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Abstract. A closed κ0-curve is a closed regular curve of class Cr (r ≥ 2) in the
Euclidean 3-space having constant curvature κ0 > 0. We present various exam-
ples of nonplanar closed κ0-curves of class C2, which are composed of n arcs of
circular helices. The construction of c starts from the spherical image (= tangent
indicatrix) c? of c, which then has to be a closed regular curve of class C1 on the
unit sphere S2 consisting of n circular arcs and having the center O? of S2 as its
center of gravity. The case c? ⊆ S2 ∩ Π is studied in detail, assuming that Π is a
cube, or, more generally, a regular polyhedron the edges of which are tangent to
S2. In order to describe and to visualize the curves c? and c, and to derive c from
c?, projection methods of Descriptive Geometry are used.
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1. Introduction

In the real 3-dimensional Euclidean space E3, curves c of class Cr (r ≥ 2) the first curvature
κ of which is prescribed by a function κ = κ(s) of class Cr−2 depending on the arc length
parameter s of c have been studied in different regards. There is e.g. a theorem of existence
and uniqueness up to translations if additionally the spherical image c? of c is given (see [4],
183–185; [9], 162–163), including considerations under which assumptions on c? and κ(s) the
curve c is closed ([1], 78–79; [4], 183–185).

In [2], p. 182, E. Cesàro has considered the special case of space curves with constant

curvature κ(s) = κ0 > 0. These curves usually are called twisted circles of curvature κ0 (in
German: windschiefe Kreise), although they need not be closed, or shortly κ0-curves. Special
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twisted circles having constant torsion τ(s) = τ0 are the closed but planar circles (τ0 = 0)
and the nonplanar and not closed circular helices (τ0 6= 0).

In the differential-geometric literature it has been mentioned (see [1], 78–79) and proved
(see [4], 183–185; compare [9], 162–163) that there exist nontrivial, i.e. nonplanar, closed
twisted circles of curvature κ0, but explicit examples of such nontrivial closed κ0-curves seem
to be missing.

In this note we present examples of closed κ0-curves c of class C2 which can be generated
by connecting arcs of circular helices of curvature κ0 (see Sections 5 and 6). Our construction,
as developed in Sections 3.1 and 4, starts from the tangent indicatrix c? of c which then must
consist of circular arcs on the unit sphere S2. In this context, we first need some differential
geometric tools concerning closed κ0-curves in general (see Section 2).

Note that, in the following sections, it is substantial, in particular with respect to the
spherical image c?, to distinguish between a “curve” (a regular curve) as a bare point set and
its parametrization — in the sense of an oriented parametric curve — which will be called
a “path” (a regular path), respectively. Only by using the notion path it is e.g. possible to
express that a circle or a circular arc is multiply traced by any moving point.

2. Differential geometrical tools

Proposition. Construction of a closed κ0-curve c of class C2 from its tangent indicatrix c?

of class C1: In the Euclidean 3-space E3 let be given a regular closed curve c? : x?(s?), s? ∈
I? := [0, L?] of class Cr−1 (r ≥ 2) on the unit sphere S2 with center O?(0, 0, 0). Let c?, without
loss of generality, be parametrized by its arc length parameter s? (0 ≤ s? ≤ L?;L? > 0) thus
defining a path (oriented parametric curve) c? of path length L?. Under these conditions which
are equivalent to

‖x?(s?)‖ = ‖dx
?

ds?
(s?)‖ = 1 ∀s? ∈ I?,

x?(0) = x?(L?),
dkx?

ds?k
(0) =

dkx?

ds?k
(L?) (k = 1, . . . , r − 1)

(1)

the following propositions (a), (b), (c) hold1:
(a) For any κ0 > 0, the curve c ⊂ E3 which is defined — according to (1) — by

c : x(s) =
1

κ0

κ0s
∫

0

x?(s?)ds?, s ∈ I := [0, L], L :=
L?

