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Abstract. The modeling of complex shapes usually requires a well-based space
of splines. The aim of this work is to give the construction method of such spline
space basis over the chosen class of triangulations. This basis has several useful
properties — local minimal support, low degree of polynomials. We also present
several problems, that arise in lower-degree polynomials.
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1. Introduction

For several years geometric modeling has been in the phase of finding common mathematical
background for its constructions. The construction of smooth surfaces over the given triangu-
lation also plays an important role here. Not long ago even the dimension of the space of all
piecewise polynomials over given triangulation was not known. Up to now it has only been
known for low-degree continuity. For the notion of continuity see [6], [5] or [4].

There are a lot of constructions using higher degree of polynomial pieces. They, however,
usually build just one surface or just subspace of spline space over the given triangulation and
have a large number of parameters which, on the one hand, provides the tool for controlling
the spline, on the other hand is sometimes unpredictable (and usually without geometric
interpretation), which requires some experience on the part of the user.

This is the main reason why we seek for some basis. It systematically produces all possible
splines by choosing appropriate control points. Moreover, we can precompute basis functions
at chosen sample points of the domain and substantially speed up the construction of the
final surface.

In recent years not very much successful work has been done. One construction method of
local minimal support basis is described in [3]. This, however, works only for the polynomials
of at least 5th degree. Also the author is nor very clear about how the control points influence
the function. General theory with main results can be found in [5], chapter 8.

We would like to present the construction of the basis for degree four piecewise polynomial
surface over a triangulation that is general enough. The splines will be C1 continuous over this
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domain. The basis for higher-degree piecewise polynomials can be constructed analogously,
however, over arbitrary triangulation.

In Section 2 we provide a brief outline of the notions used in geometric modeling and the
geometric interpretation of several conditions used later. Section 3 contains the dimension of
such space over constrained triangulation and Sections 4 and 5 the construction of the basis.
Its independence is proven in Section 6. Finally, the minimality of basis functions’ support is
considered in Section 7. Several conclusion remarks are put in Section 8.

2. Basic notions

2.1. Description of the domain

Here we would like to give a brief overview of the used notions and concepts. In the following
we will construct bivariate spline maps. These are piecewise polynomial maps from a subset
Ω of two-dimensional manifold into R. Ω will be divided into finite number of triangles and
each triangle will be associated with a polynomial map.

The domain Ω of bivariate spline functions can be a bounded polygon, a bounded poly-
gon with polygonal holes or it can be considered closed without any border (connected like
polyhedron or polyhedral tore etc.).

The denotation of the following definition is valid for the whole work.

Definition 2.1 The domain Ω is a subset of 2-manifold. The triangulation T of Ω is a set
of all vertices, edges and triangles of the triangulated domain. V is the number of vertices,
E is the number of edges and F is the number of triangles in the triangulation T . Further
notation is:

N — number of boundaries (holes),
VB — number of vertices of all boundaries,
VI — number of interior vertices,
EB — number of edges from all boundaries,
EI — number of interior edges.

Throughout the work we will consider only regular triangulations, where all triangles are
proper, i.e. the vertices of each triangle are non-collinear. Moreover, each boundary vertex
belongs to the only boundary.

Lemma 2.2 Let Ω be the triangulated (T ) domain of genus 0 with N boundaries (holes)
and let VB denote the number of vertices at all boundaries. Then

E = 3V − VB + 3(N − 2);

F = 2V − VB + 2(N − 2)

Note 2.3: The formulas of Lemma 2.2 could be simply generalised for domains of arbitrary
genus. But using such general domain, all further considerations stay the same, only the
mathematical formulae are slightly more complicated. Therefore, we restrict our work to the
domains of genus 0.

Definition 2.4 Let Ω be the domain with the triangulation T , n is the degree.

Pn := span {x
iyj; i ≥ 0, j ≥ 0, i+ j ≤ n}



J. Ṕılniková, P. Chalmovianský: Basis of Quartic Splines over Triangulation 163

is the space of bivariate polynomials. Let q be the order of the continuity, 0 ≤ q < n and
Cq(Ω) be the space of all functions with all partial derivatives up to q continuous.

Sq
n(T ) := {F ∈ Cq(Ω);F |4 ∈ Pn ∀4 ∈ T }

is the space of Cq continuous bivariate polynomial spline functions of degree n defined over Ω.

It is obvious that Sq
n(T ) is the linear space. We will treat with Bézier representation of splines.

The element of the space is piecewise polynomial function which is composed of triangular
Bézier patches; for each triangle 4 ∈ T there is a Bézier patch defined.

