometry a. Especially if y is a unit vector in A§Ej, the momentum a? =: a® measures the square

of the length of the main semiaxis of u®. Thereby yields, analogously to (13) and (14)

2 2 2
a”=ri+---+r,.
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Let now o = -0 be a (n, 2)-axonometry. The (n, 2)-projection ¢ has (n — 2)-dimensional
(totally parallel) fibers and can be generated successively by a sequel of (k,2)-projections,
(k = 3,...,n). Thus the contour of the unit-hypersphere 2, can be determined as follows
(cf. Fig. 7):

By
”Uéx

o
,(‘ |
gz /

Figure 7: Axonometric contour of a 4D-hypersphere

(a) construct the contour-ellipse u§ of the unit-2-sphere €23 according to Fig. 6;

(b) construct one contour point V¥ of u§ with respect to the contour-ellipse u$ of the unit-3-
sphere ()4, (the tangent in V{* to ug is parallel to AFAS), and construct one intersection
point B of u§ with A§Ag;

(c) the ellipse determined by the pair of conjugate half-diameters ([Ag, V], [A§, BS]) is the
contour-ellipse u§ of €y, because (6) and (7) (with index 4 instead of 3) still hold;

(d) repeat (b) and (c) by increasing the indices step by step until you end up with the
contour-ellipse u .

Remark 3): The construction of u$ allows any permutation of the set of indices {1,...,n}.
So, if the axonometric frame B has one pair of orthogonal axes of equal length, one
will of course start step (a) with this pair.

Remark 4): Any 2D-CAD-software which is able to handle ellipses given by conjugate dia-
meters can follow the step by step construction of the axonometric contour of a hyper-
sphere.

The recursive construction described above leads to an obvious generalization of (12) and
of Lemma 4. We summarize these results in the following

Theorem: Let a: E" — 7’ be a (n,2)-axonometry defined by the image B* C 7’ of a
cartesian n-frame B = {Ag, Ay,..., A,} C E" and let A, AT, ..., A% be described by the
complex numbers 0, z1, ..., z, in the GAUSSIAN plane 7’'. Then the contour u$ of the unit
sphere 2, is an ellipse u$ with focal points Ey, Ey such that their describing complex numbers
e1, eo fulfill

6172: Z%_F_i_z?b
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The contour ug of Q, is a circle, i.e. «v is similar to an isocline-(n, 2)-projection v, if and only
if AS happens to coincide with an antifocus of the image u{_, of the ‘equator-subsphere’(2,,_,
of Q,,.

The length a of the main semiaxis of u®, in case u® is an ellipse with the focal points
E,, Es, is the squareroot of the momentum of {A,..., A%} with respect to the axis AJFE;.
According to (13) and footnote ? follows

— /2 2 wi )\ .
a=\/r]+...,r2 with r; = A, cos ¢;,

where ); is the length of the distorted unit segment [Af, A%], ¢; its angle to the axis F By,
and r; the orthoprojection of [Af, A%] onto E}E,.

This Theorem provides a simple method to determine an isocline-(n, 2)-axonometry « by
prescribing the images {A§; A, ..., A%} C @’ of B C E" and defining AY as one of the

anti-focal points of uf_;.

For n = 4 STACHEL [21] gave another very simple criterion for an ortho-(4,2)-axonometry
using two great circles of {4 in totally orthogonal coordinate-planes.

Acknowledgements

The author thanks Prof. H. Havlicek and Prof. H. Stachel (Vienna, Austria) for their sugges-
tions and improvements.

References

[1] H. BRAUNER: Zur Theorie linearer Abbildungen. Abh. Math. Sem. Univ. Hamburg 53,
154-169 (1983)

[2] H. BRAUNER: Lineare Abbildungen aus euklidischen Raumen. Beitr. Algebra Geom. 21,
5-26 (1986)

[3] H. BRAUNER: Lehrbuch der Konstruktiven Geometrie. Springer-Verlag, New York and
Wien 1986

[4] L. ECKHART: Uber die Abbildungsmethoden der Darstellenden Geometrie. Sitzungsber.,
Abt. 11, 6sterr. Akad. Wiss., Math.-Naturw. K1. 132, 177-192 (1932)

| L. ECKHART: Konstruktive Abbildungsverfahren. Springer-Verlag, Wien 1926

| L. ECKHART: Der vierdimensionale Raum. Teubner, Leipzig 1929

7] O. GIERING: Vorlesungen iber hohere Geometrie. Vieweg, Braunschweig 1982
]

