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Abstract. In computer graphics, it is often an advantage to calculate reflections
directly, especially when the application is time-critical or when line graphics have
to be displayed. We specify formulas and parametric equations for the reflection on
spheres and cylinders of revolution. The manifold of all reflected rays is the normal
congruence of an algebraic surface of order four. Their catacaustic surfaces are
given explicitly. The calculation of the reflex of a space point leads to an algebraic
equation of order four. The up to four practical solutions are calculated exactly
and efficiently. The generation of reflexes of straight lines is optimized. Finally,
reflexes of polygons are investigated, especially their possible overlappings. Such
reflexes are the key for the reflection of polyhedra and curved surfaces. We describe
in detail how to display their contours.
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1. Introduction

Reflections play a central role in many applications of architecture, fine arts, photography, and
of course in computer graphics itself. Especially the reflection on curved surfaces is a challenge.
To give an example in architecture, we use the so-called “Haas-Haus” in Vienna ([12]). Its
surface reflects St. Stephen’s cathedral and other historical buildings (Fig. 1). In contrast to
reflections on planar surfaces, one can change the viewing position (walk around the building)
and will always see the image (reflex) of the cathedral. The architect put an emphasis on
the exact — and therefore much more expensive — production of the reflecting cylinder of
revolution.

In computer graphics reflections are commonly rendered by ray tracing ([7]). The image
is built up pixel by pixel in calcutation steps that are independent from each other. For each
pixel, the following algorithm has to be applied:
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Through the center of each pixel, we shoot
a projection ray (“forward ray tracing”). It
may hit the scene in a frontmost point R.
If the hit surface Φ is a reflecting surface,
the projection ray is reflected according to
the laws of optics and is followed recursively:
When it hits the objects of the scene in a
frontmost point S, the color of this object in-
fluences the color of the corresponding pixel,
etc.
In this paper we proceed the other way round
(“backward ray tracing”, [1], [22]): Given
a surface Φ, the eye point E and an arbi-
trary space point S, we are looking for a light
ray s 3 S that runs through E after being
reflected on Φ in a “reflex” R ∈ Φ. (Espe-
cially when S is a point light source, R is
a specular point on Φ.) The point R is of
course harder to find. Even in the simplest
special cases we have to solve an algebraic
equation of a higher degree. Figure 1: “Haas-Haus”

The general geometric theory of reflections — especially its algebraic characterizations —
were investigated decades ago (e.g., in [14]). It has not been applied much in computer
graphics, though, because ray tracing and the radiosity method ([4]) could solve the problem
in general. In this paper we will deduce very time-saving solutions for certain special cases.
E.g., we specify formulas for the calculation of reflexes of points and straight lines. They are
the key for displaying reflexes of polygons and curved (triangulated) surfaces.

The direct computation of reflexes is important (or even necessary)

– when we have to know the exact position of a reflex on a curved surface. The common
methods will solve this problem only approximately and with great effort, since we have
to render whole parts of the image.

– for the photo-realistic rendering of scenes with specular surfaces: The exact position
of specular points (reflexes of point light sources) helps to speed up complex compu-
tations. Ordinary ray tracing, e.g., cannot take into account such complex lighting
situations ([15]).

– for the real-time rendering of specular primitives like spheres and cylinders of revolu-
tion. When the exact position of the specular points are known, hardware supported
Gouraud-shading ([11]) can be applied efficiently (the corresponding polygonizations
of such surfaces were adapted in the drawing routines of the latest version of the geo-
metric programming package [9]).

– for the creation of line graphics including reflections (e.g., Fig. 3). In general, line
graphics are not supported by the common rendering algorithms, and if they are, then
only with “pixel accuracy”. With the use of corresponding formulas, line graphics can
be created very efficiently and independently of the screen resolution (including contours
of curved sufaces).
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We have to obey the following simple physical laws of reflection (Fig. 2):
1. The incoming light ray SR, the reflected light ray RE and the surface normal n in R

are coplanar,

2. the incidence angles ζ1 and ζ2 of SR and RE are equal.

Figure 2: The laws of reflection Figure 3: Reflection on a plane

The reflection on a plane can be easily calculated. We replace the surface Φ by its tangent
plane τ 3 R (Fig. 2). When we reflect the point S on τ , we get a point S∗. The desired
point R is then the intersection of ES∗ and τ . Thus, the task is linear.