2.2. Elements of geometric modeling

First, we would like to give a brief overview of barycentric calculus in plane.
Let A0 = [x0, y0], A1 = [x1, y1], A2 = [x2, y2] be three non-collinear points in plane τ .

Then for each A ∈ τ , A = [x, y] there exist unique three numbers λ0, λ1, λ2 such that

λ0 + λ1 + λ2 = 1 and A = λ0A0 + λ1A1 + λ2A2.

We will also write that

A = (λ0, λ1, λ2) w.r.t. 4A0A1A2.

If we assume that indices will continue cyclically, each λi can be computed as follows

λi =
det(Ai−1AAi+1)

det(A0A1A2)
,

where

det(Ai−1AAi+1) =

∣

∣

∣

∣
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∣
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This notion can be easily used in any Euclidean finite dimensional space.
Further, we would like to recall the notion of ratio of three collinear points. Let A, B, C

be three collinear points such that C 6= B. Then formally we define (ABC) — the desired
ratio — as

(ABC) =
C − A

C − B

The famous Ceva theorem deals with ratio. It states the following:

Theorem 2.5 (Ceva) Let A, B, C be three non-collinear points and A′, B′, C ′ be three
points on lines BC, CA, AB, respectively and {A,B,C} ∩ {A′, B′, C ′} = ∅. Then lines AA′,
BB′ and CC ′ meet in the common point if and only if (ABC ′)(BCA′)(CAB′) = −1.

The proof is elementary and can be found in many books concerning plane geometry or affine
spaces.

Now, let us to express Ceva theorem in barycentric calculus. Let dor(A,B,C) be the
function of oriented distance of point A to line BC and dor(A,B,C) > 0 if and only if
4ABC is oriented counter-clockwise. Let the points be assigned according to Fig. 1 left.
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Let t̃i = (λi0, λi1, λi2), i = 0, 1, 2 be a point in barycentric coordinates according to 4t0t1t2.
Further, let titj t̃i; i, j = 0, 1, 2, i 6= j be non-collinear to have the presumptions of Ceva
theorem satisfied. Then we can write for t̃i

λi,i+1

λi,i−1
=
det(t̃iti−1ti)

det(ti+1t̃iti)
=
dor(t̃iti−1ti)

dor(ti+1t̃iti)
= −

(t̄i − ti−1)

(t̄i − ti+1)
= −(ti−1ti+1t̄i).

Thus, in Ceva theorem the ratio condition can be rewritten as

λ0,1

λ0,2

λ1,2

λ1,0

λ2,0

λ2,1
= 1. (1)
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Figure 1: The first (left) and the second (right) Ceva condition. While the triangle on the left
does not satisfy the first Ceva condition, on the right the second Ceva condition is satisfied.

Definition 2.6 We will say that 4t0t1t2 ∈ T satisfies the first Ceva condition if and only if
there exist 3 neighbouring triangles in T : 4t̃0t1t2, 4t0t̃1t2, 4t0t1t̃2 with titj t̃i non-collinear
for all i 6= j, i, j = 0, 1, 2 and the lines t0t̃0, t1t̃2, t2t̃2 coinciding in common point. It is
equivalent to algebraic condition (1).

Definition 2.7 We will say that two neighbouring triangles 4titjtk, 4titjtl ∈ T satisfy the
second Ceva condition if and only if there exist 4 neighbouring triangles in T (see Fig. 1 right):
4titkt1, 4tjtkt2, 4tjtlt3, 4titlt4 such that triples of points titjtn; n = 1, 2, 3, 4, tjtkt1, titkt2,
titlt3, tjtlt4 are non-collinear and for which the following holds: if t̃k is the intersection of tit2,
tjt1 and t̃l is the intersection of tit3, tjt4, then lines tk t̃k, tlt̃l, titj coincide in common point.

The second Ceva condition can also be expressed in barycentric calculus, as is presented in
the following theorem.

Theorem 2.8 Let 4titjtk, 4titjtl, t1, t2, t3, t4 be as in Definition 2.7. Let (λm0, λm1, λm2),
m = 1, 2 are the barycentric coordinates of tm w.r.t. 4titjtk and (λm0, λm1, λm2), m = 3, 4
are the barycentric coordinates of tm w.r.t. 4titjtl. Then 4titjtk, 4titjtl satisfy the second
Ceva condition if and only if

λ12

λ10

λ21

λ22
=

λ42

λ40

λ31

λ32
. (2)
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Proof: Let (2) hold. Let t̄k, t̄l ∈ titj be such points that lines tit2, tjt1, tk t̄k coincide in
a common point t̃k and similarly tit3, tjt4, tlt̄l coincide in t̃l. Let t̄k = λk0ti + λk1tj and
t̄l = λl0ti + λl1tj. Then from (1)

λ12

λ10

λ21

λ22
=

λk1

λk0
and

λ42

λ40

λ31

λ32
=

λl1

λl0

and from (2)

λk1

λk0
=

λl1

λl0
.

