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Abstract. To four positions of an object in the Euclidean plane there exists
an infinite set of four-bar linkages interpolating these given positions. The set
contains an interpolating slider-crank as a special case.

The design of such a mechanism is based on geometric reasoning and the use of
elementary geometric theorems. Usually such theorems and geometric mappings
are proved by kinematic arguments. But they are also interesting for their own,
independently from the kinematic point of view. There occur e.g. configurations
of circles and lines related to Miquel’s configuration in a (real) Moebius plane.
Beginning with their kinematic aspects, some ‘elementary’ geometric theorems
are discussed and generalized.
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1. Introduction

Human synovial joints are more or less ‘shaky’ kinematic structures with gliding surfaces
and fixing, resp. steering tendon apparatus. Elasticity and far reaching possibilities for other
joints to compensate lacks of mobility allow joint prostheses, which extremely simplify the
natural joint’s kinematics. Starting point of our investigations was the analysis of the kine-
matics of the lower ankle joint, based on surgical experiments (cf. Acknowledgement). Sensors
implanted into the heel bone produce data-files of positions in space. The resulting three-
dimensional scattered point sets are approximated by planar forced motions, modeling the
tip-over sideways movement of the lower ankle joint. By choosing a set of reasonable positions
of the heel bone, one can finally approximate this tip-over movement by a four-bar mechanism
in a seemingly satisfying manner. Problems of this kind have already been widely discussed
(cf. [2], [1], [4], [6], [7], [8], [11], and many others). While Bottema and Roth (1979) prefer
an analytic approach, Lichtenheld (1959) treats such problems in a graphic-constructive
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way. Thereby, geometric reasoning is based on elementary geometric theorems, e.g. on the
theorem concerning the angle at the center and at the circumference of a circle. Another
important tool is the following well known Theorem of Wallace (cf. e.g. [9] or [3]):

Lemma 1: The reflection of the orthocenter of a triangle T in the sides gives three points
on the circumcircle c of the triangle T . For points X on c of T , and only for these points, the
reflection in the sides produces collinear mirror images. The line through these images passes
through the orthocenter of the triangle and is called Wallace line of X for the given triangle.

As the poles for n given positions of an object in the plane show surprising incidences and
configurations which forge links between kinematics and Euclidean circle-geometries, it seems
to be worthwhile to treat such facts for their own sake and extend them e.g. to Moebius
geometry or to iterative processes.

2. Three positions, the isogonal relation

Let Si = {Ai, Bi, . . . , Xi} be a set of points
in the Euclidean plane, whereby the index
i denotes an arbitrary position of this set.
In general, the displacement defined by two
such positions Si, Sj is a rotation about the
‘pole’ Pij . Let three positions S1, S2, S3 be
given such that the mutual displacements be-
tween any two define poles forming a triangle
P12P23P31. For any point X1 ∈ S1 we then
receive the homologous positions X2 and X3

by factorizing the rotations into reflections
in two pairs of sides of the pole triangle. So
there exists a common mirror image X for
any triplet of homologous points X1, X2, X3,
which turns out to be isogonally related to
the circumcenter MX of X1X2X3 (cf. Fig. 1
and [1], p. 228 or [8]). That is, the directed
angles e.g. ^XP12P31 and ^MXP12P23 are
opposite. Hence it follows from Lemma 1
that the orthocenter and the circumcenter of
a triangle are a pair of isogonal points. An-
other consequence is (cf. [5])

A2

P

A1

B1

X

12

1

X
MX

B2

S2

X2

P23

B3
S3

A3 X3

P31

S1

Figure 1: Three-position theory and the
isogonal relation

Lemma 2: If and only if X is a point on the circumcircle of a triangle, its isogonal point C
with respect to that triangle is an ideal point in orthogonal direction to the Wallace line of
X.

The isogonal relation turns out to be an involutory quadratic transformation with the pole
triangle as the singularity set. It is well known that each pair of isogonally related points
represents a pair of focal points of a conic touching the sides of the pole triangle. By using
the theorem on the angle of circumference of a circle, one can furthermore prove the following
(cf. Fig. 2)
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Theorem 1: The circumcircles of the four triangles X1P12P31, X2P23P12, X3P31P23, and
X1X2X3 pass through a common point FX .

