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Abstract. Since the conception of automatic fractal image compression, the
research on this topic has grown rapidly. This work is intended to provide a new
vision on this automatic process by introducing the idea of multi-scale domain-
pool classification based on the complexity of the image to be compressed. A
preprocessing analysis of this image identifies the complexity of each image block
computing its local fractal dimension. The performance of this proposition, eval-
uated by means of fidelity versus encoding time and amount of compression, is
compared with two well-known image compression methods.
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1. Introduction

With the development of multimedia systems, the growth of the image databases and the
intense use of nets, the necessity of efficient storage of images has increased [10]. There are
several forms to compress images and new researches have appeared in this direction. Fractal
compression can be considered as one of these new forms [1]. A more detailed description of
the encoding method, the notation used and a description of basic implementations can be
found in [7]. Several researchers have taken up the challenge to improve the basic automated
algorithm for compression [11]. Some of the main subjects addressed are compression ratio,
time reduction and image fidelity [3]. We show in this work that the image fidelity can
be improved considering the contractive factor and the local image complexity. Depending
on the block complexity, four contractive factors have been used on the domain blocks in
each image compression (improving the compression quality). Fractal dimensions (FD) have
been proposed to characterize roughness in images. The FD could be used to obtain shape
information and to distinguish between smooth (small FD) and sharp (large FD) regions [4].
In other words, preprocessing local FD of the image makes it possible to generate separate
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sets of pools depending on the image complexity. To derive the contractive transformation
of the Partitioned Iterated Function System (PIFS) codes just the relation between elements
on pools of the same FD range are considered (improving compression time).

2. Development

As a model for the space of grayscale images, we choose a space E of functions f : X → G,
where the set X is taken as the set of spatial coordinates of the image while G represents the
set of intensity values of the image. A metric d is used such that (E, d) is a complete metric
space. The fractal coding of an image f(N × N), can be seen as the optimization problem:
find a contractive mapping T on (E, d) whose fixed point f = T (f) exists and is unique (by
the contractive mapping fixed point theorem). Decoding consists of iterating the mapping T
from any initial image until the iterates converge to an approximation of the original image.
The encoding process consists of the construction of the operator T , which will be defined
by matching the better couple of sets, formed from the original image. Let Ri and Dj be
two subsets on f (the first called range is formed from partitioning n × n non-overlapping
regions on X and the second called domain is formed also by subset of X but which may
overlap). Let ti : Dj → Ri be a contraction defined by matching the better ti(Dj) for each
Ri, which means that ti is chosen such that the distance d(Ri, ti(Dj)) is as small as possible.
The operator T is given by

Tf =

(N/n)2
⋃

i=1

ti(f)

considering the contractive factor s of the Collage theorem [1] and fixed point A (attractor).
Then

d(f,A) ≤
d(f, Tf )

1− s
.

How far from f will the attractor A of the PIFS be? By this theorem an upper bound of
the distance between the original image f and its reconstruction A is obtained as a function
of the contractive factor s of T . Several papers have popularized the scheme where a digital
image is partitioned into square range blocks (say n × n pixels) and larger square domain
blocks, frequently twice the size of the range blocks [6]. This scheme makes the compression
process simple, but observe that the contractive factor of T is fixed to s = 1

2
. So by the

Collage theorem
d(f,A) ≤ 2d(f, Tf ).

If the contraction of T is reduced to s = 1/3, 1/4, 1/5 or 1/6, then by the theorem the upper
bound to d(f,A) will decrease to

d(f,A) ≤
3

2
d(f, Tf ), d(f,A) ≤

4

3
d(f, Tf ), d(f,A) ≤

5

4
d(f, Tf ), or d(f,A) ≤

6

5
d(f, Tf ),

respectively, and it is expected that the attractor A should look (each time more) quite like
f , with these new set of contractions. This is the main idea of our work: the utilization of a
variable contractive factor, based on image complexity values. Let D be a collection of subsets
of Dj from which the better matching are chosen. D consisted of m×m pixels. The number
of elements on D determine how much computation time the encoding takes for finding ti(Dj)
for each Ri. For encoding, the mapping ti must be specified and the better domain squares Dj

must be chosen from a set of potential candidates. The choice of the domain pool as 3n× 3n,
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4n× 4n , 5n× 5n or 6n× 6n for each n×n range block, reduce the computation required for
a brute force search [2] minimizing image quality reduction.