Since λk0 + λk1 = λl0 + λl1 = 1, we have t̄k = t̄l and therefore 4titjtk, 4titjtl satisfy the
second Ceva condition.

Now, let the second Ceva condition be satisfied. Let t ∈ titj, t = λ0ti+λ1tj be such point
that

λ12

λ10

λ21

λ22

λ0

λ1
= 1 and

λ42

λ40

λ31

λ32

λ0

λ1
= 1,

which directly implies (2).

3. Constraints

As mentioned above, we will focus on S14(T ). We require the triangulation T to satisfy three
following conditions:
1. Let [ti, tj ] be an interior edge and the triangles4titjtk ∈ T and4titjtl ∈ T . We require
that the points tk, ti, tl are non-collinear and also the points tk, tj , tl are non-collinear
(see Fig. 2).

2. No triangle of T satisfies the first Ceva condition.

3. No two neighbouring triangles of T satisfy the second Ceva condition.

�	�

�	�
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Figure 2: Unacceptable situation of two neighbouring triangles (constraint 1).

Note 3.1: Let us have a brief look at barycentric coordinates in T . Let 4t0t1t2,4t̃0t1t2 ∈ T
have a common edge [t1t2]. Let λ0, λ1, λ2 be barycentric coordinates of t̃0 w.r.t. 4t0t1t2:

t̃0 = λ0t0 + λ1t1 + λ2t2.

Then

λ0 6= 0, λ1 6= 0, λ2 6= 0.
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Actually, if λ0 = 0, then t̃0 lies on the line determined by [t1t2] and 4t̃0t1t2 is not a
proper triangle. If λ1 = 0, then t̃0, t1, t2 are collinear and the situation does not respect the
first constraint put on the triangulation. The case λ2 = 0 is similar to λ1 = 0.

Theorem 3.2 The dimension of S14(T ) satisfies

dim(S14(T )) = 6V + 3(N − 2) (3)

For the proof see [5], or [7].

Definition 3.3 Let dim = dim(S14(T )). Let Ei : Ω→ R; i = 1, . . . , dim is a basis of S14(T ).
Each F ∈ S14(T ) can be uniquely expressed as a linear combination of the basis elements:

F = d1E1 + d2E2 + . . .+ ddimEdim.

Points di ∈ R; i = 1, . . . , dim are called control points of F w.r.t. the basis E1, . . . , Edim.

For each Ej from the basis of S14(T ) we will try to get as small support as possible. The
smaller the support of Ej , the ”more local” alteration of the function F =

∑

diEi when the
control point dj is moved.

Now, we are looking for the basis of S14(T ). We will proceed as follows:
First we will ask if Ωj ⊂ Ω is a suitable support for a basis function Ej. It has to be

large enough to be able to define Ej over it. For instance, Ej can not be defined such that
its support consists of the only triangle whose all 3 vertices are interior w.r.t. Ω, because the
Ej(u) = 0 ∀u ∈ Ω; thus Ej is not basis function.

In the second step, when the suitable support Ωj for the basis function is found, we will
define Ej such that supp Ej = Ωj.

4. Basic basis functions

In this section we formulate the construction of basis functions.
Let Ωj ⊂ Ω and Tj ⊂ T be the corresponding triangulation of Ωj. Then V j, V

j
B, V

j
I , . . .

denote the number of vertices from Tj, boundary (w.r.t. Tj) vertices from Tj, interior vertices
from Tj and so on. Let Ωj have just one boundary.

Further, let S14(Tj) be defined similarly to S14(T ):

S14(Tj) := {F ∈ C1(Ωj);F |4 ∈ Pn ∀4 ∈ Tj}

Now, let us look at a special subspace of S14(Tj).

Definition 4.1 Let Tj be the triangulation of Ωj. Then let ∂Ωj be the boundary of Ωj.
S̃14(Tj) is such subspace of S14(Tj) that the following conditions hold for each F ∈ S̃14(Tj) and
u ∈ ∂Ωj:

F (u) = 0

DeF (u) = 0 for each vector e,

where DeF is the directional derivative of F in the direction of vector e.

