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Abstract. We show that the present stage of development of computer hardware
and software enables to solve many elementary and non-elementary problems of
classical geometry, which in the past could not be solved for the complexity of
involved equations or the degree of the problem. Demonstrative examples are
given, including corresponding MAPLE session record.
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1. Introduction

Quick development of computer hardware and software in last years has influenced almost all
human activities, including mathematics and geometry as its part as well. Computers in geo-
metric applications are usually understood as high performance plotting machines producing
large scale of geometric models from simple planar drawings to real life scenes.

In this paper we want to show how computers can influence geometry as a part of math-
ematics. We demonstrate how computer equipped with corresponding software can help to
solve geometric problems, which were several years ago either unsolvable or solvable with
great computational effort.

We shall concentrate on classical geometry, which is in our context understood as geometry
of the Euclidean plane or space. It studies properties and relations between elementary objects
(points, lines, planes, elementary surfaces and solids) or objects given by equations (explicit
or parametric).

A large part of classical geometry is devoted to the solution of problems. Problems in
classical geometry can be divided into two classes: Elementary problems are problems solvable
by ruler and compass (they are described by linear and quadratic equations, the solution can
be expressed by elementary operations including square roots). Non-elementary problems
are either algebraic (to solve them we have to solve algebraic equations of higher degree) or
transcendental (solution of non-algebraic equations is necessary).

The intersection of a line with a circle in the plane is an example of an elementary problem;
the intersection of two conics in the plane is in general a non-elementary algebraic problem
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of degree four; the intersection of a helix with a plane is a transcendental problem. The last
example shows that even transcendental problems appear in geometric applications. Some
non-elementary problems are very old, for instance the duplication of a cube is algebraic of
degree 3, the rectification of an arc of a circle is a transcendental problem, both two thousand
years old.

For a long time classical geometry was devoted to solutions of elementary problems, re-
striction due to available means. In plane geometry we can find a large quantity of elementary
problems, constructions of triangles, circles, regular polygons and similar ones and they can be
solved effectively by classical means. The situation in space is different. We have elementary
problems obtained by extending planar problems to the space – for instance the construction
of a sphere from four points as the spatial analogy of the circumscribed circle of a triangle.

The synthetic method works as well, but the classical means of elementary geometry are
not optimal for practical solution of such problems. As an illustrative example we shall discuss
the spatial analogy of the problem of Apollonius (construction of a sphere contacting four
given spheres), which is elementary in any dimension. This means that there exists a sequence
of elementary planar constructions in Monge projection (for instance) which leads from the
given four spheres to the center and radius of a solution. It is hard to imagine anybody to
perform the whole sequence of these steps to a result, which is of no practical use because the
construction error will be probably of the order of given data. On the other side this problem
has found practical application in global positioning systems (GPS), where it is solved almost
immediately with exactness of order about 10−6, see for instance [8] or [4].

This only example justifies the question, whether the approach to classical geometry
should not be changed. Moreover, even in the geometry of a triangle (which usually means to
construct a triangle from any three of given elements – sides, angles, heights, medians, radius
of inscribed or circumscribed circle, circumference) we find many non-elementary problems.
Non-elementary problems are considered as uninteresting and we can ask whether modern
means can change this approach. We would like to show that the answer is yes to both
questions.

During the historical development of classical geometry two solution methods were de-
veloped – synthetic and analytic. (We often speak about analytical and synthetic geometry,
which is not quite correct.) In this paper we shall not discuss the synthetic method, because
we do not see, how computers could influence it (not saying that it is not possible).

The analytical method in geometry was founded by R. Descartes (1596–1650) in his
book “La Géométrie” (1637), where he used the idea of the correspondence between pairs
of numbers and points in plane through two systems of parallel lines. This is well known.
More interesting is to notice the problem which inspired Descartes to his discovery (see
[2]). It is an old problem of Pappus (about 320 A.D.), which was solved for the first time by
Descartes by his new coordinate method. We shall present briefly this problem, because
it is instructive and it demonstrates how the choice of the right method can make a difficult
problem easy and vice versa, see Fig. 1:

We are given four lines a, b, c, d in the plane and four angles α, β, γ, δ. To each point P
in the plane we construct four lines passing through P such that the angle between them
and a, b, c, d is α, β, γ, δ, respectively. The intersection points are denoted by A,B,C,D,
respectively. We look for the set of points P satisfying the condition

AP · BP = k · CP ·DP

for a given constant k.
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Figure 1: An old problem of Pappus

The solution is as follows: We introduce Cartesian coordinates x, y in the plane. We
see immediately that we can replace distances AP,BP ,CP ,DP (up to a fixed factor) by
distances of P from a, b, c, d and these are obtained (again up to a fixed factor) by substitution
of coordinates x, y of point P into equations of lines. If aix + biy + ci = 0, i = 1, . . . , 4 are
equations of lines a, b, c, d, the solution set of the problem is given by the equation

(a1x+ b1y + c1)(a2x+ b2y + c2)±K(a3x+ b3y + c3)(a4x+ b4y + c4) = 0,

where K is some other constant, derived from k. This shows that the solution of the Pappus
problem is a conic (or parts of conics if we do not consider orientation). Any synthetic solution
of this problem is not known to the author.

