
Journal for Geometry and Graphics
Volume 3 (1999), No. 1, 47–55

SiPaViS — A Toolkit for Scientific
Visualization and Simulation

Fernando P. Birra, Manuel J. Próspero

Computer Science Department, New University of Lisbon

P-2825 Monte Caparica, Portugal

emails: fpb@di.fct.unl.pt, ps@di.fct.unl.pt

Abstract. This paper introduces a new approach for scientific visualization and
simulation based on a particle system. The main characteristics of the toolkit we
designed and implemented at the New University of Lisbon are presented. Along
with particles, fields, and particle sources, the central concept of the framework
introduces the interaction as the fourth primary class of objects. The result is
that a large diversity of techniques for data visualization and simulation can easily
be integrated. A user of the toolkit can write a relatively short script in order
to build a specific application program. This script is interpreted by SiPaViS
(the name of this toolkit) according to the rules of a given grammar and on
the basis of the existent re-usable classes. However, a programmer can always
extend the set of predefined classes by writing the corresponding code in a common
programming language. Some examples are given in the paper under the scope of
application areas such as volume rendering through ray-casting implementation
and also visualization of vector fields.

Key Words: data visualization, particle system

MSC 1994: 68U05

1. Introduction

Most commercial products offering easy to use and upgradable data visualization environ-
ments are built around the dataflow model. The user draws a network of modules that
transform the data as it flows from module to module sequentially.

Yet there are some drawbacks associated with these systems. Firstly, the system perfor-
mance degrades very quickly as data sets increase in size, since at least one module must
process all the data. Secondly, the data types supported internally are sometimes too restric-
tive. And finally, the physical support of the data is generally a file, not allowing a steering
mode control in the simulation process whenever the user interpretation from the visualization
results may drive the execution of the simulation itself.

ISSN 1433-8157/$ 2.50 c© 1999 Heldermann Verlag



48 F. Birra, M. Próspero: SiPaViS — A Toolkit for Scientific Visualization and Simulation

The primary goal of SiPaViS is to provide a framework to support different scientific
visualization techniques based on a particle system. The use of particles has some relevant
benefits [4]. For instance, they can work as probes sent into the environment to seek and ex-
tract the desired attributes at a very precise location or subspace. Examples of this metaphor
include vector field visualizations or direct volume rendering.

But we also might want to simulate several kinds of interactions between objects. Our
approach is to regard particles as self-contained entities that can react to each other. This
alternative allows the simulation on a basis of behaviors programmed on top of SiPaViS.
Behavioral animation [7] was then selected as a case study: the simulation of artificial fishes
being able to swim in a school and to avoid obstacles was fully implemented [1].

2. Main Concepts

The conceptual model behind SiPaViS consists of four types of entities: particles, fields,
particle sources and interactions. Any algorithm or simulation should be accomplished by
creating and connecting different objects belonging to those four types.

We adopted an object-oriented approach to build the toolkit, with each type of object
represented as an abstract class. The system is programmed at two distinct levels. At the
programmer level, new classes of objects are derived directly or indirectly from the abstract
classes while, at the user level, objects from existent classes are created and the connections
between them are established using a script to be interpreted by the system.

Particles are represented as moving points in 3D space. The simplest particle in the
toolkit has the following attributes: mass, position, speed, accumulated forces and age.

Field objects are available with the purpose of defining the surrounding properties of
the environment where particles move. Two major types of fields can be implemented in
SiPaViS. Analytically defined fields are easy to implement and can be inquired about the
corresponding value at any point in 3D space. However, the most common fields found
in scientific visualization are discrete, since they result from an intrinsic sampling process.
These fields’ values are usually stored in a file and an interpolation scheme is then provided
to estimate values for other intermediate positions.

During each time step, a field may be asked for evaluation several times as a result of
interactions currently defined. In SiPaViS, interactions have a new and important role. Since
there is no direct communication between particles and fields or between groups of particles,
those interactions are used as objects to set the new attribute values for particles by making
them interact with each other and with the surrounding environment defined by fields.