Lemma 4.2 Let Tj ⊂ T be the triangulation of Ωj ⊂ Ω. If dim(S̃14(Tj)) > 0, then there
exists a non-zero function Ej ∈ S14(T ) such that supp Ej = Ωj and, moreover, Ej|Ωj

∈ S̃14(Tj).
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Proof: Let dim(S̃14(Tj)) > 0. Then there exists a non-zero E ′j ∈ S̃14(Tj). Let us define Ej as
follows:

Ej(u) =

{

E ′j(u) if u ∈ Ωj

0 otherwise.

Since for each u ∈ ∂Ωj it holds that E ′j(u) = 0 and DeE
′
j(u) = 0 for each e, the function Ej

is C1 continuous and thus Ej ∈ S14(T ). The properties supp Ej = Ωj and Ej |Ωj
= E ′j follow

from the definition of Ej.

Note 4.3: The reverse implication of the previous lemma does not hold if ∂Ωj ∩ ∂Ω 6= ∅. In
this case all functions from S̃14(Tj) have to be zero on the common part of the boundary and
all its directional derivatives have to be zero here as well. But for the functions from S14(T )
this is not required.

To avoid awkward situations occurring on the boundary of Ω, first we will restrict our
consideration to the domains with no boundary. Boundary conditions will be added later.

Definition 4.4 Let t be the vertex from T . Then the star of the vertex t is the subspace
Ω(t) ⊂ Ω, which is defined as follows:

T (t) = {t} ∪ {ti; [t, ti] ∈ T } ∪

{[t, ti]; [t, ti] ∈ T } ∪ {[ti, tj ]; [t, ti] ∈ T , [t, tj ] ∈ T } ∪

{4ttitj; 4ttitj ∈ T }

is the triangulation of the star of t and

Ω(t) =
⋃

P ;P ∈ T (t).

Lemma 4.5 Let Ωj be the star of the interior vertex tj ∈ T . Then

dim(S̃14(Tj)) = 3.

���

Figure 3: The support of F ∈ S̃14(Tj). The zero Bézier control points
are sketched as black circles.

Proof: According to (3), dim(S14(Tj)) = 6V
j − 3 = 6(1 +mj) = 6mj + 3, where mj is deg tj .

The dimension of S̃14(Tj) is smaller, because of the constraints put on the boundary of S̃
1
4(Tj).

For F ∈ S̃14(Tj) it holds that F (u) = 0; u ∈ ∂Ωj. It implies that all Bézier control points
of F defined over the boundary of Ωj are zero. Moreover, since DeF (u) = 0 for each u ∈ ∂Ωj,
also the second line of control points next to the boundary contains only zero Bézier control
points (see Fig. 3). The dimension of S̃14(Tj) can be expressed as a number of Bézier control
points whose values can be arbitrarily chosen if the mentioned points are zero.
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To construct a function from S14(Tj) we need to set

dim(S14(Tj)) = 6mj + 3

suitable values of its Bézier control points, the others are determined by C1 continuity. But
since F ∈ S̃14(Tj), the properties of this subspace have caused some of their values to be zero.
Let us count them.

For each vertex from the boundary of Ωj let us consider four Bézier control points: one
defined exactly over it and three defined over the neighbouring abscissae lying in the incident
edges from Tj. Let us choose three of them which are non-collinear and set them to zero.
Then, because of the C1 continuity, also the fourth one is zero. We have set 3mj control
points.

For each boundary edge from Tj (boundary w.r.t. Ωj) let us set the rest of the control
points defined over it to zero. We have set mj control points.

For each boundary edge from Tj there are two Bézier control points of the neighbouring
line that have to be set to zero. Doing it we have set 2mj control points.

Together we have set 6mj Bézier control points. So for each F ∈ S̃14(Tj) there are only
dim(S14(Tj))− 6mj = 3 control points left to be arbitrarily set and thus dim(S̃

1
4(Tj)) = 3.

According to Lemma 4.5 we know that the star of the interior vertex is large enough to
construct up to three linearly independent functions such that Ωj is their support.

Let [titj] be an interior edge from T . Denote by a0, . . . , a4 abscissae on [titj]. Let b0, . . . , b4
be corresponding Bézier control points. If E is a function whose support is the star of ti, then
b2 = b3 = b4 = 0. If E is a function whose support is the star of tj, then b0 = b1 = b2 = 0.
Otherwise, if the support of E is the star of any other vertex from T , b0 = b1 = . . . = b4 = 0.
We see that b2 = 0 for each interior edge. So, we are looking for such functions that have a
non-zero control point assigned as b2.

