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Abstract. Applications in computational fluid dynamics (CFD) have led to the
problem of finding a rational Bézier patch with a given edge parameter line k the
way that the parameter lines of the other type intersect k orthogonally. This is
what we call an ‘orthogonal continuation of k’. The variety of solutions to the
problem is being investigated and a very geometric way for the construction of
the solutions is being offered. Using some fundamental features of polynomials
we can establish a link between the properties of the weight polynomial and the
elevation of degree which is necessary to find non-trivial orthogonal continuations.
For some cases which turn out to be unsolvable, and for cases where the solution
existing has a very high degree, we can describe a Monte Carlo method providing
surprisingly good approximations. This method is even capable of coping with
tasks where the right angle is replaced by some arbitrary angle function.
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1. Preliminaries

The following definitions and properties are generally known. They are only noted for the
sake of clarity with respect to the notation used here.

Be given a rational Bézier control net in the r-dimensional space Rr with the control
points pij, i = 0, . . . ,m, j = 0, . . . , n with pij = (pij1 , p

ij
2 , . . . , p

ij
r )

t and the weights γij. We
build up a corresponding net in (r+1)-space Rr+1 given by the recipe

qij = (qij0 , q
ij
1 , q

ij
2 , . . . , q

ij
r )

t with

qij0 := γij, qij1 := γijpij1 , qij2 := γijpij2 , . . . , qijr := γijpijr .
(1)

The integral Bézier patch in Rr+1 defined by these points qij can be represented with the
help of the so-called ‘shift operators’ E and F , providing E iF jq00 = qij. The parameter
representation of the patch can be written as:

y(u, v) = (1− u+ uE)m(1− v + vF )nq00. (2)
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Let the coordinates of (2) — which is a surface in the (r + 1)-space — be

y(u, v) = (y0(u, v), y1(u, v), y2(u, v), . . . , yr(u, v))
t .

We define a central projection f with the centre O . . . (0, 0, . . . , 0)t mapping the set Rr+1 \
[y0 = 0] into the image space H1 . . . [y0 = 1], which is an (r-dimensional) hyperplane in the
affine space Rr+1:

f : Rr+1 \ [y0 = 0] −→ H1 . . . [y0 = 1]

(y0, y1, y2, . . . , yr)
t 7→

(
1,

y1

y0

,
y2

y0

, . . . ,
yr
y0

)t

=: (1, x1, x2, . . . , xr)
t.

(3)

This projection maps the control net (qij), i = 0, . . . ,m, j = 0, . . . , n in (r + 1)-space into
the control net pij, i = 0, . . . ,m, j = 0, . . . , n we started with. The integral Bézier patch (2)
is mapped into some surface

x(u, v) = (X1(u, v), X2(u, v), . . . , Xr(u, v))
t =

(
Y1(u, v)

Y0(u, v)
,
Y2(u, v)

Y0(u, v)
, . . . ,

Yr(u, v)

Y0(u, v)

)t

(4)

called the ‘parameter representation of a rational Bézier patch’ defined by the control points
pij, i = 0, . . . ,m j = 0, . . . , n with pij = (pij1 , p

ij
2 , . . . , p

ij
r )

t and the weight matrix (γij).
The curve in Rr+1 represented by

y(u, 0) = (1− u+ uE)mq00 (5)

is a border curve of the surface (2), which belongs to the parameters (u, 0), u ∈ [0, 1]. So its
projection k represented by f(y(u, 0)) = x(u, 0) is the edge parameter line of (4) belonging to
v = 0. It is a rational Bézier curve with the control points pi0, i = 0, . . . ,m and the weights
γi0.

2. The general problem

We start with a given rational Bézier curve k in Rr defined by the control points pi0, i =
0, . . . ,m and the weights γi0, i = 0, . . . ,m. It is our goal to find a rational Bézier patch as
regarded above satisfying the additional ‘orthogonality condition’

xu(u, 0) · xv(u, 0) = 0. (6)

Definition 2.1 Be given a rational Bézier curve k . . .x = x(u). Any rational Bézier patch
Φ . . .x = x(u, v) satisfying x(u, 0) = x(u) and (6) will be called an ‘orthogonal continuation
of k’.

