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1. Introduction

There are many generalizations of well known Ceva’s and Menelaus’ theorems. In par-
ticular, WITCZYNSKI (see [2] and [3]) considered a tetrahedron A;A;A3A, and six points
Bys, Bis, B4, Bag, Bas, B3y on its edges (B;; € A;Aj fori,j =1,...,4,i < j). Then he gave
two propositions:
P1. A necessary and sufficient condition for six planes, each of them determined by an edge
and the point B;; on the opposite edge, to have a common point.

P2. A necessary and sufficient condition for the points B;; to be coplanar.
Additional examples of similar theorems (which concerns the products of the ratios of
the respective lengths) can be found in [1] and [4].

In this paper we refer to n-dimensional Euclidean space, denoted by E™, and an n-simplex ©
(n>3). Let Ay,..., Ay41 be the vertices of ©, and B;; be the points lying on 1-dimensional
edges A;A; of ©, different from A;, A; (1 =1,...,n,j=14+1,...,n+1). Fork=1,...,n+1
the symbol ©, denotes the hyperplane Ay ... Ay _1Agi1... A,y and, at the same time, the
corresponding (n — 1)-dimensional face of ©.

2. A generalization of Ceva’s Theorem

Theorem 1: The hyperplanes A;, ... A;, Bim for 1 < i < ... < iyp_1, 1j,k,m €
{1,...,n+ 1}, and k < m, i; # k,m (there exist Cy*" such subspaces) have a common
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(n+1

point if and only if the following equalities are fulfilled:

A;B;; A;Bj; AkBik_l (1)
BijA; Bj Ay BigA;

fori=1,....n—1,7=2,...,n, k=3,....n+1,andi<j<k.!

Proof: The proof is by induction on the dimension n. Theorem 1 is clearly true for n = 2
and n = 3.

Necessity:

The induction hypothesis implies that if the (n — 2)-dimensional subspaces A;, ... A;, ,Bim

(i1 < ... < dp-2; i ,kbm = 1,....n; k < m; i; # k,m) in E"! have a common
point, then g—,' conditions analogous to (1) hold. Let S be a common point of the hy-
perplanes A;, ... A;  Bgm; hence the hyperplanes A1 A; ... A; ,Brm (i1 < ... < dp_9;
ij,k,m=2,....,n+1; k <m;i; # k,m) have a common line 4,5.

Let 1SN O = S; and A1 A;, ... Ai, ,Bem N O = A, ... A;,_,Brm- These (n — 2)-
dimensional subspaces A;, ... A;, _, B, contain a point S;. So by the assumption a subset of
the conditions (1), where i,5,k =2,...,n+ 1, i < j < k, is fulfilled. Conducting the same
observations for the faces ©,, ..., 0, of the n-simplex ©, we get the necessary part of our

thesis.

Sufficiency:
We have to assume that our Theorem 1 is true for all dimensions smaller than n. Define the
set T' of C&™ hyperplanes according to

I':= {Azl ~-'Ainlek;m | 1 < ... <lp_1, ij,k:,m =1,....,n+1, k< m, ’ij 7é k:,m}
Let I'; (j = 1,...,n+ 1) be such a subset of I" which contains only these hyperplanes with
the vertex A;. Without loss of generality it is enough to consider the sets I';,I'y,I's only
(TyNTyNT3#0, TyUlLUT; =T).

We may treat the face ©; of © as an (n— 1)-dimensional simplex with (n— 2)-dimensional
faces. The conditions (1) hold, so from the inductive assumption for E"~2 we know that for
i=2,...,n+ 1 there exist points S} which are the common points of the (n — 3)-dimensional
subspaces A;, ... A;, _ Bgm, where i1 < ... <i,_3, kK <m, z'j #% k #£ m # 1,i. We shall call
them the Cevian points. Every Cevian point S}, ¢ = 2,...,n + 1, belongs to the face of ©;
which is opposite to the vertex A;, i =2,...,n+ 1.

