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Abstract. A bisector of two sets is the set of points equidistant to them. Bi-
sectors arise naturally in several areas of computational geometry. We show that
bisectors of weakly linearly separable sets in Ed share many properties with sepa-
rating lines. Among these, the bisector of a restricted class of linearly separated
sets is a homeomorphic image of the linear separator. We also give necessary and
sufficient conditions for the existence of a particular continuous map from a por-
tion of any linear separator to the bisector.
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1. Introduction

Bisectors which are defined as the set of points equidistant to two given sets (see Fig. 10), arise
naturally in computing the symmetric axis transform [3] – [6]. A common means of computing
the symmetric axis is the following recursive method from computational geometry1: Compute
separately the symmetric axes of two subproblems and then merge them together. During
this merge the bisector of the two subproblems is used to trim the symmetric axes of the
subproblems. Certain properties of the bisector are the key to an efficient merge process. For
example: One algorithm for computing symmetric axis of point sites in E2 using a divide-and-
conquer strategy partitions the points into two almost equal-sized sets separated by a line.
The bisector between these two sets is connected and is a single-valued map of the dividing
line. In the case of computing the symmetric axis of multiply connected polygonal domains
[6], certain bisectors are simple, closed curves. In each of these two examples, properties of
the bisector allow a linear-time merge. Moreover, knowing the topology of the bisector helps
in choosing an appropriate data structure for the bisector. For example: If the bisector of two

1A descriptive geometry approach to the construction of bisectors is presented in [1] and [7]
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sets in E3 is known to be a 2-manifold, then the QuadEdge data structure [2] can be used to
represent and manipulate it.

In this research we show that bisectors of linearly separable sets have many properties
of interest. The results presented here are for general sets in Ed. There are several reasons
for this. First, many of the results and proofs are simpler when the details of a particular
class of sets do not intrude. More importantly, we want to broaden the study of bisectors
beyond their use in algorithms for computing the symmetric axis of point sets in E2 because
we believe that proximity properties of more general geometric elements in higher dimensions
have important applications.

2. Linearly Separable Sets

We denote the closure of a set S by clS, the interior by intS, the boundary by ∂S, and the
closure of the convex hull of S by ch(S). Uppercase characters denote points in Ed and pi

denotes the ith coordinate of the point P .
The Euclidean distance between two points P and Q is denoted by d(P,Q). The distance

between a point P and a nonempty set S is d(P, S) = inf{d(P,Q) | Q ∈ S}. The nearness of
S1 and S2 is d(S1, S2) = inf{d(P,Q) | P ∈ S1, Q ∈ S2}.

Let sl(π1, π2) denote the open slab between the two distinct parallel hyperplanes π1 and π2.
The sets S1 and S2 are separated by a slab sl(π1, π2) if S1 and S2 lie in different components
of Ed \ sl(π1, π2). S1 and S2 are strongly linearly separable if there exists an open slab that
separates clS1 and clS2. A hyperplane contained in such an open slab is called a strong
linear separator. S1 and S2 are linearly separable if there exists a hyperplane π, called a linear
separator, such that clS1 and clS2 are in different components of Ed \ π. Similarly, S1 and
S2 are weakly separable if there exists a hyperplane πw called a weak linear separator, such
that clS1 and clS2 lie in the closures of different components of Ed \ πw. Fig. 1 shows some
examples of separable sets and separators in E2.

Note that strongly linearly separable sets are also linearly separable and linearly separable
sets are also weakly linearly separable. Likewise, a strong linear separator is also a linear
separator and a linear separator is also a weak linear separator. Most results presented in
this research work are formulated in terms of weakly linearly separable sets and weak linear
separators.

A practically useful characterization of strong linear separability is given in

Theorem 1. If at least one of the sets S1 and S2 is bounded, then S1 and S2 are strongly
linearly separable if and only if ch(S1) ∩ ch(S2) = {}.

Proof: Since at least one of S1 and S2 is bounded, ch(S1) ∩ ch(S2) = {} implies that
d ((ch(S1), ch(S2)) > 0. Since the nearness is positive, there exists a slab that separates
ch(S1) and ch(S2). Therefore S1 and S2 are strongly linearly separable. The converse is
trivial.