Scenes with reflections on planes can be displayed in real time without the use of ray
tracing ([8]): Each reflecting plane induces a virtual reflected scene that can be seen through
the “mirror window” (Fig. 3). It also induces, however, an additional light source that shines
through the mirror window. Thus, the lightning situation complicates exponentially with the
number of reflecting planes.

When Φ is curved, the solution of the problem soon becomes so complicated that human
imagination hardly can judge whether a computer generated image is correct or not.

Figure 4: Special cases for Φ

In the following, we will only deal with the simplest two non-trivial cases, namely the reflection
on a sphere Φκ and a cylinder of revolution Φζ . Fig. 4 shows that these two cases can be
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reduced to the two-dimensional case of the reflection on a circle: When Φ is a cylinder of
revolution, we just have to look at its normal projection in the direction of the cylinder’s axis,
and when Φ is a sphere, we look at the situation in a plane through the sphere’s center.

Reflections on circles have already very early been of interest. The problem was treated by
Ptolemy (about AD 150), and it is known as “Alhazen’s Problem” after the Arab scholar
Ibn al-Haytham who wrote extensively about it almost exactly 1000 years ago ([17]). Due
to its complexity, the problem could not be solved explicitly at that time. Caustics which
result from multiple reflections on a circle have been investigated, e.g., by [13] and [21].

2. Reflection on a circle

In the following, let S, E, R and M denote points of two-space. Let the circle k (center M ,
radius r) be the top view of a reflecting cylinder of revolution or the intersection circle of the
reflecting sphere with the plane MES. M is chosen as the origin of a Cartesian coordinate
system with E on the x-axis (ME = e). R and S may have the coordinates R(rx, ry) (with
r2
x + r2

y = r2) and S(sx, sy).

The corresponding position vectors are ~e =

(
e
0

)

, ~r =

(
rx
ry

)

and ~s =

(
sx
sy

)

.

Definition: In the following we will use the abbreviation R[k;E] when we mean a reflection
on a circle k with respect to the eye point E. The reflexes of a point S (a line c, etc.) will
be denoted by R[k;E](S) (R[k;E](c), etc.). In the same way we will speak of R[Φκ;E] and
R[Φζ ;E], when we mean the reflection on a sphere Φκ and a cylinder Φζ .

2.1. The calculation of the reflexes of a point

Figure 5: Catacaustic of the reflection congruence

Consider a ray s 3 E that intersects k (Fig. 5). In the two intersection points R and R of k
and s we theoretically have two reflected rays (reflection on the inside and on the outside).
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The set of all reflected rays envelopes a curve k∗, the so-called catacaustic. Such curves were
first studied by Huygens and Tschirnhausen around 1678.

We now filter those rays that — really or virtually — run through S. They are the
tangents from S at k∗ (see also Fig. 8).

The circle’s normal n (the radial ray MR) is given by the vector equation

~n~x = 0 with ~n =
1

r

(
ry

−rx

)

and ~x =

(
x
y

)

The distance of the point S from it is

d = ~n~s =
1

r
(rysx − rxsy). (1)

The point S∗ symmetrical to S with respect to n is given through the vector equation

−→
s∗ = ~s− 2d~n =

(
sx − 2d

r
ry

sy +
2d
r
rx

)

.

The reflected ray RS∗ has thus the parametric equation

~x = ~r + t(
−→
s∗ − ~r) = ~r + λ

(
sx − 2d

r
ry − rx

sy +
2d
r
rx − ry

)

.

The corresponding parameter-free equation is

(
sy +

2d
r
rx − ry

−sx +
2d
r
ry + rx

)

~x =

(
sy +

2d
r
rx − ry

−sx +
2d
r
ry + rx

)(
rx
ry

)

= rxsy − rysx
︸ ︷︷ ︸

−rd

+
2d

r
(r2

x + r2

y)
︸ ︷︷ ︸

2rd

= rd.

Now E has to coincide with the reflected ray:

(
sy +

2d
r
rx − ry

−sx +
2d
r
ry + rx

)(
e
0

)

= rd.

