Ceva's and Menelaus' Theorems for the n-Dimensional Space

Malgorzata Buba-Brzozowa

Dept. of Mathematics and Information Sciences, Warsaw University of Technology Plac Politechniki 1, PL 00-661 Warsaw, Poland email: buba@mini.pw.edu.pl

Abstract. This article presents generalizations of the theorems of Ceva and Menelaus for *n*-dimensional Euclidean space.

Key Words: Ceva's theorem, Menelaus' theorem, *n*-simplex *MSC 2000:* 51M04

1. Introduction

There are many generalizations of well known Ceva's and Menelaus' theorems. In particular, WITCZYŃSKI (see [2] and [3]) considered a tetrahedron $A_1A_2A_3A_4$ and six points $B_{12}, B_{13}, B_{14}, B_{23}, B_{24}, B_{34}$ on its edges $(B_{ij} \in A_iA_j \text{ for } i, j = 1, \ldots, 4, i < j)$. Then he gave two propositions:

- P1. A necessary and sufficient condition for six planes, each of them determined by an edge and the point B_{ij} on the opposite edge, to have a common point.
- P2. A necessary and sufficient condition for the points B_{ij} to be coplanar. Additional examples of similar theorems (which concerns the products of the ratios of the respective lengths) can be found in [1] and [4].

In this paper we refer to *n*-dimensional Euclidean space, denoted by \mathbb{E}^n , and an *n*-simplex Θ (n > 3). Let A_1, \ldots, A_{n+1} be the vertices of Θ , and B_{ij} be the points lying on 1-dimensional edges $A_i A_j$ of Θ , different from A_i, A_j $(i = 1, \ldots, n, j = i+1, \ldots, n+1)$. For $k = 1, \ldots, n+1$ the symbol Θ_k denotes the hyperplane $A_1 \ldots A_{k-1} A_{k+1} \ldots A_{n+1}$ and, at the same time, the corresponding (n-1)-dimensional face of Θ .

2. A generalization of Ceva's Theorem

Theorem 1: The hyperplanes $A_{i_1} \ldots A_{i_{n-1}} B_{km}$ for $i_1 < i_2 < \ldots < i_{n-1}$, $i_j, k, m \in \{1, \ldots, n+1\}$, and k < m, $i_j \neq k, m$ (there exist C_2^{n+1} such subspaces) have a common

ISSN 1433-8157/\$ 2.50 © 2000 Heldermann Verlag

116 M. Buba-Brzozowa: Ceva's and Menelaus' Theorems for the n-Dimensional Space point if and only if the following $\frac{(n+1)!}{3!}$ equalities are fulfilled:

$$\frac{A_i B_{ij}}{B_{ij} A_j} \cdot \frac{A_j B_{jk}}{B_{jk} A_k} \cdot \frac{A_k B_{ik}}{B_{ik} A_i} = 1 \tag{1}$$

for i = 1, ..., n - 1, j = 2, ..., n, k = 3, ..., n + 1, and i < j < k.¹

Proof: The proof is by induction on the dimension n. Theorem 1 is clearly true for n = 2 and n = 3.

Necessity:

The induction hypothesis implies that if the (n-2)-dimensional subspaces $A_{i_1} \ldots A_{i_{n-2}} B_{km}$ $(i_1 < \ldots < i_{n-2}; i_j, k, m = 1, \ldots, n; k < m; i_j \neq k, m)$ in \mathbb{E}^{n-1} have a common point, then $\frac{n!}{3!}$ conditions analogous to (1) hold. Let S be a common point of the hyperplanes $A_{i_1} \ldots A_{i_{n-1}} B_{km}$; hence the hyperplanes $A_1 A_{i_1} \ldots A_{i_{n-2}} B_{km}$ $(i_1 < \ldots < i_{n-2}; i_j, k, m = 2, \ldots, n+1; k < m; i_j \neq k, m)$ have a common line $A_1 S$.

Let $A_1S \cap \Theta_1 = S_1$ and $A_1A_{i_1} \dots A_{i_{n-2}}B_{km} \cap \Theta_1 = A_{i_1} \dots A_{i_{n-2}}B_{km}$. These (n-2)dimensional subspaces $A_{i_1} \dots A_{i_{n-2}}B_{km}$ contain a point S_1 . So by the assumption a subset of the conditions (1), where $i, j, k = 2, \dots, n+1$, i < j < k, is fulfilled. Conducting the same observations for the faces $\Theta_2, \dots, \Theta_{n+1}$ of the *n*-simplex Θ , we get the necessary part of our thesis.