3. Partitions

In this section we investigate properties of the bisector of two weakly linearly separable sets
S1 and S2. These are of use in Section 4 in studying the topology of the bisector. Hereafter,
we assume that S1 and S2 are nonempty sets in Ed such that clS1 ∩ clS2 = {}.
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Figure 1: Three types of linear separability:

(a) S1 and S2 are strongly linearly separable since they are separated by the cross-
hatched slab.

(b) S1 : x2 = x−1

1
and S2 : x2 = −x−1

1
, x1 > 0, are linearly separable (but not

strongly separable) and x2 = 0 is the linear separator.

(c) S1 and S2 are weakly linearly separable (but not linearly separable) and πw is
the weak linear separator.

The bisector B(S1, S2) of two sets S1 and S2 is the set of points equidistant to S1 and S2,
i.e., B(S1, S2) = {P ∈ Ed | d(P, S1) = d(P, S2)}. Assume that Q is a point of B(S1, S2) and
we define the maximal ball β to be the open ball centered at Q with radius r = d(Q,S1) =
d(Q,S2). We also define the maximal sphere σ := ∂β.

We observe that by definition β does not contain points of S1 or S2 and that σ contains
at least one point P1 from clS1 and at least one point P2 ∈ clS2. The points P1 and P2

are called touching points of σ with S1 and S2, respectively, and σ is said to touch S1 and
S2. Notice that P1 6= P2 as clS1 ∩ clS2 = {}. One maximal ball cannot contain another on
because the included maximal sphere would lack touching points.

Without loss of generality, we assume that the hyperplane xd = 0 is a weak linear separator
πw and that S1 is contained in the closure of the open half-space π

1

w : xd > 0, and that S2

is contained in the closure of the open half-space π2

w : xd < 0. In the sequel we consider
the mapping which takes a point on a weak linear separator orthogonally to πw onto a point
of the bisector. We first show in Section 3.1 that if a line perpendicular to πw intersects
B(S1, S2), then the intersection is connected. Then, in Section 3.2, we establish the necessary
and sufficient conditions under which all lines perpendicular to πw intersect B(S1, S2). Finally,
in Section 3.3 we give necessary and sufficient conditions for a specific line perpendicular to
πw to intersect B(S1, S2).
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3.1. Connectedness of the intersection with a perpendicular

Theorem 2. If a line ` perpendicular to a weak linear separator πw of S1 and S2 intersects
B(S1, S2), then it does so in a connected subset of `. Moreover, if a point Q is in the relative
interior of `∩B(S1, S2), then all the touching points of the maximal sphere centered at Q are
in πw.

Proof: To show that the intersection is connected, assume that there are two distinct points
Qa and Qb in ` ∩ B(S1, S2). Assume that Ba, Sa, Bb, and Sb are the corresponding maximal
balls and spheres. Since Qa and Qb are distinct, Ba 6= Bb. Since one maximal ball cannot be
contained in another, there are three remaining cases:

Case 1, Sa and Sb are disjoint:
Since Qa and Qb are in `, there exists a hyperplane λ perpendicular to ` which is a strong
linear separator of Sa and Sb (see Fig. 2a). Since λ is parallel to πw, Sa cannot touch S2

and/or Sb cannot touch S1 — a contradiction.

Case 2, Sa and Sb intersect at one point P :
Assume that λ is the hyperplane perpendicular to ` through P (see Fig. 2b). Sa and Sb can
touch both S1 and S2 only if P ∈ clS1 ∩ clS2, which violates the assumption stated at the
beginning of Section 3 that clS1 ∩ clS2 = {}.

Case 3, Sa and Sb intersect in a nondegenerate lower-dimensional sphere:
Assume that λ is the hyperplane through the sphere of intersection. Note that λ is parallel
to πw. If λ 6= πw, the sets of touching points of Sa and Sb lie in opposite closed half-spaces
bounded by λ (see Fig. 2c). Therefore, since λ is parallel to πw, Sa cannot touch S2 and/or
Sb cannot touch S1, which is a contradiction. Thus we have λ = πw. Sa and Sb can touch
both S1 and S2 only if one of the touching points on S1 and one of the touching points on S2

are in πw. These touching points are contained in Sa ∩Sb. Assume that Q is strictly between
Qa and Qb, and that SQ is the sphere centered at Q and passing through Sa ∩ Sb (see Fig.
2d). Clearly the open ball B defined by SQ is contained in Ba∩Bb and hence is free of points
of S1 ∪ S2. Thus SQ is a maximal sphere touching both S1 and S2 in πw, and Q ∈ B(S1, S2).
The theorem follows directly.