The task can be set for the plane case and for cases in higher dimensions as well. Though
the results worked out here are generally valid, we emphasize the plane case because of two
reasons: The problems, which applicants brought about until now, have been of 2-dimensional
nature and, some of the scopes may even turn out to be trivial in the spatial case. At
least it can be noted, that the case of higher dimensions — which is not excluded in our
considerations — would suggest additional conditions such as the concept of ’differentiable
stripes’ and orthogonal continuation of patches (see also M. Peternell, H. Pottmann

[8], G. Geise, U. Pohl [3]).
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Remark:

• In the plane case of integral Bézier curves there exists a 2-parameter set of inte-
gral patches representing an orthogonal continuation of a given starting curve (see A.
Gehrer et al. [2] and J. Lang [7]).

• If pij, i = 0, . . . ,m, j = 0, . . . , n with pij = (pij1 , p
ij
2 , . . . , p

ij
r )

t and the weight matrix
γij, i = 0, . . . ,m, j = 0, . . . , n defines an orthogonal continuation of the curve k, any
other patch with the same threads number 0 and number 1 is as well an orthogonal
continuation, because the angle, under which the parameter lines meet the border curve
k only depends on these threads 0 and 1. So we can easily restrict ourselves to the case
n = 1.

• If an orthogonal continuation is given we can change the weights of thread 1 by multiply-
ing them with a unique real number ϕ 6= 0 without affecting the orthogonal continuation
property.

• The choice pi1 = pi0 and γi1 = λ · γi0 for any λ 6= 0 will of course provide a trivial
‘solution’ as we have xv(u, 0) ≡ 0.

Of course the rational Bézier patch (4) has a parameter representation1 with the shape

x(u, v) =

∑m

i=0

∑n

j=0 u
ivjrijδij

∑m

i=0

∑n

j=0 u
ivjδij

. (7)

We will use the following abbreviations (see also H.-P. Schröcker [9]), where Z(u, v) is a
vector function and N(u, v) is a scalar function of the two real variables u, v:

Z(u, v) :=
m∑

i=0

n∑

j=0

uivjrijδij , N(u, v) :=
m∑

i=0

n∑

j=0

uivjδij . (8)

We can easily calculate the explicit formulae for Zu(u, v),Zv(u, v), Nu(u, v), Nv(u, v) and so
we omit displaying them here. In order to find all rational patches with the property (6), it
is necessary to pose the ‘orthogonality condition’

(ZuN − ZNu) · (ZvN − ZNv) = 0 for all u ∈ [0, 1] and v = 0. (9)

This is a polynomial with the variable u, which is generally of order2 4m− 2. So (9) has to
turn out to be the zero polynomial. This yields 4m− 1 linear homogenous equations for the
(r + 1)(m+ 1) unknowns (being the coordinates of the points3 δi1ri1 and the weights δi1).

3. A general solution

Be given a rational Bézier curve k of order m with monomial control points ri0 and weights
δi0. The equations resulting from (9) give us the possibility to find a variety of orthogonal
continuations of k. By allowing the orthogonal continuation to be of order (m+h, 1), h ∈ N0

we gain additional degrees of freedom, that may be useful4.
1This representation is called ‘monomial representation’ and for the moment it does a better job than (4).

The vectors rij and the coefficients δij can easily be calculated out of (4).
2As shown in H.-P. Schröcker [9] the leading coefficient of the highest order 4m− 1 vanishes!
3Note that the points ri1 are not the control points of the rational Bézier patch, because (7) is the monomial

representation instead of the standard parameter representation (4).
4If k is a plane curve of order m ≥ 3 an elevation of degree is even necessary to produce a ‘non trivial’

orthogonal continuation (see H.-P. Schröcker [9]), which can be seen by counting the number of conditions
and the number of variables.
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Theorem 3.1 Be given a rational Bézier curve k . . .x = x(u) of order m in Rr and a non-
negative integer p. In general there exists an ((m + p + 1)r − 3m + 2)-parameter variety of
orthogonal continuations of order (m+ p, 1) of k.