Definition 4.6 Let [ti, tj ] be the edge of T . Then the star of the edge [ti, tj ] is the subspace
Ω([ti, tj ]) ⊂ Ω which is defined as follows:

T ([ti, tj ]) = {ti, tj , [ti, tj ]} ∪

{tk, [ti, tk], [tj , tk],4titjtk; 4titjtk ∈ T } ∪

{tl, [ti, tl], [tk, tl],4titktl; 4titjtk ∈ T ,4titktl ∈ T } ∪

{tm, [kj , tm], [tk, tm],4tjtktm; 4titjtk ∈ T ,4tjtktm ∈ T }

Ω([ti, tj ]) =
⋃

P ;P ∈ T ([ti, tj]).

Let ti, tj be interior vertices. Note that if deg ti ≥ 5 and deg tj ≥ 5, then the star of [ti, tj ]
contains no interior vertex with respect to this star. But when deg ti or deg tj or both of them
are at most 4, then the star of [ti, tj ] may contain one or two such interior vertices (see Fig.
4).

Lemma 4.7 Let ti, tj be the interior vertices, [ti, tj ] ∈ T . Let Ωij ⊂ Ω be the star of [ti, tj ].
Then dim(S̃14(Tij)) ≥ 1 and, moreover, there exists F ∈ S̃14(Tij) such that its Bézier control
point over the midpoint of [ti, tj ] is non-zero.

Proof: Let abscissae of F ∈ S̃14(Tij) be denoted as in Fig. 5. Let bi be Bézier control point
over ai for i = 1, . . . , 11. Because of the conditions put on S̃14(Tij), only b1, . . . , b11 can have
non-zero value, other control points are zero. Because of C1 continuity there are just 10
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Figure 4: The star of the edge [titj] — two different shapes: the left one contains
an interior vertex while the right one does not.

conditions put on b1, . . . , b11 (they are sketched in Fig. 5). It holds that dim(S̃
1
4(Tij)) is equal

to the dimension of the solution space of the mentioned system of 10 equations and therefore,
dim(S̃14(Tij)) ≥ 1. Now we only need to find out if there exists F ∈ S̃14(Tij) such that its
Bézier control point b11 is non-zero.
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Figure 5: The star of the edge [titj]; ai is abscissa of Bézier control point bi.

First we need to assign the barycentric coordinates of several points:

t1 = (λ10, λ11, λ12) w.r.t. 4titjt0,
t2 = (λ20, λ21, λ22) w.r.t. 4titjt0,

t3 = (λ30, λ31, λ32) w.r.t. 4titjt5,
t4 = (λ40, λ41, λ42) w.r.t. 4titjt5,
t5 = (λ50, λ51, λ52) w.r.t. 4titjt0.
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The solution space S of the system of 10 equations can be expressed as an intersection
S = S1 ∩ S2 ∩ S3, where

S1 is a solution space of 4 equations put on b1, . . . , b5,
S2 is a solution space of 4 equations put on b6, . . . , b10,
S3 is a solution space of 2 equations treating with b11.

Let us find S1:
λ11b1+λ12b2 = 0

λ10b2+λ11b3 = 0
λ20b3+λ21b4 = 0

λ22b4+λ20b5 = 0

Let b3 be chosen arbitrarily. Then

b2 = −
λ11

λ10
b3, b1 =

λ12

λ10
b3, b4 = −

λ20

λ21
b3, b5 =

λ22

λ21
b3.

All coefficients are non-zero (see Note 3.1 after the constraints put on the triangulation) and
therefore they can occur in the denominator.

Similarly we find S2. After choosing b8 arbitrary

b7 = −
λ30

λ31
b8, b6 =

λ32

λ31
b8, b9 = −

λ41

λ40
b8, b10 =

λ42

λ40
b8.

Let us find S3 and then S1 ∩ S2 ∩ S3:

b10 = λ52b1 + λ51b11, b6 = λ52b5 + λ50b11

implies

(λ50
λ31

λ32
− λ51

λ40

λ42
)b11 = λ52(

λ12λ40

λ10λ42
−

λ22λ31

λ21λ32
)b3.

Since

λ50
λ31

λ32
6= λ51

λ40

λ42
and

λ12λ40

λ10λ42
6=

λ22λ31

λ21λ32

(see the second and the third constraint), a solution with non-zero b11 surely exists.