We use local FD (represented by DF) to subdivide the blocks into classes of complexity
(see Figures 1 and 2). Some methods on DF estimation do not give satisfactory results in all
range of DF for images (from 2 to 3). For fast DF evaluation a simple and efficient algorithm
has been used [4]. We use four levels of complexity, based on the DF of each image part:

2 ≤ DF < 2.25, 2.25 ≤ DF < 2.5, 2.5 ≤ DF < 2.75, and 2.75 ≤ DF ≤ 3.

For the mapping ti to be specified, domain squares Dj must be chosen from a set of potential
candidates, i.e. a set with the same DF of the range. All images have been treated as ideal
fractal models. In the course of this analysis, the corresponding blocks present semi-fractal
behavior. However, we are not addressing to the problem of finding the real fractal dimension
of the image blocks, it is only a way for representing its local complexity [9].

Figure 1: Relating the domain pool and DF with the contractive factor.

Figure 2: Example of fractal dimension blocks division.

3. Performance comparison

The performance of this proposition, evaluated by means of fidelity versus encoding time, is
compared with the brute force algorithm [2], [8] and the adaptive quadtree method [5]. On
Fisher’s program [5] the defaults flags have been used: 7 bits for the offset factor and 5 bits
for the scaling factor, and 4 × 4 range blocks (no quadtree scheme). The efficiency of this
image compression approach is illustrated here by considering both image fidelity and time
reduction. Fig. 3 compares the image quality on reconstruction of six images: Lena, LAX,
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Cameraman, Columbia, Goldhill and Couple using the proposed approach. Similar results for
the other two methods can be seen on Figures 4 and 5. All images have 128 × 128 pixels
and 256 gray level. For quality verification these figures show also the result of subtraction
operation between the original image f and its reconstruction A. Since the performance of
this and other systems has to be compared, Tables 1 – 3 present parameters of the encoding
process: time spent on encoding, the root mean square error e

rms
, the signal to noise ratio

SNR, the peak signal to noise ratio PSNR, and the compression ratio on bits per pixel of the
image. These are defined as:

e(x, y) := f(x, y)− A(x, y)

e2
rms

:=
∑N

x=i

∑N
y=i e(x, y)2

SNR
rms

:=
∑N

x=i

∑N
y=i A(x, y)2

/

e2
rms

PSNR := 20 log10

2p − 1

e
rms

where p is the number of bits per pixel of the image.

Image name time (s) e
rms

SNR
rms

PSNR(dB)

Lena 47.3460 9.7622 10.4823 8.3398

LAX 62.5650 17.7365 4.9023 23.1535

Cameraman 56.9930 14.3160 8.0053 25.0144

Columbia 50.7170 15.6185 5.6044 24.2580

Goldhill 47.7850 8.7668 10.6057 29.2740

Couple 57.2040 13.5676 8.4255 25.4808

Average 52.9969 13.1421 7.7337 25.9413

Table 1: Performance of the proposed method (local fractal dimension with blocks of size
4 × 4 and s = 1

3
, 1

4
, 1

5
and 1

6
) on the set of test images. Each image is represented by a file

with 25600 bits. The compression ration for all images is 1.5625 bpp (bits per pixel).

Image name time (s) e
rms

SNR
rms

PSNR(dB)

Lena 469.4040 7.61672 13.3478 30.4954

LAX 469.4110 17.4734 4.9517 23.2832

Cameraman 469.3550 14.0104 8.1885 25.2018

Columbia 469.3850 16.3936 5.3475 23.8373

Goldhill 469.3750 6.7977 113.4355 31.4836

Couple 469.3130 13.6817 8.3402 25.4080

Average 469.3098 12.1756 8.69527 26.7874

Table 2: Performance of Barnsley’s program [2] for the same images. Each image is repre-
sented by a file with 57376 bits. The compression ratio for all images is 3.5020 bpp.
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Figure 3: Six test images used in the experiments (first column); reconstructed images using
local fractal dimension with range blocks of size 4× 4 pixels, s = 1

3
, 1

4
, 1

5
and 1

6
(second col-

umn); difference image for quality verification: 5.‖e(x, y)‖ (third column); and ‖5. e(x,y)
2
+ 127‖