The coordinate method was extended to the space by A. Clairaut (1731) and led to
a great development of the analytical method with its culmination at the end of the 19th
century. Two of the most famous results from this time are: Cayley and Simon have shown
that every cubic surface contains 27 straight lines and gave an example, where all these lines
are real. Kummer has found an algebraic surface of degree four with maximal number (16)
of singular points. It would be interesting to have computer models of these surfaces, so far
as I know, only solid models are known.

The solution of geometric problems by the analytical method is usually reduced to the
problem of solution of systems of equations for several unknowns. Transcendental equations
in most cases have to be solved numerically from the very beginning and therefore we shall
restrict ourselves to geometric problems leading to systems of algebraic equations. Theo-
retical background for solution of such systems lies in algebra and it is very well developed
(theory of ideals, Gröbner bases and so on). The difficulty lies in the fact that even for
not very complicated problems we can obtain long and complicated equations, sometimes it
is impossible to write them down. These were the boundaries of the analytical method in
classical geometry at the end of the last century.

This situation has now changed by the existence of formal manipulation systems for
computers (for instance MAPLE or MATHEMATICA) which allow handling of equations,
which were of no use several years ago. The use of computer manipulation systems opens
new possibilities for classical geometry (and also new problems and difficulties, as should be
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expected). This statement deserves at least partial explanation; we use an example: It is easy
to formulate problems from the classical geometry of the space which are not elementary, but
their solution makes sense – sometimes even for applications. To name just a few of them – the
construction of a sphere, cylinder or cone of revolution from a suitable number of tangent lines,
to construct a cylinder or cone of revolution from a suitable number of points and combined
problems, together with tangent planes or radii. Not all of them are non-elementary, but the
majority is. Such problems were studied and many properties in this respect are known (see
for instance [1], [5], [6], [7] to name only a few). To bring a solution of such a problem to a
successful end – which the author understands as to produce a drawing of the solution – a
numerical solution of an algebraic equation of a high order is needed. Moreover, considered
equations can be very long and the computer is a useful tool for handling them.

Above mentioned problems lead often to a solution of quadratical equations for many
unknowns. The geometrical meaning of such a problem can be expressed as follows: We
have n quadrics in the n-dimensional space, which have some special property depending on
the problem in question and we want to determine the set of their common points. For this
problem the following questions are basic:

1. What is the degree of the problem – what is the degree of the last polynomial we have
to solve to obtain all solution?

2. What is the maximal number of real solutions?

3. Under which conditions the problem has infinitely many solutions and what is the
geometrical meaning for it?

These problems are difficult problems of algebraic geometry and there exist sophisticated
approaches to it (for example intersection theory), but very little is known. From the the-
oretical point of view this problem can be solved by resultants using MAPLE if given data
are rational numbers, provided the last equation is not too large. In the general case the
algorithm is limited by the size of appearing equations.

Some problems in classical geometry have already been solved with the help of computer
algebra, mainly in connection with applications of geometry in practice, see for instance [3].
In what follows we shall present three geometric problems of such nature that the computer is
a helpful tool for their solution. Solutions are illustrated by corresponding MAPLE sessions,
which appear in abbreviated form, just to show how to proceed in similar cases.

2. Examples

2.1. Example 1

Construct an isosceles triangle from its circumference 2m and radius r of the inscribed circle.

We take Cartesian system of coordinates x, y in the plane; the base is placed on x axis, the
corresponding altitude lies on the y axis. Let 2a denote the length of the base and b be the
altitude. We have a > 0, b > 0 and we obtain the equation

m = a+
√
a2 + b2,

which yields (m− a)2 = a2 + b2.
The computation is shown in Appendix 1. In Fig. 2 the cubic curve of the connection

between the parameter m/r and the value of b/r is displayed. It is easy to find out for which
values of m/r we have two, one or no real solutions of the problem. In Fig. 2 the unit of
measurement is changed to have r = 1.
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Figure 2: Example 1, plot of the cubic curve (b− 2)m2 − b3 = 0

2.2. Example 2

Four algebraic curves p1, . . . , p4 in the plane are given. We want to construct a square

A1, . . . , A4 such that Ai ∈ pi for all i = 1, . . . , 4.

We choose an equiform transformation to solve the problem. The curves pi, i = 1, . . . , 4,
are expressed by their equations in Cartesian coordinates x, y. We take another copy of the
plane with Cartesian coordinates and place the unknown square symmetrically with respect
to axes,

A1,3 = [±1, 0], A2,4 = [0,±1].

