Closed Space Curves of Constant Curvature Consisting of Arcs of Circular Helices

Richard Koch, Christoph Engelhardt

Zentrum Mathematik, Munich University of Technology Arcisstr. 21, D-80290 München, Germany email: koch@mathematik.tu-muenchen.de

Hans-Pfann-Str. 74, D-81825 München, Germany email: engelhar@informatik.tu-muenchen.de

Abstract. A closed κ_0 -curve is a closed regular curve of class C^r $(r \ge 2)$ in the Euclidean 3-space having constant curvature $\kappa_0 > 0$. We present various examples of nonplanar closed κ_0 -curves of class C^2 , which are composed of n arcs of circular helices. The construction of c starts from the spherical image (= tangent indicatrix) c^* of c, which then has to be a closed regular curve of class C^1 on the unit sphere S^2 consisting of n circular arcs and having the center O^* of S^2 as its center of gravity. The case $c^* \subseteq S^2 \cap \Pi$ is studied in detail, assuming that Π is a cube, or, more generally, a regular polyhedron the edges of which are tangent to S^2 . In order to describe and to visualize the curves c^* and c, and to derive c from c^* , projection methods of Descriptive Geometry are used.

Keywords: closed (composite) space curve, constant curvature, circular helix, spherical image, tangent indicatrix, center of gravity, regular polyhedron. *MSC 1994:* 53A04, 51M20, 51N05

1. Introduction

In the real 3-dimensional Euclidean space \mathbb{E}^3 , curves c of class C^r $(r \ge 2)$ the first curvature κ of which is prescribed by a function $\kappa = \kappa(s)$ of class C^{r-2} depending on the arc length parameter s of c have been studied in different regards. There is e.g. a theorem of existence and uniqueness up to translations if additionally the spherical image c^* of c is given (see [4], 183–185; [9], 162–163), including considerations under which assumptions on c^* and $\kappa(s)$ the curve c is closed ([1], 78–79; [4], 183–185).

In [2], p. 182, E. CESÀRO has considered the special case of space curves with constant curvature $\kappa(s) = \kappa_0 > 0$. These curves usually are called *twisted circles* of curvature κ_0 (in German: windschiefe Kreise), although they need not be closed, or shortly κ_0 -curves. Special

twisted circles having constant torsion $\tau(s) = \tau_0$ are the closed but planar circles ($\tau_0 = 0$) and the nonplanar and not closed circular helices ($\tau_0 \neq 0$).

In the differential-geometric literature it has been mentioned (see [1], 78–79) and proved (see [4], 183–185; compare [9], 162–163) that there exist nontrivial, i.e. nonplanar, closed twisted circles of curvature κ_0 , but explicit examples of such nontrivial closed κ_0 -curves seem to be missing.

In this note we present examples of closed κ_0 -curves c of class C^2 which can be generated by connecting arcs of circular helices of curvature κ_0 (see Sections 5 and 6). Our construction, as developed in Sections 3.1 and 4, starts from the tangent indicatrix c^* of c which then must consist of circular arcs on the unit sphere S^2 . In this context, we first need some differential geometric tools concerning closed κ_0 -curves in general (see Section 2).

Note that, in the following sections, it is substantial, in particular with respect to the spherical image c^* , to distinguish between a "curve" (a regular curve) as a bare point set and its parametrization — in the sense of an oriented parametric curve — which will be called a "path" (a regular path), respectively. Only by using the notion path it is e.g. possible to express that a circle or a circular arc is multiply traced by any moving point.

2. Differential geometrical tools

Proposition. Construction of a closed κ_0 -curve c of class C^2 from its tangent indicatrix c^* of class C^1 : In the Euclidean 3-space \mathbb{E}^3 let be given a regular closed curve $c^* : \mathfrak{x}^*(s^*), s^* \in I^* := [0, L^*]$ of class C^{r-1} $(r \ge 2)$ on the unit sphere S^2 with center $O^*(0, 0, 0)$. Let c^* , without loss of generality, be parametrized by its arc length parameter s^* $(0 \le s^* \le L^*; L^* > 0)$ thus defining a path (oriented parametric curve) c^* of path length L^* . Under these conditions which are equivalent to

$$\|\mathbf{\mathfrak{x}}^{\star}(s^{\star})\| = \|\frac{d\mathbf{\mathfrak{x}}^{\star}}{ds^{\star}}(s^{\star})\| = 1 \quad \forall s^{\star} \in I^{\star},$$

$$\mathbf{\mathfrak{x}}^{\star}(0) = \mathbf{\mathfrak{x}}^{\star}(L^{\star}), \quad \frac{d^{k}\mathbf{\mathfrak{x}}^{\star}}{ds^{\star k}}(0) = \frac{d^{k}\mathbf{\mathfrak{x}}^{\star}}{ds^{\star k}}(L^{\star}) \quad (k = 1, \dots, r-1)$$
(1)

the following propositions (a), (b), (c) hold¹:

(a) For any $\kappa_0 > 0$, the curve $c \subset \mathbb{E}^3$ which is defined — according to (1) — by

$$c: \quad \mathfrak{x}(s) = \frac{1}{\kappa_0} \int_0^{\kappa_0 s} \mathfrak{x}^*(s^*) ds^*, \quad s \in I := [0, L], \quad L := \frac{L^*}{\kappa_0}$$
(2)

is a regular space curve of class C^r with the arc length parameter s, the path length $L = L^*/\kappa_0$ and the constant first curvature $\kappa(s) := \|\mathbf{r}''(s)\| = \kappa_0$, i.e. c is a κ_0 -curve of class C^r (compare [9], 162–163); corresponding arcs of c^* and c have proportional lengths $s^* \in [0, L^*]$ and $s = s^*/\kappa_0 \in [0, L]$, respectively.