(fourth column).
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Figure 4: Six test images used in the experiments (first column); reconstructed images using
Barnsley’s program (second column); difference image for quality verification: 5.‖e(x, y)‖

(third column); and ‖5. e(x,y)
2
+ 127‖ (fourth column).
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Figure 5: Six test images used in the experiments (first column); reconstructed images using
Fisher’s program (second column); difference image for quality verification: 5.‖e(x, y)‖ (third

column); and ‖5. e(x,y)
2
+ 127‖ (fourth column).
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Image name time (s) e
rms

SNR
rms

PSNR(dB) Compression

Lena 0.2730 10.6345 9.7362 27.5964 1.4282

LAX 0.1920 20.8534 4.1191 21.7473 1.4380

Cameraman 0.2120 18.0882 6.6247 22.9829 1.4058

Columbia 0.2610 17.9260 4.9174 23.0611 1.4180

Goldhill 0.2620 9.8373 9.4294 28.2733 1.4360

Couple 0.2480 17.3362 6.6913 23.3517 1.4375

Average 0.2510 15.6659 6.6457 24.4710 1.4268

Table 3: Performance of Fisher’s program [5] for the same images.

4. Conclusions

In order to compare the relative merits of each work it is necessary to be able to decide
what means to say that one approach is better than the other. It is clear that the best
results would have the minimal e

rms
and that from two given encodes the one with larger

SNR or PSNR looks better. Consequently, the images on Fig. 4, encoded by Barnsley’s
(http://links.uwaterloo.ca:/pub/Fractals) program [2] might be lightly better than that on
the second column of Fig. 3, and the proposed approach produces better results than Fisher’s
program [5] (Fig. 5, with parameters mentioned in Section 3). However Fisher’s program
(http://inls.ucsd.edu/y/Frac) presents minimal encoding time and maximal compression ra-
tio.

Acknowledgment

This work has been supported in part by the project FINEP-RECOPE SAGE #0626/96.
The authors acknowledge CNPq (Ref. 302649/87-5), FAPERJ and CAPES for their support.

References

[1] M.F. Barnsley: Fractals Everywhere. 2nd ed., Academic Press, New York 1993.

[2] M.F. Barnsley, L. Hurd: Fractal Image Compression. AK Peters, Wellesley 1993.

[3] Chwen-Jye Sze, Hong-Yuan Mark Liao, Kuo-Chin Fan, Ming-Yang Chern,

Chen-Kou Tsaoy: Fractal image coding system based on an adaptive side-coupling
quadtree structures. Image and Vision Computing 14, 401–415 (1996).

[4] A. Conci, C.F.J. Campos: An Efficient Box-Counting Fractal Dimension Approach
for Experimental Image Variation Characterization. Proceedings of IWSIP’96 — 3rd
International Workshop in Signal and Image Processing, Elsevier Science, Manchester,
UK, 665–668 (1996).

[5] Y. Fisher: Fractal Compression: Theory and Application to Digital Images. Springer
Verlag, New York 1994.

[6] J.C. Hart: Fractal Image Compression and Recurrent Iterated Function Systems. IEEE
Computer Graphics and Applications 16, no. 4, 25–40 (1996).



A. Conci, F.R. Aquino: Fractal Image Coding Based on Block Complexity 65

[7] A. Jacquin: Image Coding Based on a Fractal Theory of Iterated Contractive Image
Transformations. IEEE Transactions on Image Processing 1, 18–30 (1992).

[8] J. Kominek: Advances in Fractal Compression for Multimedia Applications. [ftp://links.
uwaterloo.ca:/pub/Fractals/Papers/Waterloo/kominek95c.ps.gz] University of Waterloo,
Internal report CS95-28 (1995).

[9] S. Morgan, A. Bouridane: Application of Shape Recognition to Fractal Based Image
Compression. Proceedings of IWSIP’96 — 3rd International Workshop in Signal and
Image Processing, Elsevier Science, Manchester, UK, 23–26 (1996).

[10] M. Nappi, G. Polese, G. Tortora: FIRST: Fractal Indexing and Retrieval SysTem
for Image Databases. Image and Vision Computing 16, 1019–1031 (1998).

[11] D. Saupe, R. Hamzaoui: A Review of Fractal Image Compression Literature. Com-
puter Graphics 28, 268–275 (1994).

Received August 14, 1998