CH. HOFFMANN, J. ZHOU: Some Techniques for Visualizing Surfaces in Four-
Dimensional Space. Comput. Aided Geom. Des. 23, 83-91 (1991)

[9] L. HOFMANN: Konstruktive Losung der Mafaufgaben im vierdimensionalen euklidischen
Raum. Sitzungsber., Abt. II, 6sterr. Akad. Wiss., Math.-Naturw. K1. 130, 169-188 (1921)

[10] F. HOHENBERG: Konstruktive Geometrie in der Technik. Springer-Verlag, Wien 1961

[11] A. INSELBERG, B. DIMSDALE: Parallel Coordinates, a Tool for Visualizing Multivariate
Relations. (Human-Machine Interactive Systems; ed. by A. KLINGER), Plenum Publ.
Corporation 1991, 199-233



[12]
[13]

[14]
[15]

[16]
[17]
[18]

[19]

[29]

[30]

G. Weiss: (n,2)-Axonometries and the Contour of Hyperspheres 167

E. KRUPPA: FEin Beitrag der darstellenden Geometrie des R*. Monatsh. Math. Phys.
42, 157-160 (1936)

C.E. LINDGREN, ST.M. SLABY: Four-dimensional Descriptive Geometry. McGraw-Hill
Inc., New York 1968

H.P. MANNING: Geometry of Four Dimensions. Dover Publ.; New York 1956

E. MULLER, E. KRUPPA: Lehrbuch der Darstellenden Geometrie. (5" ed.), Springer-
Verlag, Wien 1948

H. NAUMANN: Uber Vektorsterne und Parallelprojektionen regularer Polytope. Math. Z.
67, 75-82 (1957)

R. RUCKER: Geometry, Relativity and the Fourth Dimension. Dover Publ., New York
1977

ST.M. SLABY: Fundamentals of Three-Dimensional Descriptive Geometry. J. Wiley,
New York 1976

D.M.Y. SOMMERVILLE: An Introduction to the Geometry of n Dimensions. Dover Publ.,
New York 1958

H. STACHEL: Mehrdimensionale Azonometrie. Proc. Congress of Geometry, Thessaloniki
1987, 159-168

H. StAcHEL: The Right-Angle- Theorem in Four Dimensions. J. of Theoretical Graphics
and Computing 3, 4-13 (1990)

H. StacHEL: Parallel Projections in Multidimensional Space. Proc. 1st Intern. Conf. on
Comp. Graphics and Vis. Techniques, Sesimbra 1991, 119-128

L. STAMMLER, G. GEISE: Hyperbelkonstruktionen bei Ausgleichsgeraden und ein ver-
allgemeinerter Pohlkescher Satz. Beitr. Algebra Geom. 13, 43-53 (1982)

E. STIEFEL: Zum Satz von Pohlke. Comment. Math. Helv. 10, 208-225 (1938)

J. TscuuPIK: Uber lineare Zweibildersysteme im projektiven R,. Monatsh. Math. 63,
214-227 (1959)

J. TSscHUPIK: Zur Theorie der konstruktiv brauchbaren, linearen Bildersysteme im R,,.
Sitzungsber., Abt. II, 6sterr. Akad. Wiss., Math.-Naturw. KI. 170, 253-276 (1962)

H. VOGLER: Uber die Normalprojektionen des Simplex eines n-dimensionalen euklidis-
chen Raumes. Sitzungsber., Abt.II, 6sterr. Akad. Wiss., Math.-Naturw. Kl. 173, 29-57
(1964)

H. VOGLER: Uber die Normalprojektionen von Vektorsystemen im n-dimensionalen euk-
lidischen Raum. Sitzungsber., Abt. II, 6sterr. Akad. Wiss., Math.-Naturw. KI. 173, 299—
329 (1965)

Z. WAN, Z. Liu, Q. Lin, J. DUANE: A Computational Method for Producing Ortho-
graphic Isometric Drawings of Four-Dimensional Objects. J. of Theoretical Graphics and
Computing 7&8 (1994) (in print)

G. WEiss, C. KUNNERT: Herstellung linearer Risse nach Hohenberg. J. Geom. 47,
186-198 (1993)

Received September 24, 1997; final form November 17, 1997



