(n,2)-Axonometries and the Contour of Hyperspheres

Gunter Weiss

Institute for Geometry, Dresden University of Technology Zellescher Weg 12-14, D-01062 Dresden, Germany email: weiss@math.tu-dresden.de

Abstract. The paper deals with special axonometric mappings of an *n*-dimensional euclidean space onto a plane π' . Such an (n, 2)-axonometry is given by the image of a cartesian *n*-frame in π' and it is especially an isocline or orthographic axonometry, if the contour of a hypershere is a circle in π' .

The paper discusses conditions under which the image of the cartesian n-frame defines an orthographic axonometry. Also a recursive construction of the hyper-sphere-contour in case of an arbitrary given oblique axonometry is presented.

Keywords: multi-dimensional descriptive geometry, axonometric mappings. *MSC 1994:* 51N05, 51N20

Introduction

In elementary Descriptive Geometry an axonometric mapping α or briefly an axonometry is the product of a parallel projection ψ and an affinity¹ κ from an auxiliary projection plane π (in space) onto the drawing plane π' . An axonometry α is well defined by the image of a cartesian coordinate system. If the auxiliary image plane π is orthogonal to the fibers of ψ , (i.e. ψ is an orthogonal projection), we call α an ortho-axonometry². The well-known 3-dimensional engineer's axonometry (cf. [3], p. 63, [10], p. 73, DIN 5, ÖNORM A 6061) is an ortho-axonometry based on a particular axonometric reference system $\{x_1^{\alpha}, x_2^{\alpha}, x_3^{\alpha}\}$ in the drawing plane π' according to Fig. 1, which implies the distortion ratios 1 : 2 : 2 of the x_1 -, x_2 - and x_3 -axis. Thus the engineer's axonometry merges the advantages of distortion

ISSN 1433-8157/\$ 2.50 © 1997 Heldermann Verlag

¹Due to the well-known theorem of POHLKE there exists always a factorization of α as a product of a parallel projection ψ and a *similarity* κ . From a more general point of view axonometry is a linear mapping acting on projective spaces and being the product of a (central) projection ψ of an *n*-space onto an auxiliary projective subspace of dimension *m* and a collineation κ of this subspace onto the *m*-dimensional image-space, cf. [1].

 $^{^{2}}$ We will also use the word 'normal' instead of 'orthographic' and briefly speak of 'ortho-axonometry' or 'ortho-projection' instead of 'orthographic axonometry' or 'orthographic projection'.

ratio-based (oblique) axonometries with that of ortho-axonometries (i.e. circular contours of spheres, 'direct' construction of the axes of the image-ellipses of circles).

The axonometric method is also a well suited tool to visualize objects of multidimensional spaces (cf. [8, 14]) and one will appreciate the advantages of an orthographic or at least *isocline*³ projection, especially if one draws images of such objects by hand or by means of a CAD-system. However, as there are no commercial 'volume-based' CAD-systems for higher dimensions, one is restricted to 2D-CAD systems and to Descriptive Geometry. Thus there arises a need for constructive methods and of projections which are simple to handle.

In [29] WAN et al. gave a solution for an *ortho-axonometry* of the (euclidean) 4-space \mathbb{E}^4 onto the drawing plane π using an arbitrary axonometric 4-frame $\{x_1^n, x_2^n, x_3^n, x_4^n\}$ in the plane π and (rounded) distortion ratio 1 : 0.6 : 0.6 : 1. They call such an axonometry an 'optimal' one: it can be factorized into an isometric ortho-projection $\psi_3^4 : \mathbb{E}^4 \to \mathbb{E}^3$ (mapping the unit segments on the x_1 -, x_2 -, x_3 - and x_4 -axis of \mathbb{E}^4 onto the 'height segments' of a regular tetrahedron of \mathbb{E}^3 with the orthocenter being the image of the origin $O \in \mathbb{E}^4$) and an ortho-projection $\psi_2^3 : \mathbb{E}^3 \to \pi$ providing finally a di-metric axonometry $\alpha : \mathbb{E}^4 \to \pi$ with the prechosen distortions.

Figure 1: Engineer's axonometry

Figure 2:

The underlying paper extends classical results concerning ortho-(3,2)-axonometries α : $\mathbb{E}^3 \to \pi$ to ortho-(n,m)-axonometries, (cf. e.g. [24, 20, 21, 22, 27]), with special emphasis on (4,2)-axonometries. A consequence is a recursive construction of the contour-ellipse of a hypersphere in any (n, 2)-axonometry.