3.2. Intersection with every perpendicular

In Section 3.1 we proved that if the intersection between the bisector and a line perpendicular
to a weak linear separator exists, then it is connected. In this section we give necessary and
sufficient conditions for every line perpendicular to the weak linear separator to intersect the
bisector.

Assume that

I :=
{

X = (x1, . . . , xd−1) ∈ Ed−1 | αi ≤ xi ≤ βi for i = 1, . . . , d− 1
}

,

for real numbers αi ≤ βi is a closed (d− 1)-cell in πw.

Theorem 3. Every line perpendicular to the weak linear separator πw intersects B(S1, S2)
if and only if
(1) S1, S2 6⊂ πw, or

(2) S2 ⊂ πw and clS1 ∩ πw = {}, or vice versa.
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Figure 2: Illustration of various cases for proof of Theorem 2.

Moreover, if every line perpendicular to πw intersects B(S1, S2), then for any (d− 1)-cell I in
πw the set B(S1, S2) ∩ (I × R) is bounded.

We prove Theorem 3 by showing the sufficient conditions in Lemma 1 and 2 and the
necessary condition in Lemma 3.

Lemma 1. If S1, S2 6⊂ πw, then every line perpendicular to πw intersects B(S1, S2). More-
over, B(S1, S2) ∩ (I × R) is bounded.

Proof: Assume that Q is a point on the line

` := {X = (x1, . . . , xd) | xi = qi, i = 1, . . . , d− 1}

that is perpendicular to πw. We define f(Q) = d2(Q,S1) − d2(Q,S2), and we observe that
Q ∈ B(S1, S2) if and only if f(Q) = 0. First we assume that qd > 0. Let P ∈ S1, pd > 0.
Such a point must exist since S1 6⊂ πw (see Fig. 3).

Since d2(Q,S1) ≤ d2(Q,P ) =
∑d

i=1
(pi − qi)

2 and d2(Q,S2) ≥ d2(Q, πw) = q2

d,

f(Q) ≤
d
∑

i=1

(pi − qi)
2 − q2

d =
d−1
∑

i=1

(pi − qi)
2 + p2

d − 2pdqd.

For sufficiently large qd we get f(Q) < 0. By a symmetry argument, for sufficiently small
qd < 0 we get f(Q) > 0. But d(Q,Si) is a continuous function of P (as assumed in Theorem
3). Therefore, since f changes sign, it must have at least one zero, which implies that the line
` intersects B(S1, S2).

To prove that B(S1, S2) ∩ (I × R) is bounded, we observe that for

qd >

(

d
∑

i=1

(pi − qi)
2 + p2

d

)

/2pd
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Figure 3: Selecting points P and Q for the proof of Lemma 1.

we get f(Q) < 0. Thus the intersection of B(S1, S2) with ` is bounded in the positive
xd-direction by a continuous function of q1, . . . , qd. It is similarly bounded in the negative
xd-direction. In particular, as I is compact, B(S1, S2) ∩ (I × R) is bounded.

Lemma 2. If S2 ⊂ πw and clS1 ∩ πw = {}, then every line perpendicular to πw intersects
B(S1, S2). Moreover, B(S1, S2) ∩ (I × R) is bounded.

Proof: Let Q be a point on a line ` perpendicular to πw and vary qd so that Q moves along `.
By the arguments used in the proof of Lemma 1 we have f(Q) = d2(Q,S1) − d2(Q,S2) < 0
for sufficiently large qd > 0.

We now show that there exists a qd < 0 such that f(Q) ≥ 0. Assume that U := ` ∩ πw

and P is a point of clS2 closest to U . If P = U , then d2(Q,S2) = q2

d. Therefore, since
d2(Q,S1) > d2(Q, πw) = q2

d, we get qd ≤ 0.

If P 6= U , then we consider an open ball Bu of radius d(U, P ) centered at U . If clS1 ∩
clBu = {}, then d

2(U, S1) > d2(U, S2), which leads to f(U) > 0. Otherwise, since clS1∩ clBu

is compact, there exists a point T ∈ (clS1 ∩ clBu) with smallest xd-coordinate. Moreover,
td > 0 because clS1 ∩ πw = {} (see Fig. 4).