Note that, according to (2), any two closed κ_0 -curves c_1 and c_2 of constant positive curvature κ_1 , κ_2 , respectively, corresponding to the same spherical image (tangent indicatrix) c^* are similar to each other: c_2 arises from c_1 via a homothety of ratio $\kappa_1/\kappa_2 > 0$.

¹ for the conditions of closure used here in $(1)_2$, compare [8], p. 21

(b) A κ_0 -curve c of class C^r $(r \ge 2)$ defined by (2), (1) is closed, i.e., a closed κ_0 -curve, if and only if the geometric center of gravity G^* of its tangent indicatrix c^* considered as a path coincides with the center O^* of S^2 , that is if and only if (compare [4])

$$L^{\star} \cdot \overrightarrow{O^{\star}G^{\star}} := \int_{0}^{L^{\star}} \mathfrak{x}^{\star}(s^{\star}) ds^{\star} = \mathfrak{o}.$$
(3)

(c) A closed κ_0 -curve c of class C^r $(r \ge 2)$ defined by (2), (1), (3) is nonplanar if and only if its closed tangent indicatrix $c^* \subset S^2$ as a point set is not a great circle of S^2 .

Proof:

(a) From (2) we get

$$\frac{d\mathfrak{x}}{ds}(s) = \mathfrak{x}^{\star}(\kappa_0 s) \xrightarrow{(1)} \left(\frac{d\mathfrak{x}}{ds}\right)^2 \equiv 1 \quad \forall s \in I, \quad \mathfrak{x}''(s) := \frac{d^2\mathfrak{x}}{ds^2}(s) = \kappa_0 \frac{d\mathfrak{x}^{\star}}{ds^{\star}}(\kappa_0 s).$$

Because of (1) this means that c is regular having s as its arc length parameter and the constant curvature $\kappa(s) = \|\mathbf{r}''(s)\| = \kappa_0$.

- (b) In consequence of (2), (1) we get: A κ_0 -curve $c : \mathfrak{x}(s), s \in I$ is closed $\iff \mathfrak{o} = \mathfrak{x}(L) - \mathfrak{x}(0) = \frac{1}{\kappa_0} \int_0^{L^*} \mathfrak{x}^*(s^*) ds^* \iff (3).$
- (c) Any regular curve c ⊂ E³ : 𝔅(s), s ∈ I of class C¹, having without loss of generality s as its arc length parameter, is planar if and only if there exists a vector 𝔅 ∈ ℝ³\{𝔅} such that 𝔅 ⋅𝔅(s) = 𝔅 →𝔅(s₀), ∀s ∈ I (s₀ ∈ I) ⇔ 𝔅 ⋅𝔅'(s) = 𝔅 ∀s ∈ I (*). On the other hand, the tangent indicatrix c^{*} : 𝔅^{*}(s) := 𝔅'(s), s ∈ I (which is a curve of class C⁰ on S²) of such a regular curve c of class C¹ is contained in a great circle of S² if and only if c^{*} is contained in a plane having normal vector 𝔅 and containing O^{*}(0,0,0) ⇔ there exists a vector 𝔅 ∈ ℝ³\{𝔅} such that 0 = 𝔅 ⋅𝔅'(s) = 𝔅 ⋅𝔅'(s) ∀s ∈ I (**). Since the conditions (*), (**) coincide for 𝔅 = 𝔅, one gets the local [global] result: A regular [closed regular] curve c ⊂ E³ of class C¹ is planar ⇔ the point set of the tangent indicatrix c^{*} of c is contained in [equals] a great circle of S².

Remark: According to FENCHEL's Theorem (see [3], 238–245; [7], 139–145; [8], 31–32) and Eq. (2), the path length L^* of the tangent indicatrix c^* of a nonplanar closed κ_0 -curve c and the length L of c satisfy the inequalities $L^* > 2\pi$ and $L = L^*/\kappa_0 > 2\pi/\kappa_0$, respectively.

3. Special tangent indicatrices of closed κ_0 -curves, lying on regular polyhedra

3.1.