Sufficiency:

We have to assume that our Theorem 1 is true for all dimensions smaller than n. Define the set Γ of C_2^{n+1} hyperplanes according to

$$\Gamma := \{ A_{i_1} \dots A_{i_{n-1}} B_{km} \mid i_1 < \dots < i_{n-1}, \ i_j, k, m = 1, \dots, n+1, \ k < m, \ i_j \neq k, m \}.$$

Let Γ_j (j = 1, ..., n + 1) be such a subset of Γ which contains only these hyperplanes with the vertex A_j . Without loss of generality it is enough to consider the sets $\Gamma_1, \Gamma_2, \Gamma_3$ only $(\Gamma_1 \cap \Gamma_2 \cap \Gamma_3 \neq \emptyset, \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 = \Gamma)$.

We may treat the face Θ_1 of Θ as an (n-1)-dimensional simplex with (n-2)-dimensional faces. The conditions (1) hold, so from the inductive assumption for \mathbb{E}^{n-2} we know that for $i = 2, \ldots, n+1$ there exist points S_i^1 which are the common points of the (n-3)-dimensional subspaces $A_{i_1} \ldots A_{i_{n-3}} B_{km}$, where $i_1 < \ldots < i_{n-3}$, k < m, $i_j \neq k \neq m \neq 1, i$. We shall call them the Cevian points. Every Cevian point S_i^1 , $i = 2, \ldots, n+1$, belongs to the face of Θ_1 which is opposite to the vertex A_i , $i = 2, \ldots, n+1$.

Due to the inductive hypothesis for \mathbb{E}^{n-1} , the (n-2)-dimensional subspaces $A_{i_1} \ldots A_{i_{n-2}} B_{km}$ $(i_1 < \ldots < i_{n-2}; k < m; i_j \neq k \neq m \neq 1)$ intersect in one point, say S^1 . It can be proved that $S^1 = \bigcap_{i=2}^{n+1} A_i S_i^1$. Similarly, taking into account the faces Θ_2 and Θ_3 , we get points S_i^2 $(i = 1, 3, \ldots, n+1)$, $S^2 = \bigcap_{i=1, i\neq 2}^{n+1} A_i S_i^2$ and points S_j^3 $(j = 1, 2, 4, \ldots, n+1)$, $S^3 = \bigcap_{j=1, j\neq 3}^{n+1} A_i S_i^3$.

We ought to show that $A_1S^1 \cap A_2S^2 \cap A_3S^3 \neq \emptyset$. To do this, we note that $S_2^1 = S_1^2$, $S_3^1 = S_1^3$, $S_2^3 = S_3^2$. Thus $S^1 \in A_3S_3^1 = A_3S_1^3$ and $S_3 \in A_1S_1^3$, hence $A_1S^1 \cap A_3S^3 = P_1 \neq \emptyset$. Similarly, $A_1S^1 \cap A_2S^2 = P_2 \neq \emptyset$ and $A_2S^2 \cap A_3S^3 = P_3 \neq \emptyset$. Moreover, $P_1 \in \Delta A_1A_2S_1^2 \cap A_2A_3S_3^2 = A_2S^2$ and $P_1 \in \Delta A_1A_3S_1^3 \cap A_2A_3S_3^2 = A_3S^3$ (where symbols Δ denote 2-dimensional subspaces of \mathbb{E}^n). Then the points P_1, P_2, P_3 coincide.

¹Compare [1], where similar sets of equations, but for n-gons in the affine plane, are given.

3. A generalization of Menelaus' Theorem

Theorem 2: The points B_{ij} for i, j = 1, ..., n + 1 and i < j (there exist C_2^{n+1} such points) lie on one hyperplane of \mathbb{E}^n if and only if the following conditions hold:

$$\frac{A_i B_{ij}}{B_{ij} A_j} \cdot \frac{A_j B_{jk}}{B_{jk} A_k} \cdot \frac{A_k B_{ik}}{B_{ik} A_i} = -1 \tag{2}$$

for i = 1, ..., n - 1, j = 2, ..., n, k = 3, ..., n + 1, i < j < k.

Proof: Again, the proof is inductive. Our Theorem 2 is obviously true for n = 2 and 3.

Necessity:

Assume that the points B_{ij} , i, j = 1, ..., n + 1, i < j are on one hyperplane, say α . Now we introduce subspaces $\beta_i = \