This leads to the condition

e(sy +
2d

r
rx − ry) = rd with rd = rysx − rxsy. (2)

For better understanding, we substitute x = rx and y = ry (x2 + y2 = r2). Then (2) shows as

e[sy +
2

r2
(sxy − syx)x− y] = sxy − syx,
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which allows to explicitly calculate y:

y = sy
2ex2 − r2(x+ e)

2esxx− r2(sx + e)
(3)

(3) describes a hyperbola h 3 S (Fig. 6).
One asymptote is parallel to the y-axis,
the other one is parallel to the radial ray
through S. The intersection points D1

and D2 with the x-axis (the ray EM)
are independent from S and have the
x-values

x1,2 =
r

4e
(r±

√
r2 + 8e2). (4)

Figure 6: Geometric solution

The residual intersection points Sn and Sc with the x-parallels through S and the projection
ray ES respectively have the x-values r2

2e
or r2

e
respectively.

The hyperbola intersects the circle k (x2 + y2 = r2) in four points that correspond to the
four tangents at the catacaustic k∗ through S (Fig. 8). Thus the problem cannot be solved
by ruler and compass ([17]).

For all solutions R = R[k;E](S), we have

x2 + y2 − r2 = 0 ⇒ x2 + [sy
2ex2 − r2(x+ e)

2esxx− r2(sx + e)
]2 − r2 = 0

or

f(x) = (x2 − r2)[2esxx− r2(sx + e)]2 + s2

y[2ex
2 − r2(x+ e)]2 = 0

This leads to the following

Theorem 1: In order to find the reflexes R[k;E](S) of a point S on a circle k with respect
to the eye point E we have to calculate the roots of an algebraic polynomial of order four
f(x) =

∑
4

k=0
ckx

k. With the abbreviations u = 2/r2, v = 1/(s2
x + s2

y) and w = 1/e the
coefficients of this polynom are

c4 = u2

c3 = −2u(vsx + w)

c2 = v(1 + 2wsx) + w2 − 2u (5)

c1 = 4sxv + 2ws2
xv + 2w

c0 = vs2
y − vr2(1 + 2wsx + w2s2

x).

When parallel projection is applied (e =∞⇒ w = 0), the formulas (5) reduce to

c4 = u2, c3 = −2uvsx, c2 = v − 2u, c1 = 4sxv, c0 = v(s2

y − r2). (6)

When S is a point of infinity (polar angle σ, sx = sy = ∞, v = 0), and E is a finite point,
the corresponding coefficients are
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c4 = u2, c3 = −2uwsx, c2 = w2 − 2u, c1 = 2w(1 + cos2 σ), c0 = sin2 σ − w2r2 cos2 σ. (7)

When E and S have the same distance from M , the reflex is known explicitly:

R(±r cos σ
2
,±r sin σ

2
). (8)

This is also true for e = MS =∞.

The four solutions of the polynom can be calculated by means of well known formulas
([20])1. However, under certain circumstances there are numeric instabilities that may lead
to a considerable loss of accuracy. Among the four solutions R[k;E](S), usually only one is
good for practical use. It has to be found “by probe”. Note that all four solutions may be
practical solutions when the point S is inside k (Fig. 8).

The corresponding y-value is to be determined by (3). In the cylindrical case, the z-values
rz of the corresponding space points R = R[Φζ ;E](S) have to be reconstructed via the z-value
sz of S from the “planar solution”:

rz =
ER′

ER′ +R′S ′
sz (10)

Obviously, the cylindrical reflexes in general are not coplanar.

In the spherical case R[Φκ;E], we have already done our calculations in the plane SEM :
Thus, the spherical reflexes of a point are coplanar . We have to mention a special case, though:
When the point S lies on the axis ME, the connecting plane SEM is not determined uniquely.
Two trivial reflexes of S will lie on ME. The spatial position of the two (real or conjugate
imaginary) symmetric non-trivial reflexes, however, is not determined uniquely. We thus have
the following theorem about the possible degeneration of the set of reflected points:

Theorem 2: The set R[Φκ;E](S) contains the two reflexes on ME. When non-trivial real
reflexes occur, the reflex additionally consists of a small circle of Φκ with the axis ME.

We will give an explanation for this strange behaviour when we talk about the reflex of a
straight line.

In the following, most considerations will be dedicated to the reflection on the outside of a
circle. Then only one of the four theoretical solutions is valid for practical use. This simplifies
some theorems, which have to be modified when several practical solutions are allowed.