Proof: According to chapter 1 we view k as the f -image of an integral Bézier curve l . . .y =
y(u) in Rr+1 (f is the central projection (3)). We choose a polynomial P (u) ∈ R[u] of
degree p. Multiplying all coordinate functions of y = y(u) by P (u) we apply the ‘formal

degree elevation of the rational Bézier curve k’. This has effects on the general orthogonality
equation (9) as we have5

0 = (ZuN − ZNu) · (ZvN − ZNv) = P 3(Z̃uÑ − Z̃Ñu) · (ZvÑ − Z̃Nv) (10)

where Z̃(u) := P−1(u)Z(u, 0) and Ñ(u) := P−1(u)N(u, 0). The right hand side of (10) is a
polynomial of degree 4m+4p−2 which has to vanish for all u ∈ R. This gives us 4m+4p−1
linear homogenous equations for the r(m + p + 1) unknown coefficients of the vectors δi1ri1
and the real numbers δi1 (i = 0, 1 . . .m + p). Taking into account that only (4m + p − 1) of
them are relevant as we have the common factor P 3 on the right hand side of (10), we have
(m+ p+ 1)r − 3m+ 2 degrees of freedom.

For practical usage it may be a problem to solve the system of equations resulting from
(10). The coefficients are cumbersome to calculate, the number of equations is very high.
This is why we will present a convenient method of constructing orthogonal continuations
without much calculation in the plane case. For this purpose we note the following lemma,
which is easy to prove:

Lemma 3.1 Be given two integral Bézier curves

k . . .y(u) =
m∑

i=0

uiai, l . . . z(u) =
n∑

j=0

ujbj. (11)

There always exists a unique integral Bézier patch Φ . . .Y = Y(u, v) of order (M, 1) with
M := max(m,n) satisfying Y(u, 0) = y(u) and Yv(u, 0) = z(u).

Now we are ready to start with the construction of orthogonal continuations: Be given an
integral Bézier curve c . . .y(u) = (Y 0(u), Y 1(u), . . . , Y r(u)) of order m ≥ 2 in E3. Its coordi-
nate functions Y i(u) are polynomials of degree m or lower. k = f(c) . . .x(u) = y(u)/Y 0(u)
is the corresponding rational Bézier curve in the plane H1 . . . [y0 = 1]. The derivative vector
xu of k is given by

xu(u) =
yu(u)Y

0(u)− y(u)Y 0
u (u)

(Y 0(u))2
. (12)

Now we define

ẑ(u) := Dxu(u)
(
Y 0(u)

)2
, (13)

where D is the matrix

D =




0 0 0
0 0 −1
0 1 0


 .

5Here we have to take into account that the 0-thread, but not necessarily the 1-thread are degree-elevated.
This is why P need not be a factor of Zv and Nv.
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The vector ẑ is parallel to H1 and perpendicular to xu. Furthermore ẑ is a polynomial vector
function of degree 2m− 2 or lower as the leading coefficients vanish. The vector

z(u) := L(u)ẑ(u)−Q(u)y(u). (14)

with L(u), Q(u) ∈ R[u], deg(L) = l, deg(Q) ≤ m+ l− 2 is of order 2m+ l− 2. According to
Lemma 3.1 we can build an integral Bézier patch Φ . . .Y = Y(u, v) satisfying Y(u, 0) = y(u)
and Yv(u, 0) = z(u). Its projection into H1 produces an orthogonal continuation of k (see
Fig. 1).

Figure 1: Constructing an orthogonal continuation to plane rational Bézier curve.

Remark:

• This construction demands an elevation of degree from m to 2m + l − 2 and gives us
freedom to choose the m+2l components of the polynomials L(u) and Q(u). According
to Theorem 3.1 we cannot expect a greater variety in the general case. Our construction
is much more convenient than solving (10).

And now we even know that it can provide the full variety of solutions.

• The choice L(u) ≡ 0 and Q(u) ∈ R[u] of degree q < m− 2 produces a (q+1)-parameter
variety of (trivial) orthogonal continuations of order (m+ q, 1). This is even more than
we can expect, as −m + 2q + 4 ≤ q + 1 if q < m− 2 (compare with Theorem 3.1). In
case of q < m− 3 the equations (10) are obviously not independent.

• The non-trivial solution of the lowest possible degree 2m−2 is given by L(u) = λ ∈ R\0.