Let Π be any regular polyhedron (regular tetrahedron, hexahedron (cube), octahedron, dodecahedron or icosahedron, respectively), of edge length e > 0, and denote by O^* the point of symmetry (= center of the circumsphere) of Π . It is well-known and obvious for reasons of symmetry that there is a unique sphere $S^2(O^*, \rho)$ with center O^* and radius $\rho = \rho(e) > 0$ being tangent to all of the edges of Π touching them at their midpoints A, B, C, \ldots , compare [5], 84–91 for certain tetrahedra Π and [6], 436–438 for regular polyhedra Π . Obviously, this edge-sphere (German: Kantenkugel) of Π intersects each face of Π , which is a regular *m*-gon, $m \in \{3, 4, 5\}$, in its incircle being tangent to the edges of this face at their midpoints. Let e be chosen in such a way that $\rho(e) = 1$, i.e. that the edge-sphere of Π is the unit sphere $S^2(O^*, 1) =: S^2$ with center O^* . In the case of a cube Π , which will be studied in detail later on, this means $e = \sqrt{2}$.

For reasons of symmetry, O^* is the center of gravity of the union \mathcal{I} of the incircles of all faces of Π . Now, by Proposition (b), any closed regular path $c^* \subseteq \mathcal{I}$ of class C^1 , having O^* as its center of gravity, will be the spherical image (= the tangent indicatrix) of closed κ_0 -curves c of class C^2 , which are determined by c^* up to similarities, the ratio of similarity being $1/\kappa_0$. By this we have found a simple *geometric method* of constructing tangent indicatrices of closed κ_0 -curves of class C^2 consisting of arcs of circular helices.

3.2.

For first examples — which show that closed κ_0 -curves consisting of helical arcs do exist — we consider in Fig. 1 three different regular polyhedra Π_i (i = 1, 2, 3), a cube Π_1 , a regular tetrahedron Π_2 , and a regular octahedron Π_3 , each of them having an edge-sphere S^2 with radius 1. Each of the regular polyhedra Π_1, Π_2, Π_3 has regular *m*-gons as faces, with m = 4, 3, 3, respectively. Each of these polyhedra Π_i carries a spherical image $c_i^* \subseteq \Pi_i \cap S^2$ of closed κ_0 -curves c_i (i = 1, 2, 3): The paths c_i^{\star} chosen in Fig. 1 consist of n = 6, 4, 6 circular arcs of central angle $2\pi/m$, which is the smallest central angle possible, respectively; none of these paths c_i^{\star} is contained in a great circle of S^2 , and each of them has the center O^{\star} of its supporting regular polyhedron Π_i as its center of gravity, for each of the curves c_1^*, c_3^* is symmetric with respect to the center O^* of Π_1, Π_3 , respectively, and the curve c_2^* is mapped onto itself by a rotary reflection ρ which is composed of the reflection with respect to the plane ABCD and a $(\pi/2)$ - or $(-\pi/2)$ -rotation about the normal of this plane passing through the center O^* of Π_2 , which is the only fixed point of ρ . So each of the paths c_i^* (i = 1, 2, 3) in Fig. 1 is the spherical image of nonplanar closed κ_0 -curves c_i (Examples 1, 2, 3). The shape of these curves c_i can be derived using the Proposition, Eq. (2) and Section 4, which may be left to the reader. For additional examples of nonplanar closed κ_0 -curves, see the Examples 4–13 (Figs. 2–7), which are discussed in detail, and Example 14 in footnote 3.

Figure 1: Examples of regular polyhedra carrying a tangent indicatrix of closed κ_0 -curves. c_1^{\star} : +[1/4]ABCDEFA, c_2^{\star} : +[1/3]ABCDA, c_3^{\star} : +[1/3]ABCDEFA

3.3.

More generally, the way of composing the tangent indicatrix c^* of closed κ_0 -curves c by n congruent circular arcs of length $k \cdot 2\pi/m$ ($k \in \mathbb{N}$) on the incircles of the faces (= regular *m*-gons, $m \in \{3, 4, 5\}$) of a regular polyhedron Π , can be described up to congruence and symmetry by a structural formula of the type (for k = 1, compare Fig. 1)

$$c^*: \pm [k/m]A_1A_2\dots A_nA_1 \tag{4}$$

representing an algorithm of constructing c^* as follows. Looking at the outside of the polyhedron Π , each of the incircles of the faces of Π can be oriented either in the positive/counterclockwise or negative/clockwise sense.

Figure 2: (Example 4) Closed κ_0 -curve c_4 of class C^2 , consisting of (the minimum number of) four congruent helical arcs. Structural formula of c_4^* : +[1/2]ABCDA

Eq. (4) tells us to construct a regular path $c^* \subset S^2$ of class C^1 by connecting, one after each other, each of the *n* pairs $\{A_1, A_2\}, \{A_2, A_3\}, \ldots, \{A_n, A_1\}$ of edge-midpoints (= bisecting points of the edges) of Π by a circular arc which is uniquely determined by (i) lying in the unique face of Π which contains both edge-midpoints which are to be connected, (ii) having the central angle $2\pi \cdot k/m$, and (iii) having correct orientation. The correct orientation of the circular arcs is to be determined as follows: the first ("starting") arc $\widehat{A_1A_2}$ of c^* is oriented in the sense corresponding to the sign + or -, respectively, at the beginning of Eq. (4). Proceeding on c^* , any circular arc $\widehat{A_iA_{i+1}}$ ($i = 2, \ldots, n \mod n$) must be oriented in the same or the opposite way as its preceding arc $\widehat{A_{i-1}A_i}$, according to if one remains in the same face of Π , which then contains the three edge-midpoints A_{i-1}, A_i, A_{i+1} , or if a new face of Π has to be entered (\Leftrightarrow the face of Π being uniquely determined by A_i, A_{i+1} is different from the face containing A_{i-1} and A_i).