1When less accuracy is necessary and only one solution is of practical use, we can find the particular root
of the polynom even a bit faster by means of Newton’s iteration (we explicitly have the equation of f ′(x)):

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

c4x
4
n + c3x

3
n + c2x

2
n + c1xn + c0

4c4x3
n + 3c3x2

n + 2c2xn + c1

. (9)

After only few iteration steps the x-values practically do not differ from the exact solution.
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2.2. “Forbidden regions” and numerical instabilities

Before calculating the reflex of a point, we first
have to test whether the reflex is visible or
not. Fig. 7 shows the “forbidden region” for
the reflection on the outside of the circle. In-
terpreted three-dimensionally, the area is en-
closed by the visible part of the surface and
the two tangential planes from E to Φζ or the
part of the tangential cone that lies behind the
sphere Φκ respectively.

Numerical problems arise in the neighborhood
of Figure 7: Forbidden region

x0 = sx =
r

4e
(r±

√
r2 + 8e2) (11)

(Fig. 7, see Section 3, (17)). There the hyperbola degenerates into a pair of straight lines,
and two roots of the polynom f(x) are identical. In Fig. 7 the region of the plane to the left
of the vertical x = x0 is dotted. For the only reflex R of a point S in this region we always
have rx > sx, whereas for all points to the right of the vertical rx < sx is true (reflection on
the outside of the circle!).

Because of its essential importance, the corresponding algorithm was especially optimized.
We now can calculate approximately 400, 000 reflexes per second (!) with sufficient accuracy
on a 500 Mhz PC.

2.3. The catacaustic of the reflection congruence (“circle caustic”)

Each tangent at the catacaustic k∗ leads to a so-
lution of the reflection problem. Due to the four
roots of (5), the catacaustic is a curve of class four.
In two special cases the result is well known: When
the eye point E is a point of infinity (normal pro-
jection), we have a so-called nephroid ([24], Fig.
9 lower right). When E lies on the circle k (this
case is only interesting when reflecting on the in-
side of k), the catacaustic k∗ is a cardioid (Fig. 9
lower left). In Fig. 8, the four real tangents at k∗

lead to four visible reflexes of a point S inside the
circle k (the eye point E is inside the circle as well).
When both S and R are outside k, we always have
exactly two non-virtual reflexes of S, one for the
reflection on the outside of k, one for the reflection
on the inside. Figure 8: Tangents at k∗

We are now going to calculate the parametric equation and the algebraic properties of k∗2.
Let the polar angle of R be the parameter ϕ. When reflecting E at the radial ray through R,

2A geometrically interesting approach for the determination of such properties in general was given in [2].
In the special case of the reflection on a circle, the authors quote [3], who may have been the first to detect
the corresponding equations.
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we get a point E∗(e cos 2ϕ, e sin 2ϕ). The tangent t at the catacaustic therefore has the
parametric equation

~x =

(
r cosϕ
r sinϕ

)

+ λ

(
e cos 2ϕ− r cosϕ
e sin 2ϕ− r sinϕ

)

(12)

and the parameter-free equation
(

e sin 2ϕ− r sinϕ
r cosϕ− e cos 2ϕ

)

~x = er sinϕ.

When we intersect t with its derivative ṫ
(

2e cos 2ϕ− r cosϕ
−r sinϕ+ 2e sin 2ϕ

)

~x = er cosϕ,

we get the corresponding point on the catacaustic:
(

2e cos 2ϕ− r cosϕ
−r sinϕ+ 2e sin 2ϕ

)[( r cosϕ
r sinϕ

)

+ λ

(
e cos 2ϕ− r cosϕ
e sin 2ϕ− r sinϕ

)]

= er cosϕ.

Thus we have the following parameter for (12):

λ =
r2 − e r cosϕ

2e2 + r2 − 3er cosϕ
(13)

Figure 9: Various catacaustics.

Insertion in (12) and substitution

cosϕ =
1− t2

1 + t2
, sinϕ =

2t

1 + t2
, cos 2ϕ =

1− 6t2 + t4

(1 + t2)2
, sin 2ϕ =

4t(1− t2)

(1 + t2)2
(14)
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leads to the following rational parametric equation of the catacaustic k∗ (see also [23], [3]):

x = 1

µ
(−r(t2 + 1)3 − e(t2 − 1)(t4 + 10t2 + 1))

y = 1

µ
16et3 (15)

with µ = e

r
(t2 + 1)3 + 3(t2 − 1)(t2 + 1)2 + 2 r

e
(t2 + 1)3.