κ0

(2)

is a regular space curve of class Cr with the arc length parameter s, the path length
L = L?/κ0 and the constant first curvature κ(s) := ‖x′′(s)‖ = κ0, i.e. c is a κ0-curve

of class Cr (compare [9], 162–163); corresponding arcs of c? and c have proportional
lengths s? ∈ [0, L?] and s = s?/κ0 ∈ [0, L], respectively.
Note that, according to (2), any two closed κ0-curves c1 and c2 of constant positive
curvature κ1, κ2, respectively, corresponding to the same spherical image (tangent indi-
catrix) c? are similar to each other: c2 arises from c1 via a homothety of ratio κ1/κ2 > 0.

1for the conditions of closure used here in (1)2, compare [8], p. 21
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(b) A κ0-curve c of class Cr (r ≥ 2) defined by (2), (1) is closed, i.e., a closed κ0-curve, if
and only if the geometric center of gravity G? of its tangent indicatrix c? considered as
a path coincides with the center O? of S2, that is if and only if (compare [4])

L? · −−−→O?G? :=

L?
∫

0

x?(s?)ds? = o. (3)

(c) A closed κ0-curve c of class Cr (r ≥ 2) defined by (2), (1), (3) is nonplanar if and only
if its closed tangent indicatrix c? ⊂ S2 as a point set is not a great circle of S2.

Proof:

(a) From (2) we get

dx

ds
(s) = x?(κ0s)

(1)
=⇒

(

dx

ds

)2

≡ 1 ∀s ∈ I, x′′(s) :=
d2x

ds2
(s) = κ0

dx?

ds?
(κ0s).

Because of (1) this means that c is regular having s as its arc length parameter and the
constant curvature κ(s) = ‖x′′(s)‖ = κ0.

(b) In consequence of (2), (1) we get:

A κ0-curve c : x(s), s ∈ I is closed ⇐⇒ o = x(L)− x(0) = 1
κ0

∫ L?

0
x?(s?)ds? ⇐⇒ (3).

(c) Any regular curve c ⊂ E3 : x(s), s ∈ I of class C1, having without loss of generality s as
its arc length parameter, is planar if and only if there exists a vector a ∈ R3\{o} such
that a · x(s) = a · x(s0), ∀s ∈ I (s0 ∈ I) ⇐⇒ a · x′(s) = 0 ∀s ∈ I (∗).
On the other hand, the tangent indicatrix c? : x?(s) := x′(s), s ∈ I (which is a curve of
class C0 on S2) of such a regular curve c of class C1 is contained in a great circle of S2 if
and only if c? is contained in a plane having normal vector b and containing O?(0, 0, 0)
⇐⇒ there exists a vector b ∈ R3\{o} such that 0 = b · x?(s) = b · x′(s) ∀s ∈ I (∗∗).
Since the conditions (∗), (∗∗) coincide for a = b, one gets the local [global] result: A
regular [closed regular] curve c ⊂ E3 of class C1 is planar ⇐⇒ the point set of the
tangent indicatrix c? of c is contained in [equals] a great circle of S2. q.e.d.

Remark: According to Fenchel’s Theorem (see [3], 238–245; [7], 139–145; [8], 31–32) and
Eq. (2), the path length L? of the tangent indicatrix c? of a nonplanar closed κ0-curve c and
the length L of c satisfy the inequalities L? > 2π and L = L?/κ0 > 2π/κ0, respectively.

3. Special tangent indicatrices of closed κ0-curves, lying on regular

polyhedra

3.1.

Let Π be any regular polyhedron (regular tetrahedron, hexahedron (cube), octahedron, do-
decahedron or icosahedron, respectively), of edge length e > 0, and denote by O? the point

of symmetry (= center of the circumsphere) of Π. It is well-known and obvious for reasons
of symmetry that there is a unique sphere S2(O?, ρ) with center O? and radius ρ = ρ(e) > 0
being tangent to all of the edges of Π touching them at their midpoints A,B,C, . . ., compare
[5], 84–91 for certain tetrahedra Π and [6], 436–438 for regular polyhedra Π. Obviously, this



20 R. Koch, C. Engelhardt: Closed Space Curves of Constant Curvature

edge-sphere (German: Kantenkugel) of Π intersects each face of Π, which is a regular m-gon,
m ∈ {3, 4, 5}, in its incircle being tangent to the edges of this face at their midpoints. Let
e be chosen in such a way that ρ(e) = 1, i.e. that the edge-sphere of Π is the unit sphere
S2(O?, 1) =: S2 with center O?. In the case of a cube Π, which will be studied in detail later
on, this means e =

√
2.