Figure 4: Construction for proof of Lemma 2.
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For qd ≤ 0, d
2(Q,S1) ≥ (td − qd)

2. Therefore, since d2(Q,S2) =
∑d

i=1
(pi − qi)

2,

f(Q) ≥ t2d − 2tdqd −
d−1
∑

i=1

(pi − qi)
2

if qd ≤ 0. For sufficiently small qd ≤ 0 is f(Q) ≥ 0. Thus f(Q) has a zero and the intersection
result follows. Boundedness is guaranteed, since T is confined to a bounded set as long as
U ∈ I.

To complete proof of Theorem 3, it remains to prove the necessary condition.

Lemma 3. If S2 ⊂ πw and clS1 ∩ πw 6= {}, then there exist lines perpendicular to πw that
do not intersect B(S1, S2).

Figure 5: Construction for proof of Lemma 3.

Proof: Consider the line ` perpendicular to πw through a point P ∈ clS1∩πw (see Fig. 5). For
any Q ∈ ` we obtain d2(Q,S1) ≤ d2(Q,P ) = q2

d. Since P 6∈ clS2 and S2 ∈ πw, d
2(Q,S2) > q2

d.
Therefore d2(Q,S1) < d2(Q,S2) for all Q ∈ `, so ` cannot intersect B(S1, S2).

Figure 6: Sets illustrating the condition of Lemma 3.

Fig. 6 shows two examples as an illustration of Lemma 3. Let S1 := {P1, P2, P3} and
S2 := {P4, P5}. We have:
1. Both S1 and S2 are completely contained in their weak linear separator πw. B(S1, S2)
consists of four lines (shown dashed), all of which are perpendicular to πw.

2. S1 is only partially contained in πw. In both cases there exist lines perpendicular to πw

that do not intersect B(S1, S2).
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Corollary 1. If S1 and S2 are weakly linearly separated by πw and clS1 ⊂ π1

w, then every
line perpendicular to πw intersects B(S1, S2) in a single point.

Corollary 2. If a hyperplane π is a linear separator of S1 and S2, then every line perpen-
dicular to π intersects B(S1, S2) in a single point.

3.3. Intersection with a specific perpendicular

Theorem 3 gave the necessary and sufficient conditions under which every line perpendicular
to πw intersects B(S1, S2). Even if such global conditions do not hold, it is still possible to
obtain local results. This section gives necessary and sufficient conditions under which specific
line perpendicular to πw intersects B(S1, S2).

Lemma 4. Let S1, S2 ⊂ πw and let U be a point in πw. A line ` perpendicular to πw

and passing through U intersects B(S1, S2) if and only if d(U, S1) = d(U, S2). Moreover, if `
intersects B(S1, S2), then ` ⊂ B(S1, S2).

Proof: LetQ ∈ `. Then d2(Q,Si) = d2(U, Si)+q
2

d for i = 1, 2. Therefore, if d(U, S1) = d(U, S2),
then d(Q,S1) = d(Q,S2), which implies that ` ⊂ B(S1, S2). Conversely if Q ⊂ B(S1, S2), then
d2(Q,S1) = d2(Q,S2) and hence d(U, S1) = d(U, S2).

Lemma 5. Let S2 ⊂ πw, S1 6⊂ πw, clS1 ∩ πw 6= {}, and U ∈ πw such that d(U, S2) 6=
d(U, clS1 ∩ πw). A line ` perpendicular to πw and passing through U intersects B(S1, S2) if
and only if d(U, S2) < d(U, clS1 ∩ πw). Moreover, if ` intersects B(S1, S2), then it does so in
a single point.

Figure 7: Construction for proof of Lemma 5.

Proof: Let Q be a point in ` (see Fig. 7). Sufficiency follows from arguments similar to
those of the proof Lemma 2. To show the necessity, assume that Q ∈ B(S1, S2). Since
d2(Q,S1) = d2(Q,S2), d

2(Q,S2) = d2(U, S2) + q2

d, d
2(Q, clS1 ∩ πw) = d2(U, clS1 ∩ πw) + q2

d,
and d2(Q,S1) ≤ d2(Q, clS1 ∩ πw), we have

d2(U, S2) + q2

d ≤ d2(U, clS1 ∩ πw) + q2

d.

