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Abstract. Two problems from different areas are presented in order to demon-
strate the applicability of geometry. In both cases the solutions are based on
results that are beyond the topics we usually teach engineering students.
(i) For a compliance element to be used in robotics a mechanism has been devel-
oped which produces a “centerless rotation”. The presented solution consists of
an infinitesimally movable structure.
(ii) The geometry behind panoramic radiographies is analyzed. The aim is to make
measurements on this important diagnostic tool in dentistry and to use panoramic
X-rays in medical imaging for a image fusion with a live video image.
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1. Introduction

The statement “everything is geometry” is obviously an exaggeration, but there is a true
essence in it: Almost every object, real or virtual, has a geometric component, e.g. its shape
or its dimensions. Frequently the development of a theory goes hand in hand with the
development of a geometric model.2 And sometimes problems in technical sciences are of pure
geometric nature. Why not train consequently the students’ ability of geometric reasoning
(cf. [8]3)?

As an example let me focus on a dramatic progress in biochemistry: It has been well
known for a long time that the shape of crystals reflects symmetry properties of the molecules.
But recently it turned out that also the ability of proteins to form specific stable complexes
depends in the majority of cases on geometric features of the molecular structure only. The
docking mostly takes place at cavities or pockets of the bounding surface of the protein. In
view of the complexity of these surfaces, algorithms from the field of Computational Geometry

1lecture presented at the Plenary Session of the Eighth International Conference on Engineering Design
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2Galileo: “Nobody can philosophize without using geometry as a guide”.
3Presented as a plenary paper at the 7th ICECGDG in Cracow (Poland).
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(concerning e.g. Delaunay triangulation) have been successfully applied to the automatic
search of binding sites (cf. [5]).

In the sequel two problems are presented where the “geometric component” has been
really substantial for obtaining a reasonable solution.

2. A Compliance Element

One of the simplest operations at automatic assembly is to place a part P in a hole or cavity.
Even small misalignments can require high mechanical forces at this peg-in-hole process (see
Fig. 1). Such lateral and angular errors can be ruled out either “actively” by sensors that
figure out the errors in positioning, or in a “passive” way by a compliance element mounted
between the end effector E and the part P to be placed. Compliance elements have a certain
flexibility, e.g. because of their sandwich structure with inserted elastomers. This together
with an additional force should compensate the errors – without any electronic feedback.

P

approach chamfer crossing

O

E

P

one-point contact two-point contact

Figure 1: The four stages of assembly

The Austrian Aerospace Company ORS started an industrial project which gave
rise to the thesis [1]. Here it was proved that the compliance elements available on the market
do not really flex as they should. Therefore a new concept was developed: As soon as at the
peg-in-hole process (Fig. 1) the two-point contact is reached, then the part P to be placed
should perform a so-called “centerless rotation”. This is a spherical motion about a center O
which is far distant to the end effector. The correction of the misalignment should then be
caused by reaction forces acting on P during the two-point contact.

This was the point where the Institute of Geometry has been involved. How to find a
simply structured mechanism which produces a spherical motion with two degrees of freedom
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in order to eliminate an angular error of less than 2◦? After this correction the position of the
moving system ΣP (representing the part P) with respect to the frame ΣE (representing the
end effector E) should be locked so that a pure translation is sufficient to finish the assembly.
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Figure 2: Projection Theorem

A finitely movable mechanism which produces a proper spherical motion about O would be
rather complex. So the idea was born to find a structure which is only infinitesimally movable.
At such shaky structures it is possible to associate to each moving point X a velocity vector
vX against the frame link such that for each two points A,B of the same link Σ the distance
is instantaneously preserved. This means that due to the Projection Theorem the components
of vA and vB in direction of the line AB must be equal (see Fig. 2). So these shaky structures
behave like finitely movable ones, however up to the first order approximation only. Examples
of shaky structures can e.g. be found in [9] or [7].
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Figure 3: The infinitesimally movable structure of the centerless rotation module CRM
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For obtaining an infinitesimal centerless rotation, one could proceed as follows: Take a
Stewart-Gough platform in a position where the axes of all six legs are passing through
O.4 If then the lengths of all legs are fixed, the structure is still shaky. The infinitesimal
movability is of degree 3. The system ΣP can rotate infinitesimally about each line passing
through O. However, this is too much mobility since the legs could even twist around the
axis of the hole. Therefore we restricted it in the following way:

The prototype of the centerless rotation module consists of two independent four-bar
mechanisms in inclined planes (see the simplified geometric model in Fig. 3). These planes
are connected by revolute joints with the frame ΣE as well as with the moving system ΣP.
In the initial position the axes of these four revolute joints are parallel and supposed to be
horizontal. The midaxes of the four arms (dotted lines in Fig. 3) meet at the given center O.
Now the permitted infinitesimal motions are rotations about horizontal axes through O.

An elementary computation for a supposed arm length of 100mm at the four-bar mecha-
nisms reveals the following: For rotations of ΣP against ΣE through 2◦ (1◦) it is necessary that
the joint clearances admit a variation of the arm lengths through ±0.061mm (±0.015mm).

Figure 4: The new compliance element ACRC

In order to adjust the compliance element to different positions of the rotation center
O with respect to the end effector, the distance between the revolute axes in ΣE and the
lengths of the frame links of the four-bar mechanisms must be made variable. Therefore this
“centerless rotation module” CRM was combined with the “adjustment and locking module”
ALM. The final form of this prototype depicted in Fig. 4 was called “Adjustable Centerless
Rotation Compliance” ACRC. The company ORS took a patent for it.

4This is a singular posture of the platform (see e.g. [2], [3] or [6]).
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Unfortunately, economic reasons caused a break in this project, and until now it is open
whether this new kind of element does really passively correct small angular errors so that
the assembly needs much smaller mechanical forces than with standard compliance elements.
This would finally enable to use smaller dimensioned robots – a substantial improvement for
the usage in orbital stations.

3. Panoramic Radiography

Panoramic X-rays (see Fig. 5) have become an almost indispensable tool for dentists in oral
and maxillofacial surgery. Such overview radiographies provide a comprehensive basis for early
diagnostics, for treatment planning and evaluation of therapy. They offer a systematic and
economically favorable method for data collection which protects the patient from unnecessary
radiation exposure. Conventional dental X-rays serve only as a completion in exceptional
situations.

Figure 5: Panoramic X-ray

The fundamentals of panoramic radiography were developed in the late forties by a person
named Paatero5. He modified the classical tomography which worked as follows (Fig. 6):
The X-ray source Z and the film are moving in opposite directions thus defining a planar
in-focus layer like a cross section (unshaded bar in Fig. 6) while structures outside of this
layer are blurred and therefore eliminated.

In panoramic radiography the in-focus layer is bent, due to the following procedure (Fig.
7): X-ray source and film holder rotate clockwise – if seen from above – around the parabol-
ically shaped dental arche of the patient. Simultaneously the film moves in the casette. The
vertical, millimeter-wide ray r meets the film only at a vertical slit S. Such a type of projection
seems to be new for geometers.

In section 3.1 the geometrical analysis of this projection will reveal why only the teeth
are depicted on the radiography (Fig. 5), though the X-ray penetrates the whole skull. In
addition, it will be explained in which way the location and thickness of the in-focus layer
(unshaded area in Fig. 7) depends on the motion of the X-ray source, on the velocity of
the film, and on the location of the instantaneous center P of rotation, which in standard
textbooks on dental radiography (e.g. [4]) is described as an “imaginary column” (Fig. 8).