For reasons of symmetry, O? is the center of gravity of the union I of the incircles of all
faces of Π. Now, by Proposition (b), any closed regular path c? ⊆ I of class C1, having O? as
its center of gravity, will be the spherical image (= the tangent indicatrix) of closed κ0-curves
c of class C2, which are determined by c? up to similarities, the ratio of similarity being 1/κ0.
By this we have found a simple geometric method of constructing tangent indicatrices of closed
κ0-curves of class C2 consisting of arcs of circular helices.

3.2.

For first examples — which show that closed κ0-curves consisting of helical arcs do exist
— we consider in Fig. 1 three different regular polyhedra Πi (i = 1, 2, 3), a cube Π1, a
regular tetrahedron Π2, and a regular octahedron Π3, each of them having an edge-sphere S2

with radius 1. Each of the regular polyhedra Π1,Π2,Π3 has regular m-gons as faces, with
m = 4, 3, 3, respectively. Each of these polyhedra Πi carries a spherical image c?i ⊆ Πi ∩ S2

of closed κ0-curves ci (i = 1, 2, 3): The paths c?i chosen in Fig. 1 consist of n = 6, 4, 6 circular
arcs of central angle 2π/m, which is the smallest central angle possible, respectively; none
of these paths c?i is contained in a great circle of S2, and each of them has the center O? of
its supporting regular polyhedron Πi as its center of gravity, for each of the curves c?1, c

?
3 is

symmetric with respect to the center O? of Π1,Π3, respectively, and the curve c?2 is mapped
onto itself by a rotary reflection ρ which is composed of the reflection with respect to the plane
ABCD and a (π/2)- or (−π/2)-rotation about the normal of this plane passing through the
center O? of Π2, which is the only fixed point of ρ. So each of the paths c?i (i = 1, 2, 3) in
Fig. 1 is the spherical image of nonplanar closed κ0-curves ci (Examples 1, 2, 3). The shape
of these curves ci can be derived using the Proposition, Eq. (2) and Section 4, which may be
left to the reader. For additional examples of nonplanar closed κ0-curves, see the Examples
4–13 (Figs. 2–7), which are discussed in detail, and Example 14 in footnote 3.

Figure 1: Examples of regular polyhedra carrying a tangent indicatrix of closed κ0-curves.
c?1 : +[1/4]ABCDEFA, c?2 : +[1/3]ABCDA, c?3 : +[1/3]ABCDEFA
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3.3.

More generally, the way of composing the tangent indicatrix c? of closed κ0-curves c by n
congruent circular arcs of length k · 2π/m (k ∈ N) on the incircles of the faces (= regular
m-gons, m ∈ {3, 4, 5}) of a regular polyhedron Π, can be described up to congruence and
symmetry by a structural formula of the type (for k = 1, compare Fig. 1)

c? : ±[k/m]A1A2 . . . AnA1 (4)

representing an algorithm of constructing c? as follows. Looking at the outside of the
polyhedron Π, each of the incircles of the faces of Π can be oriented either in the posi-
tive/counterclockwise or negative/clockwise sense.

Figure 2: (Example 4) Closed κ0-curve c4 of class C
2, consisting of (the minimum number of)

four congruent helical arcs. Structural formula of c?4 : +[1/2]ABCDA

Eq. (4) tells us to construct a regular path c? ⊂ S2 of class C1 by connecting, one after
each other, each of the n pairs {A1, A2}, {A2, A3}, . . . , {An, A1} of edge-midpoints (= bisecting
points of the edges) of Π by a circular arc which is uniquely determined by (i) lying in the
unique face of Π which contains both edge-midpoints which are to be connected, (ii) having
the central angle 2π · k/m, and (iii) having correct orientation. The correct orientation of the

circular arcs is to be determined as follows: the first (“starting”) arc Â1A2 of c? is oriented
in the sense corresponding to the sign + or −, respectively, at the beginning of Eq. (4).