Analytical treatment of ortho-axonometries

Let $\alpha \colon \mathbb{E}^n \to \mathbb{E}^{m'}$ be an ortho-(n, m)-axonometry from a euclidean *n*-space \mathbb{E}^n onto a euclidean *m*-space $\mathbb{E}^{m'}$, i.e. the product of a normal (n, m)-projection $\psi_m^n \colon \mathbb{E}^n \to \mathbb{E}^m$, $(\mathbb{E}^m \subset \mathbb{E}^n)$, and a similarity $\sigma \colon \mathbb{E}^m \to \mathbb{E}^{m'}$.

Any (n, m)-axonometry α of a euclidean *n*-space \mathbb{E}^n onto a euclidean *m*-space $\mathbb{E}^{m'}$ is uniquely defined by the image $\mathfrak{B}^{\alpha} \subset \mathbb{E}^{m'}$ of a cartesian frame $\mathfrak{B} := \{A_0; A_1, \ldots, A_n\} \subset \mathbb{E}^n$, whereby e.g. $\{A_0^{\alpha}; A_1^{\alpha}, \ldots, A_m^{\alpha}\}$ span the image space $\mathbb{E}^{m'}$, (cf. [2]). Following [20] we choose an additional frame $\widetilde{\mathfrak{B}} := \{A_0; \widetilde{A}_1, \ldots, \widetilde{A}_n\}$ such that ψ_m^n becomes the ortho-projection onto the coordinate subspace $\mathbb{E}^m = A_0 \lor \widetilde{A}_1 \lor \cdots \lor \widetilde{A}_m$. The congruence transformation replacing

 $^{^{3}}$ Cf. [20]

the original basis \mathfrak{B} by \mathfrak{B} defines a certain orthogonal matrix

$$\mathfrak{M} := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = (\overline{\mathbf{a}}_1, \overline{\mathbf{a}}_2, \dots, \overline{\mathbf{a}}_n) = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_n \end{pmatrix}.$$
(1)

We notice that the columns \overline{a}_i as well as the rows a_i fulfill the conditions

$$\overline{\mathbf{a}}_i \cdot \overline{\mathbf{a}}_k = \delta_{ik}, \quad \mathbf{a}_i \cdot \mathbf{a}_k = \delta_{ik}, \quad i, k \in \{1, \dots, n\}$$
(2)

Hence the matrix $\mathfrak{N} =: (\overline{\mathbf{a}}_1^{\alpha}, \overline{\mathbf{a}}_2^{\alpha}, \cdots, \overline{\mathbf{a}}_n^{\alpha})$ of the (affine linear) mapping α consists of the first m rows \mathbf{a}_j of \mathfrak{M} . With

$$\lambda_j^2 := a_{1j}^2 + a_{2j}^2 + \dots + a_{mj}^2, \ j = 1, \dots, n,$$
(3)

follows

$$\sum_{j=1}^{n} \lambda_j^2 = \sum_{k=1}^{m} \|\mathbf{a}_k\|^2 = m.$$
(4)

Especially for an ortho-axonometry which is $congruent^4$ to an ortho-projection the values λ_j (3) are the distortions along the j^{th} coordinate axis $A_0 \vee A_j$ of \mathfrak{B} . With respect to given unit segments in \mathbb{E}^n and $\mathbb{E}^{m'}$, (4) is a necessary condition for α being an ortho-axonometry. According to [20] (4) is also sufficient (cf. also [28]); so we state

Lemma 1: Let α be an (n, m)-axonometry of a euclidean *n*-space \mathbb{E}^n onto a euclidean *m*-space $\mathbb{E}^{m'}$ defined by the image $\mathfrak{B}^{\alpha} \in \mathbb{E}^{m'}$ of a cartesian frame $\mathfrak{B} \in \mathbb{E}^n$. Then α is an ortho-axonometry, if and only if the distortions λ_j (j = 1, ..., n) along the coordinate axes fulfill the condition

$$\lambda_1^2 + \lambda_2^2 + \dots + \lambda_n^2 = m.$$

Let the image-space $\mathbb{E}^{m'} =: \pi'$ be two-dimensional, so it admits the interpretation as GAUSSian plane: Put $A_j^{\alpha} \cong z_j := a_{1j} + i a_{2j} \in \mathbb{C}$, (j = 1, ..., n), and $A_0^{\alpha} \cong 0 \in \mathbb{C}$. Then, from (2) follows the 'GAUSS-condition'