The proof of Lemma 4.7 is stronger than its assertion. It also implies the following properties:

Corollary 4.8 Let F be the function satisfying the conditions of Lemma 4.7 and b1, . . . , b11
be its Bézier control points (assigned as in the proof). Then

1. bi 6= 0; i = 1, . . . , 11,

2. The values of b1, . . . , b11 can be obtained by setting the value of their arbitrary point
and calculating all the others according to C1 continuity conditions.

5. Boundary basis functions

As noted after Lemma 4.2, to find a basis function of S14(T ) which is non-zero somewhere on
the boundary of Ω, we must use a slightly different approach.
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Definition 5.1 Let T be the triangulation of the given domain Ω. Then the extended tri-
angulation T ′ is defined as follows:

T1 = T ∪ {tij, [ti, tij ], [tj , tij ]4titjtij;

tij is exterior to Ω and not at titj line; [ti, tj ] ∈ T is boundary edge w.r.t. T }

T ′ = T1 ∪ {[tij, tjk],4tjtijtjk;

tj ∈ T is boundary vertex w.r.t. T and deg tj ≥ 5 w.r.t. T1} ∪

{tj0, [tj , tj0], [tij , tj0], [tj0, tjk],4tjtijtj0,4tjtj0tjk;

tj ∈ T is boundary w.r.t. T and deg tj = 4 w.r.t. T1}

All added objects are non-degenerated and the objects of the same dimension have non-
intersecting relative interiors. The constraints put on the triangulation T are valid also for
T ′. Then Ω′ =

⋃

P ;P ∈ T ′ is called the extended domain.

Definition 5.2 Let Ωj be the star of the boundary vertex tj ∈ Ω. Let Ω
′
j be the star of the

vertex tj in the extended domain Ω′, let T ′j be the corresponding triangulation of Ω′j. Then

S̄14(Tj) = {F ∈ S14(Tj);F = F ′|Ωj
where F ′ ∈ S̃14(T

′
j )}.

Lemma 5.3 Let Ωj ⊂ Ω be the star of the boundary vertex tj ∈ T . Then dim(S̄
1
4(Tj)) = 4.

Proof: It is very similar to the proof of Lemma 4.5.

Definition 5.4 Let Ωij be the star of the edge [ti, tj ] ∈ Ω, where ti or tj or both of them lie
on the boundary. Let Ω′ij be the star of the edge [ti, tj] in the extended domain Ω′. Then

S̄14(Tij) = {F ∈ S14(Tij);F = F ′|Ωij
where F ′ ∈ S̃14(T

′
ij)}.

Lemma 5.5 Let Ωij ⊂ Ω be the star of [ti, tj ] ∈ T , where ti or tj or both of them are the
boundary vertices (w.r.t. T ). Then dim(S̄14(Tij)) ≥ 1 and, moreover, there exists F ∈ S̄14(Tij)
such that its Bézier control point over the midpoint of [ti, tj ] is non-zero.

Proof: This lemma is a direct corollary of Lemma 4.7.

6. Independence of functions

This section deals with the independence of the above constructed functions. Actually, we
prove that they form a basis of S14(T ).

Definition 6.1 Let Ωj be the star of tj ∈ T . If tj is the interior (boundary) vertex, then the
triplet (quadruplet) of linearly independent functions Eji ∈ S14(T ); i = 1, . . . , 3(4) such that

1. supp Eji = Ωj

2. Eji|Ωj
∈ S̃14(Tj) (S̄

1
4(Tj))

is called the basis of the star of tj.

Let B1 ⊂ S14(T ), B1 contains 3VI + 4VB = 3V + VB functions: for each vertex tj there is a
basis of its star.
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Lemma 6.2 B1 is a linearly independent set of functions.

Proof: The functions from B1 are linearly independent if and only if their control nets are
linearly independent. The second assertion is true (the considerations are very similar to
those you will find in more detail in the proof of Lemma 6.4).

Definition 6.3 Let ti, tj ∈ T , [ti, tj ] ∈ T and let Ωij is the star of [ti, tj ]. Let Eij ∈ S14(T )
be such function that

1. supp Eij = Ωij

2. Eij|Ωij
∈ S̃14(Tij)(S̄

1
4(Tij) in case ti or tj is boundary)

3. Bézier control point over the medium of [ti, tj ] is non-zero.

4. ∀t ∈ T : Eij(t) = 0 and DeEij(t) = 0 for each e.

Then Eij is called the basis function over the edge [ti, tj ].

The definition of the basis function over the edge is correct. Each edge possesses such function.
Really, according to Lemma 4.7 and Lemma 5.5 it is always possible to find E ′

ij satisfying the
first three conditions from the definition:

If deg ti ≥ 5 and deg tj ≥ 5, then supp E ′ij has no local interior edge and thus Eij = E ′ij
is the basis function over [ti, tj ] satisfying also the fourth condition of the definition.