This Theorem 1 is a counterpart to the following obvious extension of a theorem in [10], p.
258:

Theorem 2: The circumcircles of the four trianglesX1X2P12,X2X3P23,X3X1P31, and P12P23

P31 have a point GX in common.

Theorems 1 and 2 are also related to a well-known theorem of Miquel (cf. e.g. [9]), which states
that the four circumcircles of the sub-triangles of a complete quadrilateral pass through one
point. This relationship suggests that Theorem 1 and 2 can be ‘transferred’ into the Moebius
plane. (This transference is based on the generic term ‘Moebius circle’ for both, ‘circle’ and
‘line’, and is left to the reader.)
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Figure 2: Concurrent circumcircles
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Figure 3: Wallace line of the common point
of four circumcircles

Applying Lemma 2 one can say more about the point GX of Theorem 2 (cf. Fig. 3):

Theorem 3: The reflection of GX in the sides of the pole triangle P12P23P31 produces three
collinear points on the Wallace line gX of GX , which passes through the orthocenter O of the
triangle and the common mirror-image X of the points X1, X2, X3 .

In a ‘dual’ generalization of Theorem 1 a line x0 is reflected in the sides of a triangle P12P23P31

(cf. Fig. 4):

Theorem 4: The reflection of a line x0 in the sides of a triangle P12P23P31 produces a tri-
lateral x1x2x3, which is perspective to the original triangle. The center of this perspectivity
is the incenter I of x1x2x3, and it is also a point of the circumcircle of P12P23P31. The radius
of the incircle of x1x2x3 equals the distance of x0 to the orthocenter O of P12P23P31.

A simple proof is based on the reflection of a line y0 parallel to x0, passing through the
orthocenter O of P12P23P31, in the sides of this triangle (cf. Fig. 4).

Let us return to Theorem 1 and discuss the relative position of the point FX to X and
the pole triangle P12P23P31 (cf. Fig. 5):
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Figure 4: Reflecting a line in the sides of a triangle

Theorem 5: Let C1, C2, C3, and MX denote the circumcenter of the triangles X1P12P31,
X2P23P12, X3P31P23, and X1X2X3, respectively, and let FX be the common point of the
circumcircles of these triangles. The reflection of FX in the sides of C1C2C3 gives the poles
P12, P23, P31 . The reflection of Ci in the ‘new’ sides PijPki (i, j, k = 1, 2, 3) produces three
points Mi, which are the circumcenters of triangles XPijPki. A final reflection of Pij in the
sides MiMj of this new triangle leads back to point X as a common mirror image.

Theorem 5 shows that a certain process of three consecutive reflections defines a mapping of
points X via triangles to points FX . It seems to be expedient to begin with the arbitrarily
given point X together with the triangle M1M2M3 and by reflecting X in the first triangle
receiving a second triangle P12P23P31. The ‘reflection’ — roughly speaking — of the first
triangle in the second defines a third triangle C1C2C3. Finally, by reflecting the second
triangle in the third we end up with the point FX .

A variation of the mentioned iterative reflection process is the following one: Let a triangle
T1 and an interior point X be given. The reflection of X in the sides of T1 produces a triangle
T2, reflecting X in T2 gives T3, reflecting X in Ti gives Ti+1, i ∈ N (cf. Fig. 6). It turns out
that the set of triangles Ti splits up into (in general) three subsets of similar triangles.

In Fig. 6 it is shown how the angles of T1 are split up by transversals from X to the
vertices of T1 and how the parts are rearranged in T2 and T3 until they finally are recomposed
in T4. Thus σ : T1 7→ T4 is (in general) a similarity and X is the fixed point of σ. So the
iteration process I : T1 7→ T2 7→ . . . 7→ Ti is attractive or repulsive according to the similarity
factor of σ which can be s < 1 or s > 1. (For acute T1 and an inner point X the process is
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Figure 5: Reflection in the triangle of circumcenters

attractive with one exception, namely T1 being equilateral and X its center.) If X coincides
with the orthocenter of T1, there occur only two subsets of similar triangles, and the triangles
of each subset are X-perspective.
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Figure 6: Reflection triangles Ti of a point X
in triangles Ti, (i = 1, 2, . . .)
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Figure 7: Orbits of vertices of T1 under
iterative reflection of X in Ti