Figure 3: (Example 5) Closed κ_0 -curve c_5 of class C^2 , generated from Example 4 (Fig. 2) by insertion of a pair of congruent helical arcs 2, 3 and 6, 7 of the angle of rotation 2π . This can also be achieved by extending each of the helical arcs 1, 3 of c_4 to its threefold length.

Structural formula of c_5^{\star} : +[1/2]ABABCDCDA = +[3/2]AB[1/2]BC[3/2]CD[1/2]DA

This rule of orientation influences in the case $k/m \neq 1/2$ the selection of the next possible edge-midpoint A_{i+1} , too. This results from the demand that there are no cusps on the path $c^* := \widehat{A_1A_2} \cup \widehat{A_2A_3} \cup \ldots \cup \widehat{A_nA_1}$, i.e., that c^* is a regular path (a regular closed curve of class C^1). Note that this rule of orientation must be satisfied for the transition from the last arc $\widehat{A_nA_1}$ to the starting arc $\widehat{A_1A_2}$, too!

After having selected such a regular closed path $c^* \subseteq \mathcal{I}$ on Π , one has to check if the center of gravity G^* of the path c^* coincides with O^* . In most of the cases considered in this note, this property results more or less from symmetry. For instance, all of the paths c^* of the Figs. 1(a),(c), 5, 6, 7 and of footnote 3 (Example 14) are symmetric with respect to O^* , and all of the paths c^* of the Figs. 2, 3, 4 are symmetric at least to the line which is parallel to the z^* -axis and contains O^* . If $G^* = O^*$ — and only then — c^* can be interpreted as the

tangent indicatrix of closed κ_0 -curves which then are described by (2).

3.4.

Figure 4: (Examples 6, 7) Closed κ_0 -curves c_6 (arcs 1, ..., 8) and c_7 (arcs 1, ..., 12) of class C^2 , generated by joining two or three copies, respectively, of Example 4 (Fig. 2);

$$c_6^{\star}: + [1/2]ABADCBCDA = + [1/2]BADCBCDAB,$$

$$c_7^{\star}: + [1/2]ABADCBCDADCBA = + [3/2]BA[1/2]ADCBCDADCB$$

In the most general case under consideration, we admit that c^* , being contained in the intersection of the faces of a regular polyhedron Π and its edge-sphere S^2 of radius 1, is composed from $n \ge 4$ circular arcs of different lengths $2\pi \cdot k_i/m$ ($k_i \in \mathbb{N}$, i = 1, 2, ..., n; $n \ge 4$), see Figs. 3, 4, 6. The structural formula (4) now is to be generalized to expressions of the type

$$c^*: \pm [k_1/m]A_1A_2\dots A_p[k_2/m]A_pA_{p+1}\dots A_nA_1$$
 (5)

containing two or more changes of the lengths of the circular arcs within c^* , by inserting one

or more commands of length $[k_1/m]$, $[k_2/m]$, and so on. Each of these commands determines the lengths of the following circular arcs until the next command of length appears.

4. Closed κ_0 -curves consisting of arcs of circular helices

In order to determine the shape and analytical representation of nonplanar closed κ_0 -curves cof class C^2 consisting of $n \ge 4$ arcs of circular helices we now have to start from their tangent indicatrices c^* . These special curves/paths c^* are characterized by (i) being closed regular curves of class C^1 on the unit sphere S^2 with center $O^*(0,0,0)$, which consist of n circular arcs h_i^* (i = 1, ..., n) of S^2 and (ii) having O^* as their center of gravity.

1. First step: We determine the helical arc $h \subset c$ having a given circular arc $h^* \subset c^*$ with the central angle $\omega > 0$ and radius $r^* =: \sin \alpha, \alpha \in]0, \pi/2]$ as its tangent indicatrix. This is since $0 < r^* \leq 1$. Up to a proper or improper motion, a parametrization of h^* depending on its angle parameter t can be given with respect to the Cartesian $x^*y^*z^*$ -coordinate system by

$$h^{\star}: \quad \mathfrak{x}_{h}^{\star}(t) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \cos t \\ \sin \alpha \sin t \end{pmatrix}, \quad t \in [0, \omega]; \tag{6}$$

thus h^* is contained in the plane $x^* = \cos \alpha$. The arc length parameter s^* of the curve $h^* \subset c^*$, defined by (6), is (without loss of generality) $s^*(t) = t \sin \alpha$; then, in respect of Proposition (a), the arc length parameter s of the κ_0 -curve $h \subset c$, corresponding to the parametrization (6) of h^* , is given by $s(t) = (\sin \alpha / \kappa_0)t$. Using (6) and $s^*(t)$, s(t) the formula (2) yields the parametrization $\mathfrak{x}_h(t)$ of the curve h of constant curvature κ_0 depending on the parameter t:

$$h: \quad \mathfrak{x}_h(t) = \frac{\sin \alpha}{\kappa_0} \begin{pmatrix} t \cos \alpha \\ \sin \alpha \sin t \\ -\sin \alpha \cos t \end{pmatrix}, \quad t \in [0, \omega].$$
(7)