Proceeding on c?, any circular arc ÂiAi+1 (i = 2, . . . , n mod n) must be oriented in the same

or the opposite way as its preceding arc Âi−1Ai, according to if one remains in the same face
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of Π, which then contains the three edge-midpoints Ai−1, Ai, Ai+1, or if a new face of Π has
to be entered (⇔ the face of Π being uniquely determined by Ai, Ai+1 is different from the
face containing Ai−1 and Ai).

Figure 3: (Example 5) Closed κ0-curve c5 of class C2, generated from Example 4 (Fig. 2) by
insertion of a pair of congruent helical arcs 2, 3 and 6, 7 of the angle of rotation 2π. This can
also be achieved by extending each of the helical arcs 1, 3 of c4 to its threefold length.

Structural formula of c?5 : +[1/2]ABABCDCDA = +[3/2]AB [1/2]BC [3/2]CD [1/2]DA

This rule of orientation influences in the case k/m 6= 1/2 the selection of the next possible
edge-midpoint Ai+1, too. This results from the demand that there are no cusps on the path

c? := Â1A2 ∪ Â2A3 ∪ . . . ∪ ÂnA1, i.e., that c? is a regular path (a regular closed curve of class
C1). Note that this rule of orientation must be satisfied for the transition from the last arc

ÂnA1 to the starting arc Â1A2, too!
After having selected such a regular closed path c? ⊆ I on Π, one has to check if the

center of gravity G? of the path c? coincides with O?. In most of the cases considered in this
note, this property results more or less from symmetry. For instance, all of the paths c? of
the Figs. 1(a),(c), 5, 6, 7 and of footnote 3 (Example 14) are symmetric with respect to O?,
and all of the paths c? of the Figs. 2, 3, 4 are symmetric at least to the line which is parallel
to the z?-axis and contains O?. If G? = O? — and only then — c? can be interpreted as the
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tangent indicatrix of closed κ0-curves which then are described by (2).

3.4.

Figure 4: (Examples 6, 7) Closed κ0-curves c6 (arcs 1, . . . , 8) and c7 (arcs 1, . . . , 12) of class
C2, generated by joining two or three copies, respectively, of Example 4 (Fig. 2);

c?6 : +[1/2]ABADCBCDA = +[1/2]BADCBCDAB ,
c?7 : +[1/2]ABADCBCDADCBA = +[3/2]BA[1/2]ADCBCDADCB

In the most general case under consideration, we admit that c?, being contained in the
intersection of the faces of a regular polyhedron Π and its edge-sphere S2 of radius 1, is
composed from n ≥ 4 circular arcs of different lengths 2π · ki/m (ki ∈ N, i = 1, 2, . . . , n;
n ≥ 4), see Figs. 3, 4, 6. The structural formula (4) now is to be generalized to expressions
of the type

c? : ±[k1/m]A1A2 . . . Ap[k2/m]ApAp+1 . . . AnA1 (5)

containing two or more changes of the lengths of the circular arcs within c?, by inserting one
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or more commands of length [k1/m], [k2/m], and so on. Each of these commands determines
the lengths of the following circular arcs until the next command of length appears.

4. Closed κ0-curves consisting of arcs of circular helices

In order to determine the shape and analytical representation of nonplanar closed κ0-curves c
of class C2 consisting of n ≥ 4 arcs of circular helices we now have to start from their tangent
indicatrices c?. These special curves/paths c? are characterized by (i) being closed regular
curves of class C1 on the unit sphere S2 with center O?(0, 0, 0), which consist of n circular

arcs h?i (i = 1, . . . , n) of S2 and (ii) having O? as their center of gravity.
1. First step: We determine the helical arc h ⊂ c having a given circular arc h? ⊂ c? with

the central angle ω > 0 and radius r? =: sinα, α ∈]0, π/2] as its tangent indicatrix.
This is since 0 < r? ≤ 1. Up to a proper or improper motion, a parametrization
of h? depending on its angle parameter t can be given with respect to the Cartesian
x?y?z?-coordinate system by

h? : x?h(t) =





cosα
sinα cos t
sinα sin t



 , t ∈ [0, ω]; (6)

thus h? is contained in the plane x? = cosα. The arc length parameter s? of the curve
h? ⊂ c?, defined by (6), is (without loss of generality) s?(t) = t sinα; then, in respect
of Proposition (a), the arc length parameter s of the κ0-curve h ⊂ c, corresponding to
the parametrization (6) of h?, is given by s(t) = (sinα/κ0)t. Using (6) and s?(t), s(t)
the formula (2) yields the parametrization xh(t) of the curve h of constant curvature κ0

depending on the parameter t:

h : xh(t) =
sinα

κ0





t cosα
sinα sin t

− sinα cos t



 , t ∈ [0, ω]. (7)