$$\sum_{j=1}^{n} z_j^2 = \overline{\mathbf{a}}_1^2 + 2i\,\overline{\mathbf{a}}_1 \cdot \overline{\mathbf{a}}_2 - \overline{\mathbf{a}}_2^2 = \overline{\mathbf{a}}_1^2 - \overline{\mathbf{a}}_2^2 = 0,\tag{5}$$

which is independent from an arbitrary dilatation-factor of $\sigma \colon \mathbb{E}^2 \to \pi$, $(\mathbb{E}^2 \subset \mathbb{E}^n)$. For n = 3 this result is well-known (cf. [3]), for $n \ge 4$ it is mentioned in [21].

While the GAUSS-condition characterizes a parallel-projection ψ_2^n for being an orthoprojection this is not true for parallel-axonometries, if n > 3, as it is proved in the following:

Let a (n, 2)-axonometry α be product of an *ortho-projection* $\psi_2^n : \mathbb{E}^n \to \mathbb{E}^2 = (x_1 \vee x_2)$ (with matrix \mathfrak{N} according to (3)) and a *similarity* $\sigma : \mathbb{E}^2 \to \pi'$ (with dilatation-factor d and an orthogonal matrix S). Then α is described by the matrix $\mathfrak{A} = S \cdot \mathfrak{N}$. On the other hand, the

⁴This will make sense, if we embed $\mathbb{E}^{m'}$ into \mathbb{E}^n such that we use the 'same' unit segments in \mathbb{E}^n and in the image-space $\mathbb{E}^{m'}$. From a more general point of view, if we refrain from embedding $\mathbb{E}^{m'}$ into $\mathbb{E}^{m'}$, we may still use the concept 'congruent' with respect to chosen unit segments in \mathbb{E}^n and in $\mathbb{E}^{m'}$. Cf. [20].

oblique projection $\widehat{\psi}_2^n$ of \mathbb{E}^n parallel to the coordinate space $A_0 \vee \widetilde{A}_3 \vee \cdots \vee \widetilde{A}_n$ onto the plane $\widetilde{\mathbb{E}}^2 := A_0 \vee B_1 \vee B_2$ $(B_1 := (1, 0, \mathbf{b}_1)^{\top}, B_2 := (0, 1, \mathbf{b}_2)^{\top}, \mathbf{b}_i \in \mathbb{R}^{n-2})$ (cf. Fig. 2), is described by the transformation matrix

$$\widetilde{\mathfrak{M}} := \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \mathsf{b}_1 & \mathsf{b}_2 & \mathsf{o} & \cdots & \mathsf{o} \end{pmatrix}, \quad \mathsf{b}_i, \mathsf{o} \in \mathbb{R}^{n-2}, \tag{6}$$

and differs from the orthogonal projection $\psi_2^n : \mathbb{E}^n \to \mathbb{E}^2$ by an affine mapping, namely the perspectivity $\sigma := \widehat{\psi}_2^n | \mathbb{E}^2$. This affine mapping σ obviously turns out to be a *similarity* if and only if

$$\mathbf{b}_1 \cdot \mathbf{b}_2 = 0 \ \land \ \mathbf{b}_1^2 = \mathbf{b}_2^2. \tag{7}$$

Thus follows that conditions (7) can become true only if dim $\mathbb{E}^n \ge 4$!

Let conditions (7) be fulfilled. Then, σ is described by

$$S := \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix}, \quad d := \sqrt{1 + \mathbf{b}_1^2}, \tag{8}$$

and, in the subspace $\mathbb{E}^4 := \mathbb{E}^2 \vee \widehat{\mathbb{E}}^2 \subset \mathbb{E}^n$, the planes \mathbb{E}^2 and $\widehat{\mathbb{E}}^2$ are "isocline" with the (two equal) main angles $\varphi_1 = \varphi_2$ with $\cos \varphi_i = 1/\sqrt{1 + \mathbf{b}_1^2}$. Hence an ortho-axonometry $\alpha : \mathbb{E}^n \to \pi'$ can always be factorized into an isocline oblique projection⁵ $\widehat{\psi}_2^n$ and a (suitable) similarity σ .

Lemma 2: The GAUSS-condition (5) characterizes (n, 2)-axonometries of a euclidean *n*-space \mathbb{E}^n , $n \geq 4$, onto the drawing plane π' for being isocline⁶ axonometries.