Obviously h is an arc of a *circular helix*, including the special case of a *circular arc* if $\alpha = \pi/2$, having the radius

$$r = r(\alpha, \kappa_0) = \frac{\sin^2 \alpha}{\kappa_0},\tag{8}$$

which equals the radius of the circular cylinder containing the helix h, and having the pitch $(\sin 2\alpha/\kappa_0)\pi$ (thus having the *angle of slope* $\pi/2 - \alpha$) and the angle of rotation ω ; the axis of h is parallel to the x-axis.

2. Second step: Each of the circular arcs $h_i^* \subset c^*$ having the radius $r_i^* =: \sin \alpha_i \ (0 < \alpha_i \le \pi/2)$ and the central angle $\omega_i > 0$ is congruent by some motion μ_i , via $h_i^* = \mu_i h^*$, to the circular arc h^* in (6) if we choose $\alpha = \alpha_i$ and $\omega = \omega_i \ (i = 1, ..., n)$. Then the helical arc $h_i \subset c$ corresponding to h_i^* is uniquely determined via $h_i = \tau_i \circ \mu_i h$, taking h according to (7) and setting $\alpha = \alpha_i, \omega = \omega_i$; furthermore, τ_i is a translation which is to be chosen uniquely in such a way that the endpoint with parameter $t = \omega_{i-1}$ of the helical arc h_{i-1} coincides with the starting point with parameter t = 0 of the helical arc $h_i \ (i = 1, ..., n)$. The "helical arc" h_0 formally appearing here is without loss of generality to be set as the single point O^* , which is both starting point and endpoint of h_0 .

The figures in this note have been produced using an algorithm based on the formulas and techniques from above.

5. Explicit examples of nonplanar closed κ_0 -curves, the tangent indicatrix of which lies on a cube

5.1. General considerations:

In this section, we consider closed κ_0 -curves c the tangent indicatrix c^* of which is contained as a point set in the union \mathcal{I} of the incircles of the faces of a *cube* Π of edge length $e = \sqrt{2}$, thus having an edge-sphere $S^2 \supset c^*$ of radius 1.

Using the method described in Section 3.1, various examples of spherical images $c_i^* \subseteq \Pi \cap S^2$ (i = 1 and i = 4, ..., 13) of nonplanar closed κ_0 -curves c_i are presented, see the parts (a) of Figs. 1–6 for i = 1; 4, ..., 12 and, for i = 13, also Fig. 7(a) in Section 6, where Π is replaced by a regular prism². The center O^* of S^2 and of the cube or prism Π , coincides with the center of gravity G_i^* of each curve c_i^* , and none of these curves is contained in a great circle of S^2 (i = 1; 4, ..., 13). Thus the κ_0 -curve c_i corresponding to c_i^* by Proposition (a), Eq. (2) is closed and nonplanar³; it is of class C^2 since c_i^* is of class C^1 . Furthermore c_i consists of helical arcs which correspond to the circular arcs of c_i^* and can be explicitly found according to Section 4. In this context, the way how the path c_i^* is traced is essential: it is formally determined by the structural formula of c_i^* which is additionally visualized in Figs. 2–5 by a planar diagram of the path c_i^* , which is gained by developing those faces of the cube Π which contain arcs of c_i^* , and by numbering in the same way the circular arcs of c_i^* and their corresponding helical arcs of c_i (compare Figs. 2–5, parts (b), (c)).

In Fig. 6 the shape of the curve c_{12} , and how this curve is traced, is visualized — in a different way — by indicating the correspondence between the endpoints (linking points) A, \ldots, K of the circular arcs of c_{12}^* and the pairs $\{A_1, A_2\}, \ldots, \{K_1, K_2\}$ of corresponding image points of c_{12} . The fact that the condition $G_i^* = O^*$ is really satisfied for all of the curves/paths c_i^* ($i = 1, \ldots, 14$) of this note can be deduced either from symmetry (for instance, O^* is the point of symmetry of c_i^* for i = 1, 3, 8-14) or directly from the planar diagram (see the curves c_i^* , i = 4-8, in the Figs. 2–5).

For practical reasons the two cases $c_i^* \neq \mathcal{I}$ and $c_i^* = \mathcal{I}$ are now to be distinguished in the following Sections 5.2, 5.3 which deal with the Examples 1, 4–12, referring to a cube Π .