Obviously h is an arc of a circular helix, including the special case of a circular arc if
α = π/2, having the radius

r = r(α, κ0) =
sin2 α

κ0

, (8)

which equals the radius of the circular cylinder containing the helix h, and having the
pitch (sin 2α/κ0)π (thus having the angle of slope π/2−α) and the angle of rotation ω;
the axis of h is parallel to the x-axis.

2. Second step: Each of the circular arcs h?i ⊂ c? having the radius r?i =: sinαi (0 < αi ≤
π/2) and the central angle ωi > 0 is congruent by some motion µi, via h?i = µih

?, to
the circular arc h? in (6) if we choose α = αi and ω = ωi (i = 1, . . . , n). Then the
helical arc hi ⊂ c corresponding to h?i is uniquely determined via hi = τi ◦ µih, taking
h according to (7) and setting α = αi, ω = ωi; furthermore, τi is a translation which
is to be chosen uniquely in such a way that the endpoint with parameter t = ωi−1 of
the helical arc hi−1 coincides with the starting point with parameter t = 0 of the helical
arc hi (i = 1, . . . , n). The “helical arc” h0 formally appearing here is without loss of
generality to be set as the single point O∗, which is both starting point and endpoint of
h0.

The figures in this note have been produced using an algorithm based on the formulas and
techniques from above.
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5. Explicit examples of nonplanar closed κ0-curves, the tangent in-

dicatrix of which lies on a cube

5.1. General considerations:

In this section, we consider closed κ0-curves c the tangent indicatrix c? of which is contained
as a point set in the union I of the incircles of the faces of a cube Π of edge length e =

√
2,

thus having an edge-sphere S2 ⊃ c? of radius 1.
Using the method described in Section 3.1, various examples of spherical images c?i ⊆

Π ∩ S2 (i = 1 and i = 4, . . . , 13) of nonplanar closed κ0-curves ci are presented, see the parts
(a) of Figs. 1–6 for i = 1; 4, . . . , 12 and, for i = 13, also Fig. 7(a) in Section 6, where Π is
replaced by a regular prism2. The center O? of S2 and of the cube or prism Π, coincides
with the center of gravity G?

i of each curve c?i , and none of these curves is contained in a
great circle of S2 (i = 1; 4, . . . , 13). Thus the κ0-curve ci corresponding to c?i by Proposition
(a), Eq. (2) is closed and nonplanar3; it is of class C2 since c?i is of class C1. Furthermore
ci consists of helical arcs which correspond to the circular arcs of c?i and can be explicitly
found according to Section 4. In this context, the way how the path c?i is traced is essential:
it is formally determined by the structural formula of c?i which is additionally visualized in
Figs. 2–5 by a planar diagram of the path c?i , which is gained by developing those faces of the
cube Π which contain arcs of c?i , and by numbering in the same way the circular arcs of c?i
and their corresponding helical arcs of ci (compare Figs. 2–5, parts (b), (c)).

In Fig. 6 the shape of the curve c12, and how this curve is traced, is visualized — in
a different way — by indicating the correspondence between the endpoints (linking points)
A, . . . ,K of the circular arcs of c?12 and the pairs {A1, A2}, . . . , {K1, K2} of corresponding
image points of c12. The fact that the condition G?

i = O? is really satisfied for all of the
curves/paths c?i (i = 1, . . . , 14) of this note can be deduced either from symmetry (for instance,
O? is the point of symmetry of c?i for i = 1, 3, 8-14) or directly from the planar diagram (see
the curves c?i , i = 4-8, in the Figs. 2–5).