Necessity follows since, by hypothesis, d(U, S2) 6= d(U, clS1 ∩ πw).
To see that the intersection is a single point, assume the contrary. Then, by Theorem

2, there exists Q ∈ int [` ∩ B(S1, S2)] such that the touching points of the maximal sphere
centered at Q are contained in πw. This implies that the touching points in S1 are in clS1∩πw

and that d2(Q,S2) = d2(Q, clS1 ∩ πw) — a contradiction.
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Let B be an open (d−1)-dimensional ball and let V be a point on a line perpendicular to
the hyperplane that contains B, and passing through the center of B. The truncated semicone
C(V,B) is defined to be int ch(V ∪B).

Lemma 6. Let S2 ⊂ πw, S1 6⊂ πw, clS1 ∩ πw 6= {} and U ∈ πw such that d(U, S2) =
d(U, clS1 ∩ πw). Let B ⊂ πw be the (d − 1)-dimensional ball of radius d(U, S2) centered at
U . A line ` perpendicular to πw and passing through U intersects B(S1, S2) if and only if
there exists a point Q ∈ (` ∩ π1

w) such that C(Q,B) ∩ S1 = {}. Furthermore, if ` intersects
B(S1, S2), then a half-line of ` is contained in B(S1, S2).

Figure 8: Construction for proof of Lemma 6.

Proof: To show sufficiency, assume that there is a pointQ1 ∈ (`∩π
1

w) such that C(Q1, B)∩S1 =
{} (see Fig. 8).

Now we consider the one-parameter family of d-dimensional balls (and the associated
boundary spheres) that intersect πw in B and whose centers lie on `. Some of these boundary
spheres must intersect pi1w within C(Q1, B). Since B intersects neither clS1 nor clS2, but
the boundary of B touches both clS1 and clS2, such spheres must be maximal spheres.
Furthermore, any member of the family whose center has smaller xd-coordinate must also be
maximal. Thus, a half-line of ` is contained in B(S1, S2).

To show necessity, we consider a maximal sphere σ (and the associated ball β) centered
at Q ∈ [` ∩ B(S1, S2)]. Note that U 6∈ cl (S1 ∪ S2) because d(U, S2) = d(U, clS1 ∩ πw) and
clS1 ∩ clS2 = σ. Therefore exists Q2 ∈ (pi

1

w ∩ ` ∩ σ) (see Fig. 8). Since C(Q2, B) ⊂ β,
C(Q2, B) ∩ S2 = {}.

An example where the conditions of Lemma 6 do not hold is shown in Fig. 9. S1 is an arc
of a circle, S2 ⊂ πw and d(U, S2) = d(U, clS1 ∩ πw). The line ` will not intersect B(S1, S2).

Necessary and sufficient conditions for any specific line perpendicular to πw to intersect
B(S1, S2) follow directly from Theorem 3 and Lemmas 4 - 6.

From the above study, we can conclude the following Theorem:

Theorem 4. Assume that U ∈ πw and let ` be the line perpendicular to πw passing through
U . The line ` intersects B(S1, S2) if and only if (up to a switch of S1 and S2):
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Figure 9: An example where the conditions of Lemma 6 do not hold.

(1) S1 6⊂ πw and S2 6⊂ πw, or

(2) S2 ⊂ πw, and clS1 ∩ πw = {}, or

(3) S1 ⊂ πw, S2 ⊂ πw and d(U, S1) = d(U, S2), or

(4) S2 ⊂ πw, S1 6⊂ πw, clS1 ∩ πw 6= {}, and d(U, S2) < d(U, clS1 ∩ πw), or

(5) S2 ⊂ πw, S1 6⊂ πw, clS1 ∩ πw 6= {}, and d(U, S2) = d(U, clS1 ∩ πw), and there exists
a point Q ∈ (` ∩ pi1w) such that C(Q,B) ∩ S1 = {}, where B ⊂ πw is the open (d− 1)-
dimensional ball of radius d(U, S2) centered at U .

4. Continuous mapping from linear separator to bisector

We have thus far shown exactly when a line perpendicular to πw intersects B(S1, S2) at a
single point. This defines a mapping which lifts points of the separator up to the bisector.
We now show that wherever such a mapping exists, it is continuous. Notice that this map
will automatically be a homeomorphism, as its inverse is the orthogonal projection onto the
separator a well-defined continuous map.