Due to the inductive hypothesis for E™!, the (n—2)-dimensional subspaces A, ... A;, _, Bem
(i3 < ... < ip-2; k < m; i; # k # m # 1) intersect in one point, say S'. It can be
proved that S! = ﬂ"H A; S ! Similarly, taking into account the faces ©, and O3, we get
points S? (i = 1,3,. +1), 8% = ﬂ?;l,i;sz A;S7 and points S§ (j = 1,2,4,...,n + 1),
n+1
5% = ﬂj:l,j;ég AiSf.

We ought to show that A;STNAS5%NA3S% # 0. To do this, we note that S5 = S%, 53 = S5,
S3 = 82, Thus S' € A3S) = A3S? and S5 € A;1S%, hence 4,81 N A35% = P, # (Z). Slmllarly,
A;STNAS8? = Py # () and A35?NA3S5% = Py # (). Moreover, Py € AA; A3 STNAA3S3 = AyS?
and P, € AAA3S53 N AyA3S53 = A3S? (where symbols A denote 2-dimensional subspaces of
E™). Then the points Py, P5, P3 coincide. O

LCompare [1], where similar sets of equations, but for n-gons in the affine plane, are given.
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3. A generalization of Menelaus’ Theorem

Theorem 2: The points By; fori,j=1,....,n+ 1 and i < j (there exist Cy such points)
lie on one hyperplane of ™ if and only if the following conditions hold:
AiBi; AjBjn ArBi ] @)
BijA; BjAp ByAi

fori=1,....n—1,7=2,....n, k=3,...,n+1,1<j<k.

Proof: Again, the proof is inductive. Our Theorem 2 is obviously true for n = 2 and 3.

Necessity:

Assume that the points B;j, 4,7 = 1,...,n+ 1, 4 < j are on one hyperplane, say a. Now we
introduce subspaces 5; = aN©; (i =1,...,n+ 1) of E™. Note that dim3; = n — 2. First
let us exam the subspace 3,1:. The points B;;, ¢t =1,...,n—1, j=1i+1,...,n, belong to
Bni1. Applying the induction hypothesis to these points and the hyperplane (in E™~1) 8,4
we get the conditions (2) fori =1,...,n—2, 7=2,...,n—1, k=3,...,n, 1 <j <k,
respectively. To obtain the next equations (from (2)) it remains to consider the subspaces (3;,
1 =1,...,n, analogously.

Sufficiency:

Now let us assume that our hypothesis is true for every integer smaller than n. Define
subspaces (of E™)

(67 :Span{BZ]|Z:1,7n7 ]:Z+1;7n+1’ Z?]%k}7 k:177n+1

and take into account the (n—1)-simplex ©; in E"~'. Clearly, the points B;;, i =2,...,n,j =
i+1,...,n+1, generating the subspace «; lie on the 1-dimensional edges of ©;. Furthermore,
by the inductive hypothesis these points belong to one hyperplane in E™"~! (whose dimension
equals (n — 2)). Conducting in the same way for all ay, we get that dimay, =n —2 (k =
1,...,n+1). Without loss of generality, we may consider only three of the ay, say aq, oo, ag.
Observe that all the points B;;, ¢ = 1,...,n, j =i+ 1,...,n+ 1, belong to a; U ay U 3.
Applying the inductive assumption for E"~2 and E"~3, we note:

dim(a; Nag) = dim(a; Nag) = dim(as Nag) =n—3 and dim(ag NagNag) =n —4,

respectively. Finally we obtain that each two of the three (n — 2)-dimensional subspaces of
E™ intersect in an (n — 3)-dimensional subspace, and the intersection of all three is an (n —4)-
dimensional subspace. Hence a, as, a3 are contained in one hyperplane of E™. Thus all the
points B;;,1=1,...,n,7=1t+1,...,n+ 1, lie on this hyperplane. O
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