Isocline- and ortho-(4,2)-axonometries

In the following we restrict the discussion to dimensions n = 4 and m = 2. Then, in the GAUSSian plane π' , (5) is represented by a *quadrangle* \mathcal{Q} with bars parallel to the vectors $\overrightarrow{0z_i^2}$ (cf. Fig. 3). Assuming a given unit segment in π' then, because of (4) and $|z_i^2| = \lambda_i^2$, an *ortho*-axonometry is characterized by a quadrangle \mathcal{Q} with a circumference of length 2. Note that four segments with lengths $|z_i^2|$ can form a quadrangle only if a set of *quadrangle-conditions* holds; i.e.

$$|z_i^2| \le \sum_{j \in I \setminus i} |z_j^2|; \quad (I = \{1, \dots, 4\}).$$
(9)

As we may commute the numbers z_i^2 , the quadrangle Q is determined only up to the sequence of its sides. As a quadrangle with given side lengths still is flexing, we may interpret Q as a *four-bar mechanism* (cf. Fig. 3). Let one axis (e.g. the axis x_4^{α} with unit point A_4^{α}) coincide with the imaginary axis in π , then the 'base pivots' 0 and z_4^2 of the four-bar linkage Q are the origin and an arbitrary point on the negative real axis. To make sure that α becomes an *ortho*-axonometry, Q must have bars with total length 2, according to Lemma 1.

Thus follows

160

⁵We call an oblique projection $\hat{\psi}_2^n$ 'isocline', if its image plane is isocline (cf. [20]) to a plane \mathbb{E}^2 (totally) orthogonal to the fibers of $\hat{\psi}_2^n$ and therefore isocline to the fibers themselves.

⁶Cf. [20]; of course 'isocline' includes 'orthogonal' as a subcase.

Figure 3: Axonometric image of a 4-frame and the corresponding four-bar linkage

Lemma 3: To any (labelled) quadrangle in π with circumference 2, interpreted as zero-sum of four complex numbers z_i^2 , there exists a unique ortho-axonometric 4-frame with the origin $A_0^{\alpha} \cong 0$ and unit points $A_i^{\alpha} \cong z_i$.

Lemma 3 provides an easy exact construction⁷ of an ortho-axonometric 4-frame by just determining square-roots of complex numbers, a process that easely can be implemented in computer software. E.g. to prescribed distortion ratios $\lambda_1 : \cdots : \lambda_4$ and one angle between two axes (e.g. $\triangleleft (x_1^{\alpha}, x_4^{\alpha}))$ the corresponding coupler linkage is (over the field \mathbb{C} of complex numbers) ambiguously determined (cf. Fig. 4 with $\lambda_1 : \cdots : \lambda_4 = 1 : 2 : 2 : 2$ and <) $(x_1^{\alpha}, x_4^{\alpha}) = 135^{\circ}$. The corresponding ortho-axonometric 4-frame is *di-metric* and generalizes the engineer's axonometry Fig. 1).

The axonometry α belonging to such a 4-frame is (in general) *similar* to an orthoprojection of \mathbb{E}^4 onto π . (The factor of similarity is equal to the radius of the contour circle of the unit sphere $\Omega_4 \subset \mathbb{E}^4$; in the latter we present a construction of this contour.)

With regard to the set of four-bar linkages we conclude that apart from similarities there exists a four-parametric set of essentially different ortho-(4,2)-axonometries.

Special examples of ortho-(4,2)-axonometries

Let us demand that the restriction of α to one coordinate plane (e.g. the x_1x_2 -plane) is a similarity. Then we obtain equally distorted and orthogonal axes x_1^{α} , x_2^{α} , hence

$$z_1^2 + z_2^2 = 0.$$

Then, from (5) follows $z_3^2 + z_4^2 = 0$. In other words, the restriction of α to the x_3x_4 -plane also is a similarity and α turns out to be *di-metric*. These special axonometries α are subcases of di-metric axonometries with two pairs of equal distortions; the corresponding four-bar linkages have two pairs of bars of equal length too. For the special subcases the four-bar linkages form a twice covered two-bar linkage, cf. Fig. 5. (The coupler motion ramifies in case of such dimetric linkages.) Furthermore, from Fig. 5 follows immediately that *any two isosceles right*

⁷ contrary to WAN's construction of the 'optimal (4,2)-axonometry'.