For practical reasons the two cases c?i 6= I and c?i = I are now to be distinguished in the
following Sections 5.2, 5.3 which deal with the Examples 1, 4–12, referring to a cube Π.

5.2. Case c? 6= I

The simplest of the Examples 1, 4–8 (Figs. 1(a), 2–5) of this case are the nonplanar closed
κ0-curves of the Examples 1 (Fig. 1(a)), 4 (Fig. 2) and 8 (Fig. 5) which consist of congruent
helical arcs, the congruent circular arcs of the corresponding tangent indicatrix having the
central angle π/2, π and 3π/2, respectively. Further examples of closed κ0-curves can be
derived from the above curves by insertion of a pair of helical arcs being congruent (by
translation, see Example 5 in Fig. 3, or by reflection with respect to the axis of the first
helical arc and translation, see Example 12 in Section 5.3) and by joining two or more closed
κ0-curves (Examples 6, 7 in Fig. 4; see Examples 9–11 in Section 5.3, too). Note: the insertion

2For further examples c?
i (i = 2, 3, 14) of spherical images of nonplanar closed κ0-curves ci see Section 3.2,

Fig. 1(b),(c) for i = 2, 3, and footnote 3 for i = 14.
3 and, moreover, no arc of ci (i = 1, . . . , 13) lies in a plane. On the other hand, there also are nonplanar

closed κ0-curves c of class C2 being composed of planar and nonplanar arcs, e.g. ≥ 2 circular arcs and ≥ 2
helical arcs. The spherical image c? =: c?14 of a closed κ0-curve c =: c14 of this kind (Example 14) may be
composed, for example, as a path c?

14 := s1 ∪ g1 ∪ s2 ∪ g2 consisting of a pair of semicircles g1, g2 of a great
circle g ⊂ S2 and two small circles s1, s2 on S2 each of which is tangent to g at one of the two common
endpoints of g1, g2 in such a way that s2 is symmetric to s1 with respect to the center O? of S2.
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Figure 5: (Example 8) Closed κ0-curve c8 of class C2, consisting of six congruent helical arcs
having three pairwise orthogonal axial directions; c?8 : −[3/4]ABCDEFA

of a pair of helical arcs, being congruent as described above and having the angle of rotation
l ·2π (l ∈ N), into a closed κ0-curve c is equivalent to the insertion a pair of complete incircles
— each of them being covered l times — of opposite faces of the cube Π into the tangent
indicatrix c? of c; this action does not change the center of gravity G? = O? of c?.

5.3. Case c? = I:

Finally, we show that there are closed κ0-curves having a spherical image c? lying in a cube
Π of edge length e =

√
2 and having the property c? = I in the following sense: Except for

the 12 edge-midpoints of Π, each of which then will be covered twice, the path c? covers each
point of I, which equals the union of the six incircles of the faces of the cube Π, once and
only once. Referring to Fig. 6(a), one can easily verify that each of the four curves c?i ⊆ I
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(i = 9, 10, 11, 12), the path on Π ∩ S2 of which is described by the structural formula:

c?9 : −[3/4]ABCDEFA[1/4]AFEDCBA = −[1/4]BA[3/4]ABCDEFA[1/4]AFEDCB

= −[1/2]BKB [3/4]BCDEF [1/2]FJF [1/4]FEDCB ,

c?10 : +[1/2]AHDGA[1/4]AJ [1/2]JCJ [1/4]JG [1/2]GDH [1/4]HK [1/2]KEK [1/4]KA,

c?11 : +[1/2]AHDGAG [1/4]GE [1/2]EKE [1/4]EDC [1/2]CJC [1/4]CH [1/2]HA,

c?12 : +[1/4]AB[1/2]BIB [1/4]BH [1/2]HDGAGDH [1/4]HK [1/2]KEK [1/4]KA,

respectively (complete circles are underlined), satisfies the property c?i = I. Therefore the
center O? of the cube Π coincides with the center of gravity of the path c?i (i = 9, 10, 11, 12),
too. Consequently, each of these pathes c?i is the tangent indicatrix of closed κ0-curves ci.
These four examples 9, 10, 11, 12 of closed κ0-curves the tangent indicatrix of which is
c?9, c