Fig. 7 shows the path polygons of the vertices of T1 under the iteration process I. The orbits of
the orthocenter of T1 and the point FX associated to X according to Theorem 1 are presented
in Fig. 8 and Fig. 9, respectively, while Fig. 10 and Fig. 11 show the orbit of the circumcenter
of T1 resp. the diagram of the radii of Ti.
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Figure 8: Orbit of orthocenter of T1 under
iteration I

Figure 9: Orbit of FX under
iteration I

Figure 10: Orbit of circumcenter of T1

under iteration I
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Figure 11: Diagram of radius lengths of the
circumcircles of Ti

3. Four positions

In the following we start with four positions Si of the set of points Si = {Ai, Bi, . . . Xi, . . .} in
the Euclidean plane and want to interpolate these positions by a four-bar linkage or a slider
crank. This problem is equivalent to the finding of (at least) two quadruples of homologous
points X1, . . . , X4 and Y1, . . . , Y4 on a circle or on a line. This problem has e.g. been solved
in [5] and in [1], p. 235.

The four consecutive positions Si (i = 1, . . . , 4) are realized by three rotations with centers
P12, P23, P34. For the remaining pairs of positions, the poles P31, P24 and P41 are added, and we
receive the complete pole plan of the four given positions. Any three positions Si, Sj, Sk give
rise to one of four pole triangles (cf. chapter 2). Let T 4 := P12P23P34 and T 1 := P23P34P42

be two of these triangles. Then, because of Lemma 1 and 2, the line w connecting the
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orthocenters O4 of T 4 and O1 of T 1 is at the same time the Wallace line of a point W 4 on the
circumcircle c4 of T 4 and of point W 1 on the circumcircle c1 of T 1. Hence, e.g. W 4 is isogonal
to the ideal point U 4

0 which describes the direction orthogonal to w. (By Theorem 4 the point
W 4 can be interpreted as the degenerated mirror image of w at T 4.) As a consequence, the
mirror images of X4

0 := W 4 with respect to T 4 are the (collinear) positions X1, X2, X3 on w
of a point X of the given point set S. Applied to W 1 =: X1

0 the same considerations lead to
the collinear positions X2, X3, X4. Thus, all positions Xi are collinear with w. We will receive
the same result if starting with the triangles T 2 := P13P34P41 and T 3 := P12P24P41 .

Hence, the four triangles T i have collinear orthocenters Oi (cf. Fig. 12 and [5]). By similar
considerations one can prove that the four circumcircles ci of T i have a common point Y0 and
that the isogonal points W i, together with this point Y0, are concyclic (cf. Fig. 12).
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Figure 12: Configuration of the four pole triangles of four given positions

We summarize these remarkable facts in

Theorem 6: In (planar) four-position theory the four pole triangles Y0 have their orthocen-
ters Oi on one line w, and their circumcircles have one point Y0 in common. This point Y0

and the (degenerated) mirror images W i of w at T i are located on the same circle.

Let the poles P12, P23 and P34 be given, as well as the angles of rotation ϕ12 : S1 → S2,
ϕ23 : S2 → S3 and ϕ34 : S3 → S4. Then it is possible to complete the configuration of the
poles by taking into account that e.g. ^P23P12P31 = ϕ12/2. Therewith, an arbitrary point
X1 determines the positions X2, X3, X4 as well as X i

0. (Thereby each X i
0 is the mirror image

of Xj, (j = 1, . . . , 4), with respect to the triangle T i of the pole configuration.) Obviously,
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the circle with center P12 through X1 also passes through X2, X
3
0 and X4

0 . As there are six
such circles and all together eight points, and each circle contains four of these eight points
and each point belongs to three circles, this configuration is the well known configuration of
Miquel (cf. Fig. 13).

Theorem 7: In (planar) four-position theory any quadruple of homologous points Xi and
their mirror images Xi in the pole triangles T i of the four positions are in Miquel’s configu-
ration, that will say, they are — four by four — located on circles.
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Figure 13: Miquel’s configuration defined by the poles of four given position
and any set of homologous points
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