Figure 4: A 4D-version of engineer's axonometry

angle hooks (with common vertex A_0^{α}) in the euclidean plane π form the axonometric 4-frame of an ortho-(4,2)-axonometry.

As the restriction of α to any coordinate-3-space of \mathfrak{B} is an ordinary 'frontal (3,2)axonometry', i.e. similar to an oblique projection onto a coordinate plane, constructive treatment of objects of \mathbb{E}^4 becomes extremely well-arranged. But the most important advantage seems to be that, generalizing the usual top- and front-projection, one can handle constructions according to e.g. KRUPPA [12] in the 'system of two images' based on the restrictions of α to the x_1x_2 - and the x_3x_4 -plane (cf. also [6, 25, 26, 30]).

Figure 5: A 'frontal' (4,2)-axonometry

The contour of a hypersphere

Let $\mathfrak{B}^{\alpha} \subset \pi$ be the (plane) image of a cartesian *n*-frame $\mathfrak{B} \subset \mathbb{E}^n$ under an arbitrary (n, 2)axonometry $\alpha \colon \mathbb{E}^n \to \pi$. Note that in case of m = 2 there always exist planes $\mathbb{E}^2 \subset \mathbb{E}^n$ such that a generalized version of theorem of POHLKE holds, i.e. α is the product of a parallel projection $\psi \colon \mathbb{E}^n \to \mathbb{E}^2$ and a *similarity* $\sigma \colon \mathbb{E}^2 \to \pi$ (cf. [23, 20]). In the following we describe an iterative construction of the contour-ellipse u_n^{α} of the unit-hypersphere Ω_n based on the well-known construction of the axonometric image of an ordinary sphere Ω_3 (cf. [15], p. 244):

The great circle $k_3 \subset \Omega_3$ in the projecting plane through the axis A_0A_3 is mapped onto a segment $[U_1^{\alpha}, U_2^{\alpha}]$ with center A_0^{α} , cf. Fig. 6. Choose $B \in k_3$ such that $a (A_3A_0B) = \pi/2$. Then, if γ measures the angle between the projecting rays s and the segment $[U_1^{\alpha}, U_2^{\alpha}]$, and with $\beta := a (s, A_0B)$ follows

$$d(A_0^{\alpha}, A_3^{\alpha}) = \frac{\cos(\beta)}{\cos(\gamma)}, \quad d(A_0^{\alpha}, B^{\alpha}) = \frac{\sin(\beta)}{\cos(\gamma)}, \tag{10}$$

and a contour point $U_1 \in k_3$ is mapped onto U_1^{α} with

$$d^{2}(A_{0}^{\alpha}, U_{1}^{\alpha}) = d^{2}(A_{0}^{\alpha}, B^{\alpha}) + d^{2}(A_{0}^{\alpha}, A_{3}^{\alpha}).$$
(11)

Assume that the great circle Ω_2 through the unit points A_1, A_2 has an elliptic α -image u_2^{α} . If V^{α} denotes the image of one of the two contour points of Ω_2 , (the tangent to u_2^{α} is parallel to $A_0^{\alpha}A_3^{\alpha}$), then the contour ellipse u^{α} of Ω_3 is determined by the pair of conjugate half-diameters ($[A_0^{\alpha}, U_1^{\alpha}], [A_0^{\alpha}, V_1^{\alpha}]$).

Figure 6: Axonometric contour of the unit-sphere

- Remark 1): The length of the minor semiaxis of u^{α} equals the factor of the similarity $\sigma \colon \mathbb{E}^2 \to \pi$.
- *Remark 2):* For any pair of conjugate half diameters $[A_0^{\alpha}, A_1^{\alpha}] =: z_1$ and $[A_0^{\alpha}, A_2^{\alpha}] =: z_2$ of e.g. the ellipse u_2^{α} in the GAUSSIAN plane π' with origin A_0^{α} yields (cf. [24])

$$f_{1,2} := \sqrt{z_1^2 + z_2^2} = const.$$

whereby the complex numbers f_1 and f_2 describe the focal points F_1, F_2 of u_2^{α} .