If deg ti ≤ 4 then ti is the interior vertex of supp E ′ij. Let Ei0, Ei1, Ei2 be a basis of
the star of ti. Let Ei = d0Ei0 + d1Ei1 + d2Ei2 be such function that Ei(ti) = E ′ij(ti) and
DeEi(ti) = DeE

′
ij(ti) ∀e. According to the definition of the basis of the star it is always

possible to find such function. Then Eij = E ′ij−Ei is the desired basis function over the edge
[ti, tj ].

The case of deg tj ≤ 4 is similar.
Let B2 be such subset of S

1
4(T ) that for each edge [ti, tj ] there exists one of basis functions

over [ti, tj ] in B2.

Lemma 6.4 B2 is a linearly independent set of functions.

Proof: If B2 is not a linearly independent set, then ∃Fi ∈ B2 such that it is possible to omit
it, i.e., the space generated by B2 and the space generated by B2 \ {Fi} are the same. We will
show that no function can be omitted and so B2 is a linearly independent set.

Let 4t0t1t2 ∈ T . We will treat 4t0t1t2 and the neighbouring triangles. The whole
situation is illustrated in Fig. 6. Let F0 be the basis function over the edge [t1, t2], F1 over
[t2, t0] and F2 over [t0, t1]. Further, let t̃i = λi0t0 + λi1t1 + λi2t2; i = 0, 1, 2.

Let F =
∑

dkFk; Fk ∈ B2. The same equations hold for control nets of F, Fk.
Let b1, b3, b5 be Bézier control points of F over abscissae a1, a3, a5 (see Fig. 6). Let b

i
1, b

i
3, b

i
5

be Bézier control points of Fi over abscissae a1, a3, a5, i = 0, 1, 2. The control points b1, b3, b5
of F are affected only by corresponding points of F0, F1 and F2, i.e.

bj = d0b
0
j + d1b

1
j + d2b

2
j ; j = 1, 3, 5.

We will prove that for each triplet of values b1, b3, b5 ∃F ;F = d0F0 + d1F1 + d2F2 such that
b1, b3, b5 are the values of Bézier control points over a1, a3, a5 and therefore no function of
F0, F1, F2 can be omitted.
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Figure 6: Triangle t0t1t2 and its neighbours; ai is the abscissa of Bézier control point bi.

C1 continuity makes Bézier control points of F0 to satisfy:

0 = λ20b
0
6 + λ210 + λ22b

0
5

0 = λ200 + λ21b
0
6 + λ22b

0
1

0 = λ100 + λ11b
0
1 + λ12b

0
2

0 = λ10b
0
2 + λ11b

0
3 + λ120

Let b01 be the control point of all non-zero ones of F0, which is arbitrarily chosen, others are
determined by C1 continuity (see Corollary 4.8):

b03 =
λ10

λ12
b01, b05 =

λ20

λ21
b01.

Similar situation holds also for the functions F1, F2. Let b15 be the arbitrarily chosen control
point of F1. Then

b11 =
λ21

λ20
b15, b13 =

λ01

λ02
b15.

And for F2 let b
2
3 be arbitrarily chosen. Then

b25 =
λ02

λ01
b23, b21 =

λ12

λ10
b23.

The conditions bj = d0b
0
j + d1b

1
j + d2b

2
j ; j = 1, 3, 5 give a system of three equations with d0,

d1 and d2 as unknowns:

d0b
0
1 + d1

λ21

λ20
b15 + d2

λ12

λ10
b23 = b1

d0
λ10

λ12
b01 + d1

λ01

λ02
b15 + d2b

2
3 = b3

d0
λ20

λ21
b01 + d1b

1
5 + d2

λ02

λ01
b23 = b5.
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The determinant of the system is

D = b01b
1
5b
2
3(2− λ−

1

λ
), where λ =

λ01

λ02

λ12

λ10

λ20

λ21
.

D = 0 iff λ− 2 +
1

λ
= 0,

but this means that λ = 1 which, according to (1), is impossible.

Lemma 6.5 B = B1 ∪ B2 is a linearly independent set of functions.

Proof: span B1 ∩ span B2 contains only zero function. Really, all functions in B1 have zero
Bézier control point over the midpoint of each edge in its domain. On the other hand every
non-zero function in B2 has at least one of these points non-zero, thus it cannot belong to
span B1. Similarly all functions in B2 have zero Bézier point and zero directional derivatives
associated with each vertex of the domain unlike the non-zero functions in B1.