Remark: We can generalize our construction to rational Bézier curves in r-dimensional Eu-
clidean space Rr, if we replace the matrix D in (13) by a skew-symmetric matrix A = (aij) ∈
R(r+1)×(r+1) with a0i = 0, i = 0, 1 . . . r. This choice garantuees that the vector ẑ(u) in (13)
possesses all relevant properties: It is polynomial of degree 2m − 2 or lower, parallel to H1

and perpendicular to xu(u). However in this case we do not get the full variety of solutions.
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p10

p00

p20

p40

p30

p11

p01

p21

p31

p41

Figure 2: One exact solution gained after the necessary degree elevation.

4. A lower degree gained by special choice of weights

A rational Bézier curve k ⊂ E2 in general cannot be continued orthogonally without ele-
vation of degree while the integral Bézier curve k̃ ⊂ E2 defined by the same control points
as k permits even a 2-paramter variety of integral orthogonal continuations without degree
elevation. So obviously choosing weights for certain control points has an effect on the variety
and order of possible orthogonal continuations. In this section we will use special relations
between the weigths of a given rational Bézier curve to improve the construction of chapter
3. The following lemma (see P. Borwein, T. Erdely [1]) provides the basic idea:

Lemma 4.1 Be given a polynomial P (u) ∈ R[u] in its factorized form

P (u) = c
s∏

σ=0

(u− uσ)
νσ

with pairwise different uσ ∈ C (the zeros of P ), c ∈ R \ {0} (the leading coefficient of P ) and
νσ ∈ N (the algebraic multiplicity of the zero uσ). Then we have

Ṗ (u)

P (u)
=

s∑

σ=0

νσ
u− uσ

.

Let us return to our weight polynomial Y 0

Y 0(u) = c
s∏

σ=0

(u− uσ)
νσ . (15)
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In (13) we have defined the polynomial vector ẑ(u) and used it to build an orthogonal con-
tinuation of k. According to Lemma 4.1 we can use the vector

z̃(u) := Dẋ(u) · Y 0(u)
s∏

σ=0

(u− uσ) (16)

instead of ẑ(u) as z̃(u) has the following properties:
• It is a real vector,

• it is parallel to H1,

• it is perpendicular to xu(u) and

• it is a polynomial vector (which is not trivial but can be seen with the help of Lemma
4.1).

Proceeding as in chapter 3 we can build an orthogonal continuation of order (M, 1), where M
denotes the degree of the polynomial vector z̃(u). (If M happens to be lower than m we must
of course multiply z̃(u) by an arbitrary polynomial R(u) of degree m−M before constructing
the orthogonal continuation patch.)

Lemma 4.2 The vector z̃(u) is of order m + s − 1 at most. If the weight polynomial Y 0 is
of no lower degree than m the order of z̃(u) is even m + s − 2 or less. (s is the number of
different zeros of Y 0.)

Proof: The first part of our assumption is obvious by definition (16). If the weight polynomial
Y 0(u) is actually of degree m, the leading coefficient of z̃(u) is given by

(
0,−cmy2,m + cy2,m

s∑

σ=0

νσ, cmy1,m − cy1,m

s∑

σ=0

νσ

)t

,

where y1,m and y2,m denote the leading coefficients of Y 1(u) and Y 2(u), respectively. It
vanishes in any case, as the algebraic multiplicities νσ add up to m.

Because of Lemma 4.2 we have achieved a significant improvement as the degree of our
patch is lower than indicated in chapter 3 in all cases where the weight polynomial has fewer
than m different zeros.

However in general a rather high elevation of degree is still necessary in order to achieve
sensible results. It can be avoided by admitting ‘near orthogonal continuations’. In the
following chapter we try such an approach. We restrict ourselves to the case r = 3 presenting
the method in a more lucid way. The whole considerations could easily be adapted to any
other dimension.

5. The Monte Carlo method in 4-space

We make another try whose target is not to find an exact solution, but to handle the problem
in a numerical way. It is interesting with respect to several properties:
• We can ask for continuations, where the cosine of the intersection angle between the

starting curve k and the parameter lines is not necessarilly constant or even zero along
k. We can even choose a function (see (17)) displaying the cosine which we want to
achieve.
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• For many functions (17) it may not be possible to find a patch matching to it in a
mathematical exact way: The set of functions which may occur as the cosine of two
polynomial vector functions, is of course a proper subset of the set of all functions
η : [0, 1]→ [−1, 1].