164

G. Weiss: (n, 2)-Axonometries and the Contour of Hyperspheres

Thus, according to Fig. 6, the conjugate half diameters $[A_0^{\alpha}, V_1^{\alpha}] =: v, [A_0^{\alpha}, B^{\alpha}] =: w$ of u_2^{α} fulfill

$$z_1^2 + z_2^2 = v^2 + w^2 \; .$$

As the contour ellipse u^{α} of the unit sphere Ω_3 possesses the conjugate half diameters $[A_0^{\alpha}, V_1^{\alpha}]$ and $[A_0^{\alpha}, U_1^{\alpha}] =: u$ with $u^2 = w^2 + z_3^2$ because of (11) and collinearity of $\{u, w, z_3\}$, the focal points E_1, E_2 of u^{α} are described by the complex numbers

$$e_{1,2} := \sqrt{u^2 + v^2} = \sqrt{z_1^2 + z_2^2 + z_3^2} = \sqrt{f^2 + z_3^2}.$$
(12)

From the GAUSS-condition (5), the construction in Fig. 6, and using the concept of *anti-focal* points⁸ $\widetilde{F}_1, \widetilde{F}_2$ of u_2^{α} we can conclude (cf. [3]),

Lemma 4: The contour u^{α} of the unit sphere Ω_3 under a general (3,2)-axonometry α is an ellipse in the image-plane π' and the focal points E_1, E_2 of u^{α} are represented by the complex numbers

$$e_{1,2} = \sqrt{z_1^2 + z_2^2 + z_3^2}.$$

(The complex numbers z_i and 0 represent the unit points A_i^{α} and the origin A_0^{α} of the axonometric three-frame in π' .)

The contour u^{α} of Ω_3 is a circle, i.e. α is an ortho-(3,2)-axonometry, if and only if A_3^{α} happens to coincide with an *antifocus* of the image u_2^{α} of the 'equator' Ω_2 of Ω_3 .

A construction of the length a of the main axis of u^{α} , in case u^{α} is an ellipse with the focal points E_1, E_2 , can be based on the ortho-projection of the axonometric frame $\{A_0^{\alpha}, \ldots, A_3^{\alpha}\}$ onto the axis $A_0^{\alpha}E_1$ of u^{α} :

Let r_j be the distance from A_0^{α} to the image point $A_j^{\alpha'}$ of A_j^{α} and let ϕ_j be the angle between the axis $A_0^{\alpha} E_1$ and $A_0^{\alpha} A_j^{\alpha}$. According to (3) yields

$$\overline{A_0^{\alpha}A_j^{\alpha}} = |z_j| = \lambda_j \text{ and } r_j = \lambda_j \cos \phi_j.$$
(13)

Then the half semiaxis of u^{α} has the length⁹

$$a = \sqrt{r_1^2 + r_2^2 + r_3^2}.$$
(14)

$$a^2 = r_1^2 + \dots + r_n^2.$$

⁸Applying a quarter-turn to the focal points F_1 , F_2 of an ellipse u_2 about its center we obtain the so called *anti-focal points* of u_2 . They are the focal points of the 'antipolarity' with respect to the conic u_2 . (The antipolarity to a conic u_2 possessing a center is the product of the polarity with respect to u_2 and the central reflection in the conic's center (cf. [2]).)

⁹The transpose of the matrix \mathfrak{N}^T (2) maps any unit vector y of the image plane π' onto a vector x of \mathbb{E}^n which is orthogonal to the fibers of α . It turns out that x^2 equals the momentum a_y^2 of the point set $\{\ldots, A_j^{\alpha}, \ldots\}$ with respect to the line y \mathbb{R} , cf. [2], p. 22. The vector $a_y^{-1}y$ ends in a point of the 'ellipsoid of inertia', while $a_y^{-1}x$ describes a point of the contour subsphere of the unit hypersphere Ω_n in \mathbb{E}^n . The α -image of the last vector is a point of the contour u^{α} of Ω_n . In this manner HAVLICEK (unpublished exercise material to a lecture on 'Geometry with Maple', Vienna 1997) constructs u^{α} of Ω_n with respect to any given (n, 2)-axonometry α . Especially if y is a unit vector in $A_0^{\alpha} E_1$, the momentum $a_y^2 =: a^2$ measures the square of the length of the main semiaxis of u^{α} . Thereby yields, analogously to (13) and (14)

Let now $\alpha = \psi \cdot \sigma$ be a (n, 2)-axonometry. The (n, 2)-projection ψ has (n-2)-dimensional (totally parallel) fibers and can be generated successively by a sequel of (k, 2)-projections, (k = 3, ..., n). Thus the contour of the unit-hypersphere Ω_n can be determined as follows (cf. Fig. 7):