5.2. Case $c^* \neq \mathcal{I}$

The simplest of the Examples 1, 4–8 (Figs. 1(a), 2–5) of this case are the nonplanar closed κ_0 -curves of the Examples 1 (Fig. 1(a)), 4 (Fig. 2) and 8 (Fig. 5) which consist of *congruent* helical arcs, the congruent circular arcs of the corresponding tangent indicatrix having the central angle $\pi/2$, π and $3\pi/2$, respectively. Further examples of closed κ_0 -curves can be derived from the above curves by *insertion* of a pair of helical arcs being congruent (by translation, see Example 5 in Fig. 3, or by reflection with respect to the axis of the first helical arc and translation, see Example 12 in Section 5.3) and by *joining* two or more closed κ_0 -curves (Examples 6, 7 in Fig. 4; see Examples 9–11 in Section 5.3, too). Note: the insertion

²For further examples c_i^{\star} (i = 2, 3, 14) of spherical images of nonplanar closed κ_0 -curves c_i see Section 3.2, Fig. 1(b),(c) for i = 2, 3, and footnote 3 for i = 14.

³ and, moreover, no arc of c_i (i = 1, ..., 13) lies in a plane. On the other hand, there also are nonplanar closed κ_0 -curves c of class C^2 being composed of planar and nonplanar arcs, e.g. ≥ 2 circular arcs and ≥ 2 helical arcs. The spherical image $c^* =: c_{14}^*$ of a closed κ_0 -curve $c =: c_{14}$ of this kind (Example 14) may be composed, for example, as a path $c_{14}^* := s_1 \cup g_1 \cup s_2 \cup g_2$ consisting of a pair of semicircles g_1, g_2 of a great circle $g \subset S^2$ and two small circles s_1, s_2 on S^2 each of which is tangent to g at one of the two common endpoints of g_1, g_2 in such a way that s_2 is symmetric to s_1 with respect to the center O^* of S^2 .

Figure 5: (Example 8) Closed κ_0 -curve c_8 of class C^2 , consisting of six congruent helical arcs having three pairwise orthogonal axial directions; c_8^{\star} : -[3/4]ABCDEFA

of a pair of helical arcs, being congruent as described above and having the angle of rotation $l \cdot 2\pi$ $(l \in \mathbb{N})$, into a closed κ_0 -curve c is *equivalent* to the insertion a pair of complete incircles — each of them being covered l times — of opposite faces of the cube Π into the tangent indicatrix c^* of c; this action does not change the center of gravity $G^* = O^*$ of c^* .

5.3. Case $c^{\star} = \mathcal{I}$:

Finally, we show that there are closed κ_0 -curves having a spherical image c^* lying in a cube Π of edge length $e = \sqrt{2}$ and having the property $c^* = \mathcal{I}$ in the following sense: Except for the 12 edge-midpoints of Π , each of which then will be covered twice, the path c^* covers each point of \mathcal{I} , which equals the union of the six incircles of the faces of the cube Π , once and only once. Referring to Fig. 6(a), one can easily verify that each of the four curves $c_i^* \subseteq \mathcal{I}$

(i = 9, 10, 11, 12), the path on $\Pi \cap S^2$ of which is described by the structural formula:

$$\begin{split} c_{9}^{\star} : & -[3/4]ABCDEFA[1/4]AFEDCBA = -[1/4]BA[3/4]ABCDEFA[1/4]AFEDCB \\ & = -[1/2]\underline{BKB}[3/4]BCDEF[1/2]\underline{FJF}[1/4]FEDCB, \\ c_{10}^{\star} : & +[1/2]AHDGA[1/4]AJ[1/2]\underline{JCJ}[1/4]JG[1/2]GDH[1/4]HK[1/2]\underline{KEK}[1/4]KA, \\ c_{11}^{\star} : & +[1/2]AHD\underline{GAG}[1/4]GE[1/2]\underline{EKE}[1/4]EDC[1/2]\underline{CJC}[1/4]CH[1/2]HA, \\ c_{12}^{\star} : & +[1/4]AB[1/2]\underline{BIB}[1/4]BH[1/2]HD\underline{GAG}DH[1/4]HK[1/2]\underline{KEK}[1/4]KA, \end{split}$$

respectively (complete circles are underlined), satisfies the property $c_i^* = \mathcal{I}$. Therefore the center O^* of the cube Π coincides with the center of gravity of the path c_i^* (i = 9, 10, 11, 12), too. Consequently, each of these pathes c_i^* is the tangent indicatrix of closed κ_0 -curves c_i . These four examples 9, 10, 11, 12 of closed κ_0 -curves the tangent indicatrix of which is $c_9^*, c_{10}^*, c_{11}^*, c_{12}^*$, respectively, are quite different one from each other. Each of the three curves $c_9^*, c_{10}^*, c_{11}^*$ can be separated into a pair $c_i^* =: a_i^* \cup b_i^*$ (i = 9, 10, 11) of independent tangent indicatrices of closed κ_0 -curves being characterized by the structural formulas (referring to Fig. 6(a)):

$$\begin{array}{ll} a_{9}^{\star}:& -[3/4]ABCDEFA, & b_{9}^{\star}:& +[1/4]AFEDCBA;\\ a_{10}^{\star}:& +[1/2]AHDGA,\\ b_{10}^{\star}:& -[1/4]AJ[1/2]\underline{JCJ}[1/4]JG[1/2]GDH[1/4]HK[1/2]\underline{KEK}[1/4]KA;\\ a_{11}^{\star}=a_{10}^{\star}, & b_{11}^{\star}:& -[1/2]AG[1/4]GE[1/2]\underline{EKE}[1/4]EDC[1/2]\underline{CJC}[1/4]CH[1/2]HA \end{array}$$

Complete circles are underlined. One can easily verify that O^* is the center of gravity of each of the six curves a_i^*, b_i^* (i = 9, 10, 11), too. Note that curves like a_9^*, b_9^* and $a_{10}^* = a_{11}^*$ have already occurred (except for $a_9^* = c_8^*$, with different notation) in the Examples 8, 1, 4 (see Figs. 5, 1(a), 2), respectively.