The domain of an interaction is a list of sets. Each set may be composed, either by a
single particle or field object, or by all objects of a specified subclass of particles or fields.
Interactions are applied to each tuple extracted from the Cartesian product of all domain
sets. The semantics of interactions (i.e., what kind of particle attributes they change and how
these changes are computed) is completely left to the programmer as can be seen in Fig. 1,
using the Objective C programming language [5].

Particle sources are needed to dynamically create particles during a simulation. These
objects control when, where and how new particles are released into the environment and
they can be analyzed both from their spatial and temporal behaviors. Besides well-defined
geometric shapes such as point, line or circle sources, the geometry of the particle cloud to
be created can be made dependent on the environment properties such as particle or field
values. Also their temporal behavior can depend on the environment making it possible to



F. Birra, M. Próspero: SiPaViS — A Toolkit for Scientific Visualization and Simulation 49

- apply: (id *) dom

{

Particle *par;

Field *field;

point3d *pos, *vel;

par = dom[0];

field = dom[1];

pos = [par position];

[field valueFor: pos into: vel];

[par setVelocity: vel];

}

Figure 1: Example of an interaction apply method

create other sources besides continuous or periodic ones.

The toolkit sends rendering messages to the objects that require a visual representation.
Rendering is performed issuing Renderman commands [8] and the user can select the level of
detail.

3. System Architecture

The SiPaViS toolkit is divided in two main layers as shown in Fig. 2. The application layer
is responsible for dealing with user generated events. These events are then translated into
messages sent to the toolkit kernel. To incorporate the toolkit in a new application, a different
Event Manager object is all that has to be developed. The SiPaViS toolkit kernel is, in turn,
composed by a collection of objects with distinct functionality. The Controller object receives
events from the application and, in response, controls the behavior of the other toolkit objects.
The Parser loads and interprets the simulation scripts while the Class Manager deals with
loading and unloading dynamic classes.

The Particle, Interaction, Field and Source blocks represent the four abstract classes
corresponding to the four different types of user defined objects. The kernel has no knowledge
of user-defined classes, as they are dynamically loaded, and communicates with them through
the interface defined by the abstract classes.

In common with dataflow visualization environments is the extensibility and modularity
of SiPaViS by adding new classes of objects and/or connecting them in different ways. The
memory requirements are kept to a minimum since only the classes needed in a particular
problem are loaded during the script processing stage.

However, the granularity is much finer, also contributing to much lighter memory require-
ments. Particles need only to access data in a small neighborhood around their positions, as
opposed to, at least, one module having to process all the data in dataflow environments.

The ODE solver developed for SiPaViS is used to integrate particles’ trajectories, offer-
ing numeric integration techniques from the simple Euler’s method to the more powerful
Runge-Kutta’s methods. Essential to this task is the work done by interactions applying
forces to particles. However, our ODE solver can also be used to integrate any other particles’
attributes as long as an interaction is available to compute their time derivatives. This gener-
ality is achieved by sending messages to particles to collect their current state and derivative
vectors.



50 F. Birra, M. Próspero: SiPaViS — A Toolkit for Scientific Visualization and Simulation

Event Manager

Class

Manager
Parser Controller

Interaction Field SourceParticle

S P V SI A I TOOLKIT KERNEL

Application

Subclasses Subclasses Subclasses Subclasses

Figure 2: SiPaViS toolkit architecture

Every object in the toolkit can receive temporal notification messages as a means to
synchronize them with the simulation clock. Only instances from those classes implementing
the correspondent method will receive these notifications. Particles can use this mechanism to
limit their lifetime or to maintain history records such as past trajectories. Time dependent
fields can also be easily implemented by capturing these messages. On the other hand, particle
sources are special cases because they heavily rely on this mechanism to know when to inject
new particles, so it is not possible for them to ignore temporal notifications.

SiPaViS also allows for an object to be notified when a particle is about to die. Perhaps
the most common use for this is to create particle replacements by particle sources. Usually,
a particle dies when it is no longer needed. However, some of their attributes may need to be
collected by other objects before removing the particle from the system.

4. Applications

In this section we will show how the toolkit can be used to develop several visualization
algorithms applied both to scalar and vector fields.

Image space volume rendering is usually achieved by the ray-casting technique. This
algorithm can be implemented in our toolkit by placing a particle source that releases a
rectangular grid arrangement of particles through a scalar field. At least one particle should
be assigned to each grid point (pixel) and each particle will behave as a ray with color, opacity
and pixel coordinate attributes.