Figure 7: Axonometric contour of a 4D-hypersphere

- (a) construct the contour-ellipse u_3^{α} of the unit-2-sphere Ω_3 according to Fig. 6;
- (b) construct one contour point V_3^{α} of u_3^{α} with respect to the contour-ellipse u_4^{α} of the unit-3sphere Ω_4 , (the tangent in V_3^{α} to u_3^{α} is parallel to $A_0^{\alpha}A_4^{\alpha}$), and construct one intersection point B_3^{α} of u_3^{α} with $A_0^{\alpha}A_4^{\alpha}$;
- (c) the ellipse determined by the pair of conjugate half-diameters $([A_0^{\alpha}, V_3^{\alpha}], [A_0^{\alpha}, B_3^{\alpha}])$ is the contour-ellipse u_4^{α} of Ω_4 , because (6) and (7) (with index 4 instead of 3) still hold;
- (d) repeat (b) and (c) by increasing the indices step by step until you end up with the contour-ellipse u_n^{α} .
- Remark 3): The construction of u_n^{α} allows any permutation of the set of indices $\{1, \ldots, n\}$. So, if the axonometric frame \mathfrak{B}^{α} has one pair of orthogonal axes of equal length, one will of course start step (a) with this pair.
- *Remark 4):* Any 2D-CAD-software which is able to handle ellipses given by conjugate diameters can follow the step by step construction of the axonometric contour of a hypersphere.

The recursive construction described above leads to an obvious generalization of (12) and of Lemma 4. We summarize these results in the following

Theorem: Let $\alpha : \mathbb{E}^n \to \pi'$ be a (n, 2)-axonometry defined by the image $\mathfrak{B}^{\alpha} \subset \pi'$ of a cartesian *n*-frame $\mathfrak{B} = \{A_0, A_1, \ldots, A_n\} \subset \mathbb{E}^n$ and let $A_0^{\alpha}, A_1^{\alpha}, \ldots, A_n^{\alpha}$ be described by the complex numbers $0, z_1, \ldots, z_n$ in the GAUSSIAN plane π' . Then the contour u_n^{α} of the unit sphere Ω_n is an ellipse u_n^{α} with focal points E_1, E_2 such that their describing complex numbers e_1, e_2 fulfill

$$e_{1,2} = \sqrt{z_1^2 + \dots + z_n^2}.$$

The contour u_n^{α} of Ω_n is a circle, i.e. α is similar to an isocline-(n, 2)-projection ψ , if and only if A_n^{α} happens to coincide with an antifocus of the image u_{n-1}^{α} of the 'equator-subsphere' Ω_{n-1} of Ω_n .

The length a of the main semiaxis of u^{α} , in case u^{α} is an ellipse with the focal points E_1, E_2 , is the squareroot of the momentum of $\{A_1^{\alpha}, \ldots, A_n^{\alpha}\}$ with respect to the axis $A_0^{\alpha}E_1$. According to (13) and footnote ⁹ follows

$$a = \sqrt{r_1^2 + \dots, r_n^2}$$
 with $r_j = \lambda_j \cos \phi_j$,

where λ_j is the length of the distorted unit segment $[A_0^{\alpha}, A_j^{\alpha}]$, ϕ_j its angle to the axis $E_1 E_2$, and r_j the orthoprojection of $[A_0^{\alpha}, A_j^{\alpha}]$ onto $E_1 E_2$.

This Theorem provides a simple method to determine an isocline-(n, 2)-axonometry α by prescribing the images $\{A_0^{\alpha}; A_1^{\alpha}, \ldots, A_{n-1}^{\alpha}\} \subset \pi'$ of $\mathfrak{B} \subset \mathbb{E}^n$ and defining A_n^{α} as one of the anti-focal points of u_{n-1}^{α} .

For n = 4 STACHEL [21] gave another very simple criterion for an ortho-(4,2)-axonometry using two great *circles* of Ω_4 in totally orthogonal coordinate-planes.

Acknowledgements

The author thanks Prof. H. Havlicek and Prof. H. Stachel (Vienna, Austria) for their suggestions and improvements.