5Unfortunately no reference is available to the author.
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Figure 6: Classical tomography with a planar in-focus layer
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Figure 7: Panoramic X-ray projection, the bent in-focus layer and the
motion of X-ray source and film holder

In [4], p. 11, it is stated that precise measurements on panoramic X-rays are not possible.
This is no longer true ! As soon as the motion of the X-ray source and film holder with respect
to the patient and the motion of the film against the casette are analyzed, the mapping of
the dental arche onto the film can be described mathematically. However, the equations are
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nonlinear and implicit.
These equations are the basis for a current joint project with Artma Biomedical Inc.

(Vienna): Panoramic X-rays should be used in medical imaging for an image fusion with a
live video image. For this practical use it will however be inevitable that also the problem of
calibration is solved, separately for the upper and lower jaw. In addition, it will be substantial
to estimate the deviations caused by the patient’s incorrect positioning as well as by other
disturbances like movements or swallowing while the apparatus is operating.

3.1. Geometric Analysis
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Figure 8: Kinematic analysis of the panoramic X-ray projection

In the sequel only the basic geometry will be addressed: Following the terminology of
kinematics, let ΣX denote the system represented by the X-ray source and the film holder.
Let ΣT be the fixed system representing the patient’s head (Figs. 7 and 8). The motion
µ : ΣX/ΣT is performed by the apparatus according to the selected program. Usually there
are several programs offered, at least one for adults and one for children. ΣX/ΣT is a planar
motion. At the machine we observed6 it was the composition of a pure rotation of the camera-

6Siemens 257/82 Ro-Typ X 1426
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film-system ΣX against a main bar and a translatory and rotational motion with standstills
of this bar with respect to the frame in ΣT.

For the following it is much more convenient to pay attention to the inverse motion
µ−1 : ΣT/ΣX. This means that the patient’s system ΣT is moving against the X-ray system
ΣX. The top view in Fig. 8 shows an intermediate position. P denotes the instantaneous pole
(rotation center) which mostly is located next to the X-ray r = ZS.

Let vA in Fig. 8 be the velocity vector of an arbitrary point A of the dental arche under
µ−1. The arrow vF with initial point S indicates the velocity of the film against the film
holder in ΣX (compare also Fig. 6). This velocity needs not be constant during the process.

Now a point B ∈ ΣT, which is instantaneously located on the ray r, is mapped without

blurring on the film if and only if the line connecting the moving point B with the X-ray
source Z meets the film plane at a point Bc = S whose velocity equals vF . In order to figure
out the velocity of Bc, we decompose the vector vB according to

vB = vn
B + vr

B

into components normal and parallel to r, respectively. Then the condition above is equivalent
to the statement that Z and the endpoints of vn

B and vF must be aligned (dashed line in Fig.
8).
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Figure 9: Instantaneous width of the in-focus layer

It is well known that in each moment for all points on line r (see e.g. B and C in Fig.
8) the endpoints of the velocity vectors under ΣT/ΣX are located on a line r′. On the other
hand – due to the Projection Theorem (Fig. 2) – the components parallel to r are equal, i.e.,
vr

B = vr
C . Therefore also the endpoints of the components orthogonal to r are aligned. Note

in Figs. 8 and 9 the dotted line r′′ parallel to r′ and connecting the endpoints of vn
B and vn

C .
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This proves that because of P 6= Z there is exactly one point B ∈ ΣT on the line r which is
projected without blurring.

Actually the image Bc will still look well-focused as long as the difference between the
velocities of Bc and the film is smaller than a certain ε (see Fig. 9). The corresponding
interval on r is terminated by two points B+, B−, which are harmonic with respect to B
and Z. Therefore B is not the midpoint of this interval but nearer to the interior endpoint
B−. The length of the interval B+B−, i.e., the instantaneous width of the in-focus layer,
depends on the velocity of the film, the angular velocity of ΣT/ΣX, and the distances of the
instantaneous pole P from r and from the film plane. All these parameters are varying during
the process. So it is obvious that also the thickness of the bent in-focus layer varies.
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