Instead of having the particle source releasing all particles in the beginning of the simula-
tion, we can take benefits from death notifications. This way, the particle source will release a
small square of particles each time. And only when all particles die will new ones, in the next
square, be created. This improves the locality of accesses to the data set making it possible
to exploit the cached virtual memory service provided by the toolkit. This service allows for
a client to map a very big amount of memory and control the portion (cache) needed to be



F. Birra, M. Próspero: SiPaViS — A Toolkit for Scientific Visualization and Simulation 51

Figure 3: Different isosurfaces from an electron density map data set

loaded into main memory. The field class used to produce Figures 3 and 4 uses this service
and the data set is subdivided into sub-volumes, each with 16 × 16 × 16 contiguous samples.

In ray-casting there are no interactions applying forces to particles since they will move
through the volume at constant speed and direction. In this case, interactions are only re-
quired to retrieve the field values at the particles’ positions and compute the transfer functions
needed to accumulate color and opacity values. When a particle opacity value reaches a max-
imum defined value the particle is killed, since its major contribution to the final pixel value
is already computed [3].

It is important to notice that interactions are also valuable for speeding up the algorithm.
Initially, all particles are either accelerated to their first intersection with the volume bound-
aries, or immediately killed if no intersection is found. This is accomplished by providing
an interaction with its domain consisting of the particle class used for the rays and the field
object to be visualized. Each time this interaction is applied it will test for intersections
between one particle trajectory and the volume boundaries and act as explained before.

In Fig. 3 different isosurfaces are visible, showing clumps of atomic density and individual
atoms. The data set consists of an electron density map of active site of superoxide dismutase
(SOD) enzyme as determined by X-ray crystallography.

Fig. 4 is a volume rendering of the air-skin interface in a CT scan of a human cadaver
head. The gradient of the scalar field was used to estimate the surface normal vectors required
to compute direct illumination. It should be noted that data corruption visible in the image
results from scattering of X-rays due to dental fillings. Particles used to compute the left side
of the image are identical to the ones used on the right side. However different interactions
were applied to display different features of the data set. On the right side the outermost
surface was made partially transparent to let the inner surface become visible.



52 F. Birra, M. Próspero: SiPaViS — A Toolkit for Scientific Visualization and Simulation

Figure 4: Air-skin interface rendered from a CT scan (256 × 256 × 113 samples) of a human
cadaver head

Traditional particle systems simulations are also possible within our framework. Fig. 5
shows an example of behavioral animation[7], where a top view of a pool populated with
fishes can be seen. Fishes are modeled as particles and they avoid collisions with each other
and with environmental obstacles, while trying to swim in schools.

Vector field visualization techniques commonly use particles flowing through the volume.
In CFD applications the volume is often a velocity field where particles are released. Fig.
6 shows several vector field visualization techniques simultaneously. An interaction is used
to compute each particle’s velocity vector from an helicoidal vector field and programmed as
shown in Fig. 1. The complete declaration of the particle sources involved is given below.

Tube: GCircle(howMany n speed) {}

{transformations_list}

Flash(t0) TracePath(maxSteps)

Ribbon: Gline(howMany n speed) {}

{transformations_list}

Flash(t0) TracePath(maxSteps)

Animation: Spot(x y z) {}

{transformations_list}

Continuos(t0 freq)

GlowSphere(radius)

The light gray (yellow in the original color picture) tubes in Fig. 6 are stream tubes
obtained from a circular particle source belonging to class GCircle. The howMany parameter
for this type of object specifies the number of particles released at each activation. The source
keeps a pointer to each particle it creates and it can remember the last n activations. Instead



F. Birra, M. Próspero: SiPaViS — A Toolkit for Scientific Visualization and Simulation 53

Figure 5: School of fishes in a pool

of rendering individual particles we render the particle source by displaying the polygonal
mesh connecting all particles at their successive locations. In this case particles are created
only once. If a periodic temporal source component was used, we would obtain a succession of
stream tubes because the trajectory memorized by each particle is limited to a few (maxSteps)
time steps.