References

- H. BRAUNER: Zur Theorie linearer Abbildungen. Abh. Math. Sem. Univ. Hamburg 53, 154-169 (1983)
- [2] H. BRAUNER: Lineare Abbildungen aus euklidischen Räumen. Beitr. Algebra Geom. 21, 5-26 (1986)
- [3] H. BRAUNER: Lehrbuch der Konstruktiven Geometrie. Springer-Verlag, New York and Wien 1986
- [4] L. ECKHART: Uber die Abbildungsmethoden der Darstellenden Geometrie. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 132, 177-192 (1932)
- [5] L. ECKHART: Konstruktive Abbildungsverfahren. Springer-Verlag, Wien 1926
- [6] L. ECKHART: Der vierdimensionale Raum. Teubner, Leipzig 1929
- [7] O. GIERING: Vorlesungen über höhere Geometrie. Vieweg, Braunschweig 1982
- [8] CH. HOFFMANN, J. ZHOU: Some Techniques for Visualizing Surfaces in Four-Dimensional Space. Comput. Aided Geom. Des. 23, 83-91 (1991)
- [9] L. HOFMANN: Konstruktive Lösung der Maßaufgaben im vierdimensionalen euklidischen Raum. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 130, 169-188 (1921)
- [10] F. HOHENBERG: Konstruktive Geometrie in der Technik. Springer-Verlag, Wien 1961
- [11] A. INSELBERG, B. DIMSDALE: Parallel Coordinates, a Tool for Visualizing Multivariate Relations. (Human-Machine Interactive Systems; ed. by A. KLINGER), Plenum Publ. Corporation 1991, 199–233

166

- [12] E. KRUPPA: Ein Beitrag der darstellenden Geometrie des R⁴. Monatsh. Math. Phys. 42, 157–160 (1936)
- [13] C.E. LINDGREN, ST.M. SLABY: Four-dimensional Descriptive Geometry. McGraw-Hill Inc., New York 1968
- [14] H.P. MANNING: Geometry of Four Dimensions. Dover Publ., New York 1956
- [15] E. MÜLLER, E. KRUPPA: Lehrbuch der Darstellenden Geometrie. (5th ed.), Springer-Verlag, Wien 1948
- [16] H. NAUMANN: Über Vektorsterne und Parallelprojektionen regulärer Polytope. Math. Z. 67, 75–82 (1957)
- [17] R. RUCKER: Geometry, Relativity and the Fourth Dimension. Dover Publ., New York 1977
- [18] ST.M. SLABY: Fundamentals of Three-Dimensional Descriptive Geometry. J. Wiley, New York 1976
- [19] D.M.Y. SOMMERVILLE: An Introduction to the Geometry of n Dimensions. Dover Publ., New York 1958
- [20] H. STACHEL: Mehrdimensionale Axonometrie. Proc. Congress of Geometry, Thessaloniki 1987, 159–168
- [21] H. STACHEL: The Right-Angle-Theorem in Four Dimensions. J. of Theoretical Graphics and Computing 3, 4–13 (1990)
- [22] H. STACHEL: Parallel Projections in Multidimensional Space. Proc. 1st Intern. Conf. on Comp. Graphics and Vis. Techniques, Sesimbra 1991, 119–128
- [23] L. STAMMLER, G. GEISE: Hyperbelkonstruktionen bei Ausgleichsgeraden und ein verallgemeinerter Pohlkescher Satz. Beitr. Algebra Geom. 13, 43–53 (1982)
- [24] E. STIEFEL: Zum Satz von Pohlke. Comment. Math. Helv. 10, 208–225 (1938)
- [25] J. TSCHUPIK: Uber lineare Zweibildersysteme im projektiven R_n . Monatsh. Math. **63**, 214–227 (1959)
- [26] J. TSCHUPIK: Zur Theorie der konstruktiv brauchbaren, linearen Bildersysteme im R_n . Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. **170**, 253–276 (1962)
- [27] H. VOGLER: Uber die Normalprojektionen des Simplex eines n-dimensionalen euklidischen Raumes. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 173, 29–57 (1964)
- [28] H. VOGLER: Uber die Normalprojektionen von Vektorsystemen im n-dimensionalen euklidischen Raum. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 173, 299– 329 (1965)
- [29] Z. WAN, Z. LIU, Q. LIN, J. DUANE: A Computational Method for Producing Orthographic Isometric Drawings of Four-Dimensional Objects. J. of Theoretical Graphics and Computing 7&8 (1994) (in print)
- [30] G. WEISS, C. KUNNERT: Herstellung linearer Risse nach Hohenberg. J. Geom. 47, 186–198 (1993)

Received September 24, 1997; final form November 17, 1997