The spherical images b_{10}^{\star} or b_{11}^{\star} from above obviously arise from a spherical curve c^{\star} of type -[1/2]AGDHA by inserting a pair of (complete) circles lying in opposite faces $(z^{\star} = \pm e/2 = \pm 1/\sqrt{2})$ of the cube II, namely the circles being described by +[1/2]JCJ, -[1/2]KEK or -[1/2]EKE, +[1/2]CJC, respectively. Compare here Example 4 in Fig. 2; note that the path -[1/2]AGDHA arises from a_{10}^{\star} by reflection with respect to the plane being parallel to the z^{\star} -axis and passing through A, D)

Hence follows that each of the closed κ_0 -curves b_{10} or b_{11} , the tangent indicatrix of which is b_{10}^* or b_{11}^* , respectively, arises from a curve c of Example 4, having the same constant curvature κ_0 , by inserting — in different ways — a pair of congruent arcs of circular helices of curvature κ_0 and angle of rotation 2π , the axes of which are parallel to the z-axis and thus orthogonal to the axes of the helical arcs of c, which are parallel to the x- or y-axis, respectively. Consequently, the curves b_{10} and b_{11} are (other than the curves a_{10} and a_{11} corresponding to a_{10}^* and a_{11}^* , respectively) new examples of closed κ_0 -curves, being different — though generated by "insertion", too — from those of Example 5 in Fig. 3. The explicit drawing of a closed κ_0 -curve having c_9^*, c_{10}^* or c_{11}^* as its tangent indicatrix may be left to the reader.

The curve c_{12}^* and the corresponding closed κ_0 -curves c_{12} do not separate: according to the structural formula of c_{12}^* and/or Fig. 6(b), the curve c_{12} can obviously be generated from a closed κ_0 -curve c_6 as Example 6 (Fig. 4) being characterized, with respect to Fig. 6(a),

Figure 6: (Examples 9, 10, 11, 12) Closed "separating" κ_0 -curves c_9, c_{10}, c_{11} (not shown in this figure) and the "non-separating" closed κ_0 -curve c_{12} , each of them of class C^2 , having the common tangent indicatrix $c_i^* = \mathcal{I}$ ($i = 9, \ldots, 12$): except for the 12 edge midpoints of the cube Π — each of which is covered twice — c_i^* covers each point of the six incircles of the faces of Π once and only once. The curve c_{12} is symmetric with respect to the line A_1A_2

by the rewritten structural formula⁴ c_6^* : +[1/2]AHDGAGDHA by inserting two congruent helical arcs $\widehat{B_1(I_1)B_2}$, $\widehat{K_1(E_2)K_2}$, corresponding to the pair of complete circles -[1/2]BIB, -[1/2]KEK of c^* , at the midpoint — corresponding to B or K — of the helical arc of c_6 which corresponds to +[1/2]AH = +[1/4]ABH or +[1/2]HA = +[1/4]HKA, respectively. The shape and the course of a closed κ_0 -curve c_{12} corresponding to c_{12}^* can be recognized, for instance, by drawing a pair of orthographic views of c_{12} , compare the top view of c_{12} in

⁴The points A, B, C, D of c_6^{\star} in Fig. 4(a),(b) now are to be replaced by H, A, G, D, respectively.

Figure 7: (Example 13) Closed κ_0 -curve c_{13} of class C^2 , consisting of six congruent helical arcs having three complanar axial directions

Fig. 6(b). Note that the helical arcs of c_{12} in our case ($\alpha = \pi/4$; orthogonal projection with respect to a coordinate plane) project into arcs of either *circles* of (with respect to (8)) radius $1/(2\kappa_0)$ or of sinusoidal curves having π/κ_0 as length of period and the amplitude $1/(2\kappa_0)$.