Theorem 5. Let the hyperplane πw : xd = 0 be a weak linear separator of S1 and S2

and let M be a open subset of πw such that for all P ∈ M the line through P perpendicu-
lar to πw intersects B(S1, S2) in a single point. Then the mapping b : M → R defined by
(x1, . . . , xd−1, b(x1, . . . , xd−1)) ∈ B(S1, S2) is continuous.

To prove this we use the known computational geometry principle: Let E and F be
topological spaces. A function g : E → F is said to have a closed graph if its graph
{ (x, y) | y = g(x), x ∈ E} in the product space E × F is a closed set. If g has a closed
graph and F is compact, then g is continuous.

Proof: The mapping b is a function by hypothesis. We show that b is continuous at an
arbitrary P ∈M :

Let I := {X ∈ Ed−1 | αi ≤ xi ≤ βi, i = 1, . . . , d − 1}, for real numbers αi < βi,
i = 1, . . . , d − 1 be a closed (d − 1)-cell in M containing P in its interior and let b1 denote
the restriction of b to I. We claim that b1 has a compact graph and thus, by the previous
principle, b is continuous at P .

The graph of b1 is the intersection of B(S1, S2) and I × R. Referring to the proof of
Lemma 1, B(S1, S2) = f−1(0). Since the inverse image of a closed set under a continuous map
is closed, B(S1, S2) is closed. Therefore, the graph of b1 is closed.
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It remains to show that the range of b is also bounded and, hence, compact. Since the
line perpendicular to πw at any point P ∈ M intersects B(S1, S2), one of the five conditions
of Theorem 4 must hold for each point in M . Furthermore, since by hypothesis, each such
line intersects B(S1, S2) in a single point, Lemma 4 and 6 imply that, up to a switch of S1

and S2, one of the following must hold:
1. S1 6⊂ πw and S2 6⊂ πw, or

2. S2 ⊂ πw and clS1 ∩ πw = {}, or

3. S2 ⊂ πw, S1 6⊂ πw, clS1 ∩ πw 6= {}, and d(U, S2) < d(U, clS1 ∩ πw) for all U ∈M .
In the first two cases Theorem 3 establishes that the graph is bounded. In the third case

Lemma 5 and the fact that I is compact establishes that the graph is bounded. Therefore,
the graph of b1 is compact, which implies that b is continuous at each point of M .

Thus, when π is a linear separator, we assume that the hyperplane π : xd = 0 be a linear
separator of S1 and S2. If b is the mapping b : π → R such that (x1, . . . , xd−1, b(x1, . . . , xd−1)) ∈
B(S1, S2), then b is a continuous function. In fact, the perpendicular projection of B(S1, S2)
onto π is a homeomorphism. This result describes that the bisector of linearly separated point
sites in E2 is a monotone chain. More importantly, it shows that B(S1, S2) is a (d−1)-manifold
in E2.

5. Conclusion

In this paper we have presented some general properties of bisectors of sets in Ed that are
separated by hyperplanes. We have given necessary and sufficient conditions for the perpen-
dicular projection of the bisector of two weakly linearly separated sets onto a separator to be
a homeomorphism. This study needs to be expanded in two major directions:

OO

PP

QQ

SSS11S1

SSS22S2

πππwwπw

B(    ,    )B(    ,    )SSS11S1 SSS22S2

Figure 10: A nonhomogeneously two-dimensional bisector. B(S1, S2) is the bisector between
two open line-segments S1 := OP and S2 := OQ that do not intersect. However, the closures
of the line-segments share the endpoint O.

Throughout this paper we have required that clS1 ∩ πw = {}. When the closures of the
sets are not disjoint, the bisector need not be a manifold, as illustrated in Fig. 10. This
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issue has been addressed in the literature on symmetric axes of point sets and open line
segments in E2 by defining the bisectors between individual elements so that they are always
homogeneously one dimensional [3, 5, 6]. We think that this needs further investigation.

Another direction in which the theory could be generalized is to investigate the general
conditions under which the bisector of two sets is a (d− 1)-manifold that subdivides Ed into
two disjoint regions. In this paper we have shown that if the two sets are linearly separable,
then their bisector has this property. Also, some sufficient conditions for the bisector to be
a simply closed curve were given in [4, 6] for sets in E2 that are not even weakly linearly
separable.
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