We have to find an equiform transformation of the plane given by equations

x0 = xk + yl +m, y0 = −xl + yk + p

in such a way that Ai ∈ pi for i = 1, . . . , 4. We substitute the transformed vertices A1, . . . , A4

into equations of curves p1, . . . , p4 and we obtain four equations for four unknowns k, l,m, p.

We see immediately that this substitution preserves the degree of curves p1, . . . , p4. This
means that in general the degree of the problem will be given as the product of the degrees of
the given curves pi. If pi are straight lines, the problem is linear and the solution is obtained
by solving a system of linear equations. The synthetic solution is based on a theorem from
equiform kinematics, which says that if during an equiform motion in the plane three points
have straight trajectories, all points have straight trajectories, see [9], Chapter 2, Theorem
3, page 71. (By the way, appropriate changes in Appendix 2 yield a demonstration of this
property.)

Interesting situation appears if curves pi are conic sections. In this case the problem
is of degree at most 16 and it leads to the problem of intersection of four quadrics in the
4-dimensional space. This can be done by the computer, but formulas become large. For an
illustration we have chosen two straight lines and two conic sections. Appendix 2 shows the
MAPLE session for this case, only one solution is given, we see it at Fig. 3.
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Figure 3: Example 2

2.3. Example 3

We want to find a cylinder of revolution of given radius r which passes through four given

points in the space.

We introduce Cartesian coordinates [x, y, z] in the space, let the axis o of the unknown
cylinder be given by equations x = a + mz, y = b + nz, we suppose o 6⊥ z. Let A = [p, q, s]
be a point. Then A lies on the cylinder with axis o and radius r iff the distance from a to o
is equal to r. Evaluation for given points Ai = [pi, qi, si], i = 1, . . . , 4, yields four equations,
which are relatively long and they are not displayed here. The rest is done on the computer
(see Appendix 3). We obtain four equations for four unknowns a, b,m, n.

They are linear in a and b, we express a and b from them and substitute into remaining
equations. They are simplified by a suitable choice of system of coordinates. All operations
can be performed to the end. As the result we obtain an algebraic equation of degree 12 of
lengths 17232. For any choice of starting data we can obtain the numerical result, we give
one choice which leads to 8 real solutions. If more then 8 real solutions are possible I do not
know.
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> APPENDIX 1 - Construction of a triangle
Equation for the circumference. Equation of the side. Equation of the inscribed circle.

> f:=expand((m-a)^2-(a^2+b^2)):g:=x/a+y/b-1:h:=expand(x^2+(y-r)^2-r^2):
> x:=solve(g,x):h:=normal(h*b^2);A:=coeff(h,y,2):B:=coeff(h,y,1):C:=coeff(h,y,0):

 := h − + + −a2 y2 2 a2 y b a2 b2 y2 b2 2 y r b2

Condition for contact of the side with the inscribed circle: 
> di:=factor(B^2-4*A*C);

 := di 4 b3 ( )+ −2 a2 r b r2 a2 b
> k:=op(3,"):a:=solve(f,a):k:=factor(4*k*m^2);k1:=op(2,k);k2:=op(2,k):
> k:=factor(4*k*m^2);

 := k −( )− + −2 m2 r b m2 b3 ( )+ −2 b r m2 b2

 := k1 − + −2 m2 r b m2 b3

Solution for k2=0:We substitute into a:
> a1:=subs(b^2=m^2+2*b*r,a);

 := a1 −
b r

m
This shows that we have no solution in this case. Solution for k2=0: We change the unit of 
measurement to have r=1
and plot k1=0. We see that we have at most two solutions.

> with(plots):r:=1;implicitplot(k1=0,b=-8..8,m=-10..10,numpoints=5000,color=bla
ck,thickness=3);
We see that we have at most two solutions.

Figure 4: Appendix 1
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> APPENDIX  2-CONSTRUCTION OF A SQUARE WITH VERTICES ON GIVEN FO
UR CURVES
Equations of curves

> p1:=3*x^2-x*y+1*y^2-7*x-20:p2:=-2*x^2-2*x*y+3*x-28*y-24:p3:=3*y+8*x-10:p4:=
-3*x+4*y+30:

Equiform transformation of the square from the basic position
> x0:=x*k+y*l+m:y0:=-x*l+y*k+p:

Vertices of the transformed square 
> x1:=subs(x=1,y=0,x0):y1:=subs(x=1,y=0,y0):x3:=subs(x=-1,y=0,x0):y3:=subs(x

=-1,y=0,y0):
> x2:=subs(x=0,y=1,x0):y2:=subs(x=0,y=1,y0):x4:=subs(x=0,y=-1,x0):y4:=subs(x