Written in homogenous coordinates (µ : x : y), the equation shows that in general k∗ is of
order six. Only for e = r the order is reduced to four.

To summarize we can say:

Theorem 3: When reflecting the rays of a pencil on a circle, the reflected rays envelope
curves of class four and order six with the parametric equation (15)3.

Fig. 9 shows various forms of the catacaustic.
They are all evolutes of the orthonomic of k
with respect to E (i.e., a Limacon of Pascal;
see [24], [19]). Fig. 10 illustrates how the
corresponding catacaustic surfaces are gen-
erated by means of translation (R[Φζ ;E]))
and rotation (R[Φκ;E]).

2.4. Anamorphoses

An interesting application of the reflection
on a cylinder of revolution — the so-called
anamorphoses ([5]), has been known in the
arts for a long time (Leonardo da Vinci,
Erhard Schön, Hans Holbein d. J.):
On the base plane, an image is to be drawn
so that it appears undistorted when viewed
from an eye point E in a reflecting cylinder
of revolution (Fig. 11). Figure 10: Catacaustic surfaces.

In this case, we project the space point R onto the cylinder (projection center E) and then
intersect the corresponding reflected ray with the base plane (→ S). Fig. 11 illustrates the
following

Theorem 4: The reflex of a circle with the cylinder’s axis as axis, the radius e and a
height difference ∆z with respect to E lies on a parallel circle of the cylinder with height
difference ∆z/2.

This is true because S is the reflex of E ′ with respect to the cylinder’s normal in R′ and
therefore we have SR′ = R′E ′. According to (10), we then have the constant value

rz =
R′E ′

SR′ +R′E ′
∆z =

∆z

2

for the height rz of R.
3For practical application, (15) is not appropriate since the distribution of the points is bad and we

theoretically need infinite parameters. Instead, we inserted (13) in (12).
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Figure 11: Anamorphosis

2.5. An interesting construction of conics and its “physical consequences”

Geometrically seen, the search for the reflexes of S is identical to the following problem:
We consider a linear system of
confocal conics with common fo-
cuses S and E. We now look for
those conics of the system that
touch the given circle k (Fig. 12).
It is well known that the tangents
of a conic are bisectrices of the
directrices. It follows that the
touching points are the four re-
flexes of S on k with respect to E.
In Fig. 12, the reflexes R1 and
R2 that belong to the reflection
on the outside and the inside re-
spectively lead to ellipses e1 and
e2, the residual ones to hyperbo-
las e3 and e4 of the pencil. The
points Ri again lie on the hyper-
bola h (Fig. 6). Figure 12: Confocal conics

For Ri ∈ ei we have ERi ± SRi = 2ai (= const). For points P inside the ellipses e1 and e2

we have ERi + SRi < 2ai and for those outside ERi + SRi > 2ai. Since the circle k touches
the ellipse e1 from the outside and the ellipse e2 from the inside, the following non-trivial fact
holds:

Theorem 5: Let Φ be a sphere or a cylinder of revolution. When reflecting points outside
of Φ, the corresponding distance of the light ray is minimal for the reflection on the outside
of Φ. For the reflection on the inside, it is maximal.

The theorem partly holds for points inside Φ and/or the eye point inside Φ. From now on,
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we restrict to the reflection on the outside of Φ.

3. Kernel points and kernel planes, reflexes of straight lines

When we intersect the reflected rays (12) with the x-axis, we get points Rk(xk, 0) for λ =
r/(r− 2e cosϕ) (compare Fig. 5). With x = r cosϕ we have

xk =
er2

2ex− r2
(16)

which shows that the points Rk and the normal projections Rx of R onto the x-axis are two
projective point ranges. This has already been stated in [14], where the points Rk are called
“kernel points” and the planes κ 3 R (κ ⊥ME) are called “kernel planes”.