Theorem 6.6 B is a basis of S14(T ).

Proof: From the previous lemma, B is linearly independent. For the cardinality of B holds

|B| = |B1|+ |B2| = 3V + VB + E = dim(S14(T )).

7. Minimality

Definition 7.1 The subset Ωj of Ω is called minimal support if ∃Fj ∈ S14(T ) such that
supp Fj = Ωj and for each non-zero F ∈ S14(T ) such that supp F ⊂ Ωj holds that supp F =
Ωj. We will say that the function Fj has minimal support.

In the final part of the paper we would like to say a few words about the minimality of our
basis support. Again, we will return to the domain with no boundary. Moreover, for all t ∈ T
we require that deg t ≥ 5.

Lemma 7.2 Let Ωj be the star of interior vertex tj ∈ T . Then Ωj is the minimal support.

Proof: Let E ∈ S14(T ); supp E ⊂ Ωj, E|Ωj
∈ S̃14(Tj). Let 4i = 4tjtiti+1 not belong to the

support of Ej , i.e. Ej(t) = 0 for t ∈ 4i. Then all Bézier control points over 4i are zero.
Then, because of C1 continuity along the edge [tjti] also all control points over the triangle
4i+1 of the line next to the edge [tjti+1] are zero. Also the control points over the boundary
of Ωj and of the neighbouring line are zero. The remaining control points over the center of
[tjti+2] are zero because of C

1 continuity along this edge. So 4i+1 does not belong to the
support of E either, and so on. Therefore, E is zero function.

Lemma 7.3 Let t0, t1, t2 ∈ T are interior of at least 5th degree. Let 4t0t1t2 ∈ T . Let Ω012
consist of triangles 4t0t1t2, 4t̃0t1t2, 4t0t̃1t2, 4t0t1t̃2. Then dim(S̃

1
4(T012)) = 0.
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Proof: Let us try to find a function F from S14(T ) such that supp F = Ω012 and F |Ω012
∈

S̃14(T012).
Because of the condition put on S̃14(T012), two rows of Bézier control points along ∂Ω012

contain only zero points. There are only six points left: b1, . . . , b6 such that we do not know
whether they can be non-zero (see Fig. 6).

Let t̃i = λi0t0 + λi1t1 + λi2t2. Because of C
1 continuity along the edge [t2, t0] the points

b1, b2, b3 satisfy:

0 = λ100 + λ11b1 + λ12b2

0 = λ10b2 + λ11b3 + λ120

and so on. The matrix of this set of equations is as follows:
















λ11 λ12 0 0 0 0
0 λ10 λ11 0 0 0
0 0 λ00 λ01 0 0
0 0 0 λ02 λ00 0
0 0 0 0 λ22 λ20
λ22 0 0 0 0 λ21

















.

The matrix is singular if and only if

λ12

λ10

λ01

λ02

λ20

λ21
= 1.

But the last equation is never valid according to our assumption (see the second constraint
put on the triangulation).

Lemma 7.4 Let ti, tj be interior vertices from T , [titj] ∈ T of at least 5th degree. Let
Ωij ⊂ Ω be the star of [titj]. Then Ωij is the minimal support for such functions whose Bézier
control point over the midpoint of [ti, tj ] is non-zero.

Proof: Let the vertices of the star of [ti, tj ] be denoted as in Fig. 5. Let F ∈ S14(T ) be such
function that supp F ⊂ Ωij, supp F 6= Ωij and F |Ωij

∈ S̃14(Tij). First, let 4titjt0 not belong
to the support of F . Then all Bézier control points over 4titjt0 are zero. We can simply
check that then, because of C1 continuity, all control points over all the remaining triangles
from Tij are zero and so F is a zero function.

Now, let4tit0t1 not belong to supp F . Then due to C1 continuity4tjt2t0 does not belong
to supp F either. What remains is the triangle 4tjtit5 with 3 neighbouring triangles. But
according to Lemma 7.3, the domain is too small to be a support for such function and so F
is zero.

8. Conclusion and future work

We have presented several facts about spline spaces and the dimension of the fourth degree
piecewise polynomial space over the given triangulation, which we would like to extend to
a wider class of triangulations containing also more specific relations of triangles. This is
directly connected to the construction of basis over such triangulation.

We also try to construct a basis for lower degree polynomials. This seems to be a tougher
task. The question also remains open about higher continuity spline space over the given
triangulation. The first step would be to find the dimension of such space.
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