• The method shown in this section will provide sufficiently good ‘solution patches’ of our
problem.

• The dimension of the space does have great influence to the variety or even the existence
of solutions, as has been shown in Theorem 3.1. The method suggested in this section
will not substantially depend on the dimension. So, focussing the plane case of our
problem, we can apply the Monte Carlo method in 3-space as well.

Step 1: We start with a given rational Bézier curve k defined by the Bézier control polygon
pi0, i = 0, . . . ,m and weights γi0, i = 0, . . . ,m. We expand it to a control net pij,
i = 0, . . . ,m, j = 0, . . . , n and a weight matrix γij, ı = 0, . . . ,m, j = 0, . . . , n in an
arbitrary way: This is our starting net.

Step 2: Here we can afford to set a goal for the cosines η(u) := cos(xu(u) · xv(u)) of the
angles between the parameter lines and the curve k. The function

η : [0, 1] → [−1, 1]
u 7→ η(u)

(17)

can be chosen arbitrarily and will be called the ‘performance map’ of our continuation6.

Step 3: With the help of (1) we get the points qij = (qij0 , q
ij
1 , q

ij
2 , q

ij
3 )

t in 4-space. In order to
be able to improve our net, we have to score the quality. The score function shall be:

∫ 1

0

(
xu(u, 0) · xv(u, 0)

|xu(u, 0)| · |xv(u, 0)|
)2 − η2(u)du =: S((qij)i=0,...,m,j=0,...1). (18)

It measures the square of the deviation from the function η, which is our target perfor-
mance map.

Step 4: We now apply a Monte Carlo method in order to improve the net qij:
Thread 0 is not concerned by our action. We replace the first point q01 ∈ R4 of thread
1 by a random point q01

? = q01 + r, adding a random vector r. Now we compare the
new score (18) with the score before the replacement. Of course we have to apply (3)
in order to gain (4), because it is the patch in R3 we are interested in; and this patch
also gives us the score for the valuation of the effect.
If the score increases, the replacement is cancelled, otherwise we keep the new point q01

?

instead of q01. Then we continue with q11 and so on until we get to the last point qm1

of thread 1.
In fact first of all we have to decide upon the maximum size of our random vector r. This size
has to be adapted with respect to the size of the whole net; let us call it the ‘pace’. We shall
not only make one single try, but several random attempts. And in case that all of them fail
we shall reduce the pace and go on with another set of attempts. This shall be repeated until
the pace is smaller than the desired accuracy limit.

6At this point the title of the paper may not seem appropriate: We do not only look for ‘orthogonal

continuations’, we can choose the angles along k by ourselves. The orthogonal continuation is a special case
characterised by η(u) ≡ 0.
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After having worked through with thread 1 we begin with point q01 again and start with
the second cycle and so on. Whenever we remove a point and replace it by another one
we gain a better score (18). At every random step described above we change our points

qij = (qij0 , q
ij
1 , q

ij
2 , q

ij
3 )

t in 4-space by adding a random vector: qij? = qij + r.
We can choose between three different strategies:
1. The random vector r is any vector out of R4 whose length is limited by the pace valid

at that moment. All its four coordinates are treated equally.

2. The random vector is a vector (r0, r1, r2, r3)
t with r1 = r2 = r3 = 0, where the only

random number r0 is limited by the pace.

3. We choose a real number λ > 0 and add the vector (λ r0, r1, r2, r3)
t, where the random

vector |(r0, r1, r2, r3)
t| is, as above, limited by the pace. As a consequence, the effect of

the random process on the weights is less if λ < 1 and is gradually larger if λ > 1.
The number of cycles which is necessary may vary. According to our experience 5 to 20

cycles provided very good performance.
We keep in mind that a score (18) equal to zero would say that our net represents an

exact solution to our target performance map η = η(u). Recall that the plane orthogonal
continuation problem for a rational starting curve k of order m in general does not have an
exact solution unless the degree is elevated to order 2m−2. Applying the Monte Carlo method
shown above we can find a solution with surprisingly high accuracy — without elevating the
degree.