For the double points of the projectivity Rk ↔ Rx (xk = x) we have

x1,2 =
r

4e
(r±

√
r2 + 8e2). (17)

In these two cases the reflected ray t is orthogonal to the axis ME. These rays are the double
tangents of the catacaustic k∗ (Fig. 9). A comparison with (4) shows that the hyperbola h
((3)) has its intersection points with the x-axis in exactly these points. The given method
for the determination of the reflexes gets numerically unstable in the neighborhood of the
double points. Since the solution is known for x = x1,2, we can easily avoid this instability:
All the points on the straight line (17) will have the same reflex on the circle k (reflection
on the outside). Interpreted three-dimensionally, this means that for all straight lines in the
plane κ0 (17) perpendicular to ME the reflex with respect to Φ lies in κ0: R[Φκ;E](b) is a
small circle of Φκ, R[Φζ ;E](b) is a generating line of Φζ ([25]).

In the cylindrical case, there is another special case: When a straight line is parallel to
the axis of Φζ (i.e., projecting in a top view), its reflex trivially is a generating line of Φζ .

Now to the reflex of a general straight line b on the cylinder Φζ . The manifold of all
reflected transversals of b is a ruled surface Ψ of degree four ([14], Fig. 13). The reflex itself
is a space curve of order four on this surface. This can be proved analogously to a proof
for the spherical case given in [25]: Take a kernel point Rk on the axis ME = a. The
corresponding kernel plane κ 3 R intersects the cylinder Φζ in the generating line g 3 R (and
a symmetrical line).

We now consider two pencils B and U of planes through b and the line of infinity u of the
kernel planes and declare a projectivity as follows: When a plane δ ∈ B contains the point
Rk, the corresponding plane δ ∈ U contains Rx (and thus R). The two pencils generate a
regulus R with the generating lines (δ ∩ δ). δ ⊃ RkS ⇒ R ∈ (δ ∩ δ) ⇒ R ∈ R. Thus, R lies
on R ∩ Φ, which is a space curve of order four (of the “first kind”, i.e., it is an intersection
curve of two quadrics).

The intersection curve can consist of one or two branches (Fig. 14). When b intersects the
axis ME the sphere Φκ, the curve degenerates into two circles: One consists of the reflexes
of all points of b except the intersection point. The other circular reflex stems from the
intersection point on the axis (and can be imaginary) (Theorem 2). For R[Φζ ;E], there is no
such special case, since the reflexes of a point in general never lie in a plane.

When it comes to the practical calculation of the reflex of a straight line, one should never
divide the line into equal distances and then look for the reflexes of the points of division:
This way one would get reflexes that are distributed widely exactly where the reflected line is
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Figure 13: Ruled surface Ψ Figure 14: Reflex curve of order four

maximally curved (Fig. 15). In order to find more favorable distances of the knots on the reflex
of a straight line, we may proceed as follows: We examine the corresponding two-dimensional
situation by projecting b in axis-direction or, in the spherical case, by rotation of the points
of b into an auxiliary plane through ME: b→ b0 (in general a hyperbola). We determine the
polar angles ϕ1 and ϕ2 of the end points of the (linear or hyperbolic) segment of b0. Next we
equally subdivide the corresponding arc [ϕ1, ϕ2] of the circle k. The reflected rays through
these in-between points lead to a set of in-between points on b0 that have to be transformed
back to space. The results (Fig. 16) are satisfying and useful for further spline interpolations.

Figure 15: Unfavorable distribution of reflexes Figure 16: Better distribution

4. Reflexes of polygons

In principle we can now calculate the reflex of a polygon in the following two steps: We first
clip the polygon with the borders of the “forbidden areas”, thus possibly creating more than
one polygon. Secondly, we reflect the sides of the clipped polygon(s) as described above. In
most cases, the image of an arbitrary polygon will be non-convex and non-overlapping. When
we call the rays that are the reflected rays of the bundle through E “projection rays”, we can
say: Polygons that are seen “one-sided” will not have overlappings.



134 G. Glaeser: Reflections on Spheres and Cylinders of Revolution

In order to determine whether possible overlappings occur like in Fig. 17 and Fig. 18,
we can proceed as follows: The polygon’s carrier plane β intersects the reflecting cylinder of
revolution in an ellipse, the reflecting sphere possibly in a small circle c. The reflected rays of
all points C ∈ c generate a ruled surface Ψ. When there are generating lines of Ψ in β, they
and only they will lead to the “multiple points” of the polygon. We thus have

Theorem 6: The reflex of a polygon will for sure not overlap when the polygon’s plane β
does not intersect the reflecting surface Φ, or when in all points of the intersecting curve c
the oriented reflected half-rays are on the same side of β.