In Fig. 6, the stream ribbon, located between the stream tubes, is formed using a similar
technique but, instead of a circular source, we used a particle source releasing particles in
a line segment (Gline). Each particle is assigned a different color to enhance perception of
rotational movements. Nevertheless, its color could be used to code other field properties.
The individual particles (blue in the original) show simple particle animation and they were
created using a continuous temporal source with frequency given by the freq parameter.

It is highly important to notice that the type of particles created by each source is also
a parameter in the source declaration. This way the same particle source can be used to
create different types of particles. Not less important is the fact that particle source objects
are created by grouping two different components: one providing its temporal behavior and
the other controlling the geometry and location of the particle cloud. The classes Flash and
Continuous are examples of temporal components while classes GCircle, GLine and Spot

are spatial components.

The empty braces at the end of the first line in each source declaration can be used to
specify a domain for each source object. This domain is a list of objects that may be inquired
by the particle source to determine its characteristics. It is thus possible, for instance, to create
sources that generate particles in a neighborhood of an already existent particle. Another
possibility is a source whose particle cloud’s density is controlled by a field value at a specific
location.



54 F. Birra, M. Próspero: SiPaViS — A Toolkit for Scientific Visualization and Simulation

Figure 6: Mixing different vector field visualization techniques

5. Conclusions

The main advantages of using SiPaViS are the quick development of visualization and sim-
ulation algorithms over a broad area of applications. We have showed some examples from
scalar and vector field visualization techniques as well as traditional particle systems simu-
lations such as behavioral animation. Algorithms for isosurface extraction, where particles
interact not only with their surrounding fields but also with other particles [2], and techniques
to model fuzzy objects such as fire, smoke or explosions [6], are also easily implemented in
our framework.

The object-oriented approach effectively accelerates the development of new techniques
since the nuclear functionality is already coded inside the abstract classes. As the collection of
programmer defined classes tends to increase, further development of new techniques becomes
easier. Connecting objects in a different manner or making minor modifications to already
existent classes may produce radically new effects.

The generality of the ODE solver implemented in the toolkit also allows the programmer
to extend the base particle model in a more accurate manner since all new attribute values
may be integrated over time. As an example it is thus possible to create particles with a
complete coordinate system including orientation.

We think this approach is a good alternative to several visualization techniques no easily
implemented in netwok-based tools. Memory limitations, commonly found in dataflow visual-
ization environments, are also easier to overcome. This is mainly due to the finer granularity
of the algorithms, as a consequence of the use of particles as visualization agents. Also, the
dynamic class loading mechanism offered by SiPaViS alleviates memory requirements.



F. Birra, M. Próspero: SiPaViS — A Toolkit for Scientific Visualization and Simulation 55

Acknowledgments

Data sets used to produce Figures 3 and 4 were obtained from the University of North Carolina
— Chapel Hill volume rendering test data sets. All the work is being mainly supported by
the FCT Foundation under the project PRAXIS/P/EEI/10089/1998.

References

[1] F. Birra: Sistema de part́ıculas para visualização e simulação (Particle system for
visualization and simulation). M.Sc. Dissertation (in Portuguese), New University of
Lisbon, 1997.

[2] P. Crossno, E. Angel: Isosurface extraction using particle systems. IEEE Proceedings
of Visualization ’97, 495–498 (1997).

[3] M. Levoy: Efficient ray tracing of volume data. ACM Transactions on Graphics 9, no.
3, 245–261 (1990).

[4] A. Pang: Spray Rendering. IEEE Computer Graphics and Applications 14, no. 5, 57–63
(1994).

[5] L. Pinson, R. Wiener: Objective C: Object Oriented Programming techniques.
Addison-Wesley Publishing Co., Reading, Mass., 1991.

[6] W. Reeves: Particle systems — a technique for modeling a class of fuzzy objects. Com-
puter Graphics (Proceedings of Siggraph) 17, no. 3, 359–376 (1983).

[7] C. Reynolds: Flocks, herds and schools: A distributed behavioural model. Computer
Graphics 21, no. 4, 25–34 (1987).

[8] S. Upstill: The Renderman Companion. Addison-Wesley Publishing Co., Reading,
Mass., 1990.

Received August 14, 1998