=0,y=-1,y0):
Incidence conditions

> q1:=expand(subs(x=x1,y=y1,p1));q2:=subs(x=x2,y=y2,p2):q3:=subs(x=x3,y=y3,
p3):q4:=subs(x=x4,y=y4,p4):

 := q1 + + + − + − + − + − − −3 k2 6 k m 3 m2 k l k p m l m p l2 2 l p p2 7 k 7 m 20

We express the translation part
> solve({q3,q4},{p,m});assign("):T:=factor(resultant(q1,q2,l));

{ }, =m − + +
3

41
l

20
41

k
130
41

=p − + −
33
41

l
56
41

k
210
41

 := T + + + −
2281778112

2825761
k4

32240944
2825761

k3
42732463700

2825761
k2

81540198132
2825761

k
57417887792

2825761

> k:=fsolve(T,k)[1];
 := k -2.078448572

> fsolve(q1,l);fsolve(q2,l);
, -7.250549201 -1.908326410

, -7.250549201 181.5538503

> l:="[1];
 := l -7.250549201

> with(plots):
> implicitplot({p1,p2,p3,p4},x=-5..5,y=-10..10);
> solve(p1,y):Y1:="[1]:Y2:=""[2]:Y3:=solve(p2,y):Y4:=solve(p3,y):Y5:=solve(p4,y)

:solve(p1,x):X1:="[1]:X2:=""[2]:
> Y6:=(y2-y1)/(x2-x1)*(x-x1)+y1:Y7:=(y3-y2)/(x3-x2)*(x-x2)+y2:Y8:=(y4-y3)/(x4-x3)*

(x-x3)+y3:Y9:=(y4-y1)/(x4-x1)*(x-x4)+y4:
> plot({[x,Y1,x=-4..6],[x,Y2,x=-4..4],[x,Y3,x=-6..11],[x,Y4,x=-1.8..6],[x,Y5,x=-6..11],[

x,Y6,x=x1..x2],[x,Y7,x=x2..x3],[x,Y8,x=x3..x4],[x,Y9,x=x1..x4],      [X1,y,y=-2..5],[
X2,y,y=-2..5] },color=black,thickness=3,numpoints=4000);

Figure 5: Appendix 2
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>  APPENDIX  3- CONSTRUCTION OF CYLINDER 
Equation of axis of the cylinder,  plane perpendicular to axis

> X:=A+M*z:Y:=B+N*z:rho:=M*(x-p)+N*(y-q)+(z-s):rho:=subs(x=X,y=Y,rho):z1:=so
lve(rho,z):

> d:=(X-p)^2+(Y-q)^2+(z-s)^2:f:=normal(subs(z=z1,d-r)):f:=op(1,f):f1:=subs(p=p1,
q=q1,s=s1,f);

f1 2 A M N B A2 N2 A2 B2 M2 B2 r M2 r N2 p12 2 A p1 p12 N2 2 B q1− + + + + − − + − + − := 

q12 M2 M2 s12 N2 s12 2 M N B p1 2 A N2 p1 2 B M2 q1 2 A M s1+ + + + − − +
2 B N s1 2 M s1 p1 2 N s1 q1 2 A M N q1 q12 2 M N q1 p1 r+ − − + + − −

r is the square of the radius of the cylinder,  other equations are similar and not  displayed
> f2:=subs(p=p2,q=q2,s=s2,f):f3:=subs(p=p3,q=q3,s=s3,f):f4:=subs(p=p4,q=q4,s

=s4,f):
We choose a special system of coordinates and unit of measurement

> s1:=0:p1:=0:q1:=0:q2:=0:s2:=0:s3:=0:p2:=1:
> u2:=factor(f1-f2):u3:=factor(f1-f3):u4:=factor(f1-f4):solve({u2=0,u3=0},{A,B}):as

sign(");
> A:=factor(A);B:=factor(B):

A
1
2

N3 M p32 N M3 q32 N M p32 N M q32 2 N2 M2 q3 p3 M N p3 q3 N2 q3+ + + − − + +( := 

M N3 p3 M2 q3 N2 M2 q3− + + q3 ( )+ +M2 N2 1) ( )

We substitute into remaining equations, no display
> f1:=factor(f1):f1:=op(2,f1):u4:=factor(u4):u4:=op(1,u4):

We eliminate M from u4=0,  f1=0,  resulting equation is a very large equation of degree 12 
in N

> T:=resultant(f1,u4,M):nops(T);degree(T,N);
17232

12

For example we choose numerical values 
> p3:=3:q3:=2:p4:=-1:q4:=4:s4:=12/5:r:=13/2:g:=fsolve(T,N);

g -2.347273427 -1.709436008 -1.282620199 -.4794124872 -.3719465229, , , , ,  := 

-.1186604371 .6760208649 1.047551979, , 

Figure 6: Appendix 3
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