Figure 17: Overlapping polygon on Φζ Figure 18: Overlapping polygon on Φκ

In Fig. 17 and Fig. 18, the oriented reflected half-rays on the ruled surface Ψ were intersected
with a coaxial cylinder through the eye point E, or a concentric sphere through E, respectively.
Without proof, they are “Umschwungkurven” e∗ of order four ([16]). The intersection points
E∗
β = e∗ ∪ β lead to the double points on c.
We first consider the reflection on a cylinder of revolution Φζ : Let

z = ax+ by + d (18)

be the equation of β (we can exclude the case that β is parallel to the cylinder’s axis, because
then we either do not have an intersection curve or the reflected surface Ψ consists of two
planes). Then, a general point on the intersection ellipse c = Φζ ∩ β has the coordinates

C(r cosϕ, r sinϕ, ar cosϕ+ br sinϕ+ d). (19)

We now reflect the ray ES on Φζ and consider a point E∗ on the new ray with CE∗ = CE:

−→
E∗(e cos 2ϕ, e sin 2ϕ 2(ar cosϕ+ br sinϕ+ d)) (20)

We have E∗ ∈ β when the condition

2(ar cosϕ+ br sinϕ+ d) = ae cos 2ϕ+ be sin 2ϕ+ d
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is fulfilled. With the substitution

u = r cosϕ (⇒ r sinϕ =
√
r2 − u2, e cos 2ϕ =

e

r2
(2u2 − r2), e sin 2ϕ =

2e

r2
u
√
r2 − u2) (21)

we have an algebraic equation of order four g(u) =
∑

4

k=0
gku

k. Its coefficients are (with the
abbreviation v = a2 + b2):

g4 = e2v

g3 = −2er2v

g2 = r2(r2v − e2v − ade) (22)

g1 = r4(ad+ a2e+ 2b2e)

g0 = r4

4
(a2e2 + d2 + 2ade− 4b2r2).

We finally have

Theorem 7: When reflecting a polygon in the plane (18) on a cylinder of revolution, the
reflex has no overlappings when the algebraic equation of order four (22) has no real roots.
If real roots ui occur, they lead via the parameter ϕi = ± arccos ui

r
to points Ci on the ellipse

(19) and E∗
i on the curve (20). When the line CiE

∗
i ⊂ β intersects the outline of the polygon,

the polygon has an overlapping and is to be split.

Clearly, points Ci on the “invisible” side of the cylinder can be neglected.
Now to the reflection on a sphere Φκ: By means of a rotation about the x-axis through

an angle θ, the polygon’s plane β can be transformed into a z-parallel position β0:

ax+ by = d with
√
a2 + b2 = 1 (23)

This plane intersects the sphere Φκ only for |d| ≤ r. The intersecting circle c0 = Φ ∩ β0 is
given by its center N0(ad, bd, 0) and its radius

r0 =
√
r2 − d2. (24)

It can be parametrized as follows:

−→c0 =





ad− br0 cosϕ
bd+ ar0 cosϕ

r0 sinϕ



 =





ad− bu
bd+ au

±
√

r2
0
− u2



 (with r0 cosϕ = u). (25)

In order to find points E∗
0
∈ e∗

0
, we reflect E on the sphere’s normal through C0:

−→
e∗
0
=





λ(ad− bu)− e
λ(bd+ au)

±λ
√

r2
0
− u2



 with λ =
2e

r2
(ad− bu) (26)

The intersection of e∗
0
and c0 leads to the linear(!) equation

u =
2ad2e− r2(ae+ d)

2bde
. (27)
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Provided u < r0, i.e.,
2ad2e− r2(ae+ d)

2bde
<
√
r2 − d2 (28)

we get via (27) two straight lines C0E0 that are symmetrical with respect to the plane z = 0:
We have to insert (27) into (25) and (26), respectively. Again, points C0 on the “invisible”
part of the sphere can be neglected. The straight lines C0E0 are finally to be rotated into
the polygon’s plane β (about the x-axis through −θ). When they intersect the polygon, the
polygon is to be split.

To sum up:

Theorem 8: When reflecting on a sphere Φκ, the reflex of a polygon does not overlap when
it’s carrier plane does not intersect Φκ. Otherwise, the reflex can have up to two overlappings
when condition (28) is fulfilled.