Of course, the way of sweeping across our threads of the patch is ‘lop-sided’, because we
always start with the point on the ‘left hand side’. A ‘zig-zag-strategy’ can easily be applied
without any additional adaption. It acknowledges the symmetry of the patch properly.

The following example deals with the plane case. In 3-space finding a patch meeting our
orthogonality conditions (or any condition given (see (17))) is also interesting and our method
provides solutions. We have to admit, however, that in many cases of applications, there is
an additional condition, demanding that the new patch be tangent to an existing one or to a
given differentiable ‘stripe’. The Monte Carlo approach is capable of managing this case in a
powerful way. Considering this task is the scope of another paper (see [7]).

6. An interesting example

We are going to look for an orthogonal continuation of a plane rational Bézier curve of order 3.
The same problem has been solved exactly in Fig. 2 after applying the necessary elevation of
degree by 1. Here we refuse to elevate the degree keeping in mind that, as a consequence, the
problem does not have an exact solution. We are going to apply the Monte Carlo method as
described in section 5, setting η(u) ≡ 0 (Figures 3, 4, 5). The example has shown that we gain
a solution to our problem with an appropriate performance. The calculation time involved
does not exceed sensible limits. According to our experience the Monte Carlo approach
provides surprisingly good results even in cases, where the non-existence of an exact solution
can easily be proved.

7. Further remarks

In this paper we set ourselves two goals: On one hand we dealt with the problem in the
mathematically exact way, on the other hand we tried a numerical approach.
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p00
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p01 p11

p21

p31

performance
map

starting score

Figure 3: The starting net and the starting score before beginning with the Monte Carlo
optimisation.

p11

p00

p10

p20

p30

p01
p21

p31

starting score

score after 2 cycles

Figure 4: The net has been changed essentially after 2100 random attempts (2 cycles). The
score has been improved to 0.002.
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p01

p11

p21

p31

p00

p10

p20

p30

starting score

final score

Figure 5: After 19050 random attempts (20 cycles) the score has been improved to 0.00001.
The maximal angle deviation is below 1.5 degrees. The angle cosines function is sufficiently
close to the target performance map η ≡ 0.

The first view led to a system of linear equations showing, that the number and degree of
solutions depends on the elevation of degree applied to the starting curve and on the dimension
of the space, but also on the properties of its weight polynomial. For the plane case we were
able to provide a straightforward solution which helps a lot in practical application.

The second view allowed us to deal with all the cases, where an exact solution does not
exist or is of a very high degree so that it does not seem to make sense to look for it. For
these cases a Monte Carlo method is obviously very appropriate.

Finally, in Fig. 6 we show an example of a calculation grid, provided by a CFD-application7

using the methods from above. Some details: In order to meet the demands of the boundary
layer calculation, the grid is densified in the neighbourhood of the boundary. The calculation
is done in the plane (2D). The picture shows a section through a turbine blade.
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120 Lang, Schröcker: Edge-Orthogonal Patches to a Given Rational Bézier Curve

trailing edge

leading edge

Figure 6: Grid generation: A glance at a CFD-application: Periodic O-type grid (175 × 59
cells) with inlet (19× 30 cells) and outlet (39× 49 cells) patches (in total: 12806 cells).
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tialgeometrie, Universtität Würzburg, 7. Juni 1996.

[4] J. Hoschek, D. Lasser: Grundlagen der geometrischen Datenverarbeitung. B.G. Teub-
ner, Stuttgart 1992.

[5] Z. Kadi: Conformal Mapping around Parametric Polynomial Curves. M.S.-Thesis, Ari-
zona State University, Tempe, AZ, August 1995.

[6] Z. Kadi, A. Rockwood: Conformal Maps Defined About Polynomial Curves. Comp.
Aided Geom. Design 15/4, 323–337 (1998).

[7] J. Lang: On the Generation of Certain Bézier Grids. Orthogonal Continuation of Bézier
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[9] H.-P. Schröcker: Die Konstruktion orthogonaler Fortsetzungen von Bézier Kurven
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