?
10, c

?
11, c

?
12, respectively, are quite different one from each other. Each of the three curves

c?9, c
?
10, c

?
11 can be separated into a pair c?i =: a?i ∪ b?i (i = 9, 10, 11) of independent tangent

indicatrices of closed κ0-curves being characterized by the structural formulas (referring to
Fig. 6(a)):

a?9 : −[3/4]ABCDEFA, b?9 : +[1/4]AFEDCBA;

a?10 : +[1/2]AHDGA,

b?10 : −[1/4]AJ [1/2]JCJ [1/4]JG [1/2]GDH [1/4]HK [1/2]KEK [1/4]KA;

a?11 = a?10, b?11 : −[1/2]AG[1/4]GE [1/2]EKE [1/4]EDC [1/2]CJC [1/4]CH [1/2]HA.

Complete circles are underlined. One can easily verify that O? is the center of gravity of each
of the six curves a?i , b

?
i (i = 9, 10, 11), too. Note that curves like a?9, b

?
9 and a?10 = a?11 have

already occurred (except for a?9 = c?8, with different notation) in the Examples 8, 1, 4 (see
Figs. 5, 1(a), 2), respectively.

The spherical images b?10 or b
?
11 from above obviously arise from a spherical curve c? of type

−[1/2]AGDHA by inserting a pair of (complete) circles lying in opposite faces (z? = ±e/2 =
±1/

√
2) of the cube Π, namely the circles being described by +[1/2]JCJ , −[1/2]KEK or

−[1/2]EKE , +[1/2]CJC , respectively. Compare here Example 4 in Fig. 2; note that the path
−[1/2]AGDHA arises from a?10 by reflection with respect to the plane being parallel to the
z?-axis and passing through A, D)

Hence follows that each of the closed κ0-curves b10 or b11, the tangent indicatrix of which
is b?10 or b?11, respectively, arises from a curve c of Example 4, having the same constant
curvature κ0, by inserting — in different ways — a pair of congruent arcs of circular helices
of curvature κ0 and angle of rotation 2π, the axes of which are parallel to the z-axis and
thus orthogonal to the axes of the helical arcs of c, which are parallel to the x- or y-axis,
respectively. Consequently, the curves b10 and b11 are (other than the curves a10 and a11

corresponding to a?10 and a?11, respectively) new examples of closed κ0-curves, being different
— though generated by “insertion”, too — from those of Example 5 in Fig. 3. The explicit
drawing of a closed κ0-curve having c?9, c

?
10 or c?11 as its tangent indicatrix may be left to the

reader.

The curve c?12 and the corresponding closed κ0-curves c12 do not separate: according to
the structural formula of c?12 and/or Fig. 6(b), the curve c12 can obviously be generated from
a closed κ0-curve c6 as Example 6 (Fig. 4) being characterized, with respect to Fig. 6(a),
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Figure 6: (Examples 9, 10, 11, 12) Closed “separating” κ0-curves c9, c10, c11 (not shown in
this figure) and the “non-separating” closed κ0-curve c12, each of them of class C2, having
the common tangent indicatrix c?i = I (i = 9, . . . , 12): except for the 12 edge midpoints of
the cube Π — each of which is covered twice — c?i covers each point of the six incircles of the
faces of Π once and only once. The curve c12 is symmetric with respect to the line A1A2

by the rewritten structural formula4 c?6 : +[1/2]AHDGAGDHA by inserting two congruent

helical arcs ̂B1(I1)B2, ̂K1(E2)K2, corresponding to the pair of complete circles −[1/2]BIB ,
−[1/2]KEK of c∗, at the midpoint — corresponding to B or K — of the helical arc of c6

which corresponds to +[1/2]AH = +[1/4]ABH or +[1/2]HA = +[1/4]HKA, respectively.
The shape and the course of a closed κ0-curve c12 corresponding to c?12 can be recognized,
for instance, by drawing a pair of orthographic views of c12, compare the top view of c12 in

4The points A,B,C,D of c?
6 in Fig. 4(a),(b) now are to be replaced by H,A,G,D, respectively.
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Figure 7: (Example 13) Closed κ0-curve c13 of class C2, consisting of six congruent helical
arcs having three complanar axial directions

Fig. 6(b). Note that the helical arcs of c12 in our case (α = π/4; orthogonal projection with
respect to a coordinate plane) project into arcs of either circles of (with respect to (8)) radius
1/(2κ0) or of sinusoidal curves having π/κ0 as length of period and the amplitude 1/(2κ0).