Fig. 6 shows in (b) the normal projection of c_{12} into the plane z = 0 (top view) and in (c) an axonometric representation of c_{12} . The closed κ_0 -curve c_{12} is composed of 12 arcs (see below) of a pair of helices being inversely congruent (anti-congruent). Note that all of the *circular arcs* of c_{12}^* being contained in a *pair of opposite faces* $x^* = \pm e / y^* = \pm e / z^* = \pm e$ of Π are oriented in the same sense +/-/-, respectively, thus corresponding to arcs of c_{12} which belong to *circular helices* being directly congruent, the axes of which are parallel to the x-/y-/z-axis, respectively. As a point of c_{12}^* , each of the 8 edge-midpoints A, B, D, E, G, H, I, K of the cube Π appearing in the formula of c_{12}^* has a *pair of image* points $\{A_1, A_2\}, \ldots, \{K_1, K_2\}$ on c_{12} . Using 12 of these points, corresponding to the six points A, B, D, G, H, K of c_{12}^* , the course of the closed κ_0 -curve c_{12} is determined by the sequence of the points $A_1B_1B_2H_1D_1G_1A_2G_2D_2H_2K_1K_2A_1$: c_{12} is composed of 12 helical arcs $\widehat{A_1B_1}, \widehat{B_1B_2}, \ldots, \widehat{K_2A_1}$ being numerated by $1, 2, \ldots, 12$, each two consecutive arcs having anti-congruent supporting circular helices and thus differing in the sign of the torsion. With respect to the positive z-direction, the six helical arcs #1-3, 5, 7, 9 of c_{12} are descending, the other six arcs #4, 6, 8, 10-12 are ascending. To ease the understanding, the Figs. 6(b), (c)additionally show the four points I_1, I_2, E_1, E_2 of c_{12} which correspond to the points I, Eof c_{12}^* . More in detail, the course of c_{12} now is described by the sequence of the points $A_1B_1(I_1)B_2H_1D_1(I_2)G_1A_2G_2(E_1)D_2H_2K_1(E_2)K_2A_1$: the four additional points I_1, I_2, E_1, E_2 — which are put in brackets in the point sequence and in the Figs. 6(b), (c) since they are no endpoints of helical arcs $\widehat{B_1B_2}, \widehat{D_1G_1}, \widehat{G_2D_2}, \widehat{K_1K_2}$.

6. Outlook: Further possibilities of constructing closed κ_0 -curves

In Fig. 2 all of the circular arcs of the spherical curve c_4^* are contained in the n := 4 "vertical" faces of the cube II, being parallel to the z^* -axis. More generally, the cube II can be replaced by a *right prism* II with center O^* , its lateral edges being parallel to the z^* -axis and its bases, lying in the parallel planes $z^* = \pm 1$, being regular *n*-gons $(n \ge 3)$ of circumradius 1, which can be represented by the congruent regular *n*-gon $A_1A_2...A_n$ cut from II by the plane $z^* = 0$ (and generalizing the square = regular 4-gon ABCD in Fig. 2(a)). Let \mathcal{I} denote the intersection of the right prism II and the sphere S^2 , having the center O^* and the radius 1; so \mathcal{I} consists of a chain of *n* congruent complete circles. Then any regular curve/path $c^* \subseteq \mathcal{I}$ of class C^1 having O^* as its center of gravity can be chosen to be the tangent indicatrix of nonplanar κ_0 -curves of class C^2 consisting of helical arcs, the axes being parallel to the plane z = 0. In the simplest case, c^* consists of *n*, if *n* is even, or 2n if *n* is odd, congruent semicircles: then the path c^* can be described by the structural formula $\pm [1/2]A_1A_2...A_nA_1$ (*n* even) or $\pm [1/2]A_1A_2...A_nA_1A_2...A_nA_1$ (*n* odd), respectively. For n = 4 and n = 6, see Example 4 (Fig. 2) and Example 13 (Fig. 7), respectively.

Nonplanar closed κ_0 -curves of class C^r $(r \geq 3)$, in particular of class C^{ω} , can also be determined, for instance by analytic representations using *elliptic* integrals, using Proposition and certain properties of symmetry of the tangent indicatrix c^* . Explicit examples of nonplanar closed κ_0 -curves of class C^{ω} will be presented in a forthcoming note.

References

- W. BLASCHKE, K. LEICHTWEISS: *Elementare Differentialgeometrie*. 5. Aufl., Springer, Berlin Heidelberg New York 1973.
- [2] E. CESÀRO, G. KOWALEWSKI: Vorlesungen über natürliche Geometrie. 2. Aufl., Teubner, Leipzig Berlin 1926.
- [3] W. FENCHEL: Über Krümmung und Windung geschlossener Raumkurven. Math. Ann. 101, 238–252 (1929).
- [4] W. FENCHEL: Geschlossene Raumkurven mit vorgeschriebenem Tangentenbild. Jahresb. DMV 39, 183–185 (1930).

- [5] R. FRITSCH: Kantenkugeln geometrische Anwendungen der linearen Algebra. Math. Semesterber. 32, 84–109 (1985).
- [6] H. GRELL, K. MARUHN, W. RINOW (eds.): *Enzyklopädie der Elementarmathematik IV, Geometrie.* Deutscher Verlag der Wissenschaften, Berlin 1969.
- [7] C.-C. HSIUNG: A First Course in Differential Geometry. Wiley-Interscience, New York 1981.
- [8] W. KLINGENBERG: A Course in Differential Geometry. Springer, New York Berlin Heidelberg 1978.
- [9] K. STRUBECKER: Differentialgeometrie I, Kurventheorie der Ebene und des Raumes.
 2. Aufl., de Gruyter, Berlin 1964.

Received April 28, 1998; final form June 18, 1998