Finally a practical hint: When a polygon is very small, a test is not necessary. When it
comes to the reflection of large or long polygons, however, one should definitely perform the
above described test (and split the polygon if necessary), because the result of the filling of a
polygon with overlappings is usually unpredictable.

Those straight lines in the polygon’s plane β that appear “projecting”, can be called
“contour” of β in a wider sense. We have

Theorem 9: The “contour” of a plane consists of a maximum of four points when reflecting
on a cylinder of revolution, and a maximum of two points, when reflecting on a sphere.

Figure 19: Function graph Γ above β Figure 20: “Reflex contour”

Another possibility to test whether a polygon has overlappings or not — which is more of
theoretical interest rather than for practical use — is the following: We define a function
graph Γ above the polygon, the points of which lie on the normal to the carrier plane β. The
“height” z of the point equals the dot product of the normal vector of β and the direction
vector of the corresponding reflected ray through the base point (Fig. 19). The zero manifold
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of Γ is then either empty (⇒ no overlappings) or it consists of the above described reflected
rays in β. This method is of course much more computation expensive as the one described
in Theorem 6 or Theorem 8 respectively. It can, however, be generalized in order to calculate
contours of mathematically defined surfaces. By the way, Fig. 19 illustrates that a polygon
sometimes has to be split even when the reflected oriented half rays through all its vertices
are on the same side of its carrier plane β.

5. Reflex-contours of parameterized surfaces

Let Σ be a parameterized surface

~x(u, v) with u ∈ [u1, u2], v ∈ [v1, v2]. (29)

We now define a function graph Γ above the rectangular area u1 ≤ u ≤ u2, v1 ≤ v ≤ v2: The
z-value corresponding to a point (u, v) is

z = ~n~s. (30)

Thereby ~n is the normalized normal vector in the point ~x(u, v) ∈ Σ, and ~s is the normalized
direction vector of the corresponding “projection ray” (Fig. 20). Γ and Σ are one-to-one
correspondent. The zero manifold of Γ leads to those points of Σ, the tangent planes of which
are “projecting” and thus lie on the reflex contour.

Theorem 10: The reflex contour of a parameterized surface Σ corresponds to the zero
manifold of a function graph with the equation (30).

Figure 21: Reflection of a cylinder on a sphere

When efficient algorithms are applied ([8]), reflex contours of curved surfaces can be calculated
in comparatively short periods of time (approximately 1-3 frames per second on a 500 Mhz
PC).

As an additional example, Fig. 21 shows the reflection of a cylinder of revolution on a
sphere. Note that the curves on the cylinder that lead to the reflex contour are of course
not straight lines. The image to the left is computer generated, the one to the right is a
photographic image of the reflection in (spherical) sun glasses.
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6. Conclusion and future work

We have seen that reflections on very specific surfaces like cylinders of revolution and spheres
can be treated successfully by adapted mathematical methods rather than by the application
of very general rendering algorithms. Especially the explicit knowledge of the catacaustic
surfaces of the reflection congruence can be very useful for the understanding of otherwise
hard-to-explain special effects.

Some questions, however, remain for future work:
• How can the above mentioned special surfaces be generalized so that the given formulas

can still be used? E.g., general canal surfaces (like surfaces of revolution or tubular
surfaces) are enveloped by a set of spheres. The reflexes of a point can thus be found
iteratively by means of auxiliary spheres.

• The explicit knowledge of the position of specular points on surfaces of revolution or
general canal surfaces allows an adapted triangulation of the surface. This helps to ren-
der such surfaces photo-realistic by means of hardware-supported Gouraud-shading.
In fact, we can now shade spheres and cylinders of revolution – including specular points
— in real time and without the use of ray tracing.

• We can efficiently create curved perspectives by means of reflections on cylinders of
revolution and spheres. They are very useful when we want to see “as much as possible”
in an ultra-wideangle perspective ([10]). There are still some problems, though: How
can existing hardware be used in order to speed up hidden-surface algorithms? A general
approach in this direction has been examined in [18].

• Refractions and reflections seem to be closely related. E.g., it can be shown that the
caustics are very similar. There is even a possible correspondence between refractions
and reflections. Refractions are already used for the creation of ultra-wideangle per-
spectives (fish-eye objectives!)

I have to thank W. Fuhs and H. P. Schröcker for valuable discussions about the topic.
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