Fig. 6 shows in (b) the normal projection of c12 into the plane z = 0 (top view) and
in (c) an axonometric representation of c12. The closed κ0-curve c12 is composed of 12 arcs
(see below) of a pair of helices being inversely congruent (anti-congruent). Note that all
of the circular arcs of c?12 being contained in a pair of opposite faces x? = ±e / y? = ±e
/z? = ±e of Π are oriented in the same sense +/ − /−, respectively, thus corresponding to
arcs of c12 which belong to circular helices being directly congruent, the axes of which are
parallel to the x-/y-/z-axis, respectively. As a point of c?12, each of the 8 edge-midpoints
A,B,D,E,G,H, I,K of the cube Π appearing in the formula of c?12 has a pair of image
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points {A1, A2}, . . . , {K1, K2} on c12. Using 12 of these points, corresponding to the six
points A,B,D,G,H,K of c?12, the course of the closed κ0-curve c12 is determined by the
sequence of the points A1B1B2H1D1G1A2G2D2H2K1K2A1: c12 is composed of 12 helical

arcs Â1B1, B̂1B2, . . . , K̂2A1 being numerated by 1, 2, . . . , 12, each two consecutive arcs having
anti-congruent supporting circular helices and thus differing in the sign of the torsion. With
respect to the positive z-direction, the six helical arcs #1-3, 5, 7, 9 of c12 are descending, the
other six arcs #4, 6, 8, 10-12 are ascending. To ease the understanding, the Figs. 6(b),(c)
additionally show the four points I1, I2, E1, E2 of c12 which correspond to the points I, E
of c?12. More in detail, the course of c12 now is described by the sequence of the points
A1B1(I1)B2H1D1(I2)G1A2G2(E1)D2H2K1(E2)K2A1: the four additional points I1, I2, E1, E2

— which are put in brackets in the point sequence and in the Figs. 6(b),(c) since they are
no endpoints of helical arcs of c12 — are the midpoints of the helical arcs # 2, 5, 8, 11

respectively. These are the arcs B̂1B2, D̂1G1, Ĝ2D2, K̂1K2.

6. Outlook: Further possibilities of constructing closed κ0-curves

In Fig. 2 all of the circular arcs of the spherical curve c?4 are contained in the n := 4 “vertical”
faces of the cube Π, being parallel to the z?-axis. More generally, the cube Π can be replaced
by a right prism Π with center O?, its lateral edges being parallel to the z?-axis and its
bases, lying in the parallel planes z? = ±1, being regular n-gons (n ≥ 3) of circumradius 1,
which can be represented by the congruent regular n-gon A1A2 . . . An cut from Π by the plane
z? = 0 (and generalizing the square = regular 4-gon ABCD in Fig. 2(a)). Let I denote the
intersection of the right prism Π and the sphere S2, having the center O? and the radius 1;
so I consists of a chain of n congruent complete circles. Then any regular curve/path c? ⊆ I
of class C1 having O? as its center of gravity can be chosen to be the tangent indicatrix of
nonplanar κ0-curves of class C2 consisting of helical arcs, the axes being parallel to the plane
z = 0. In the simplest case, c? consists of n, if n is even, or 2n if n is odd, congruent semi-
circles: then the path c? can be described by the structural formula ±[1/2]A1A2 . . . AnA1 (n
even) or ±[1/2]A1A2 . . . AnA1A2 . . . AnA1 (n odd), respectively. For n = 4 and n = 6, see
Example 4 (Fig. 2) and Example 13 (Fig. 7), respectively.

Nonplanar closed κ0-curves of class Cr (r ≥ 3), in particular of class Cω, can also be
determined, for instance by analytic representations using elliptic integrals, using Proposi-
tion and certain properties of symmetry of the tangent indicatrix c?. Explicit examples of
nonplanar closed κ0-curves of class Cω will be presented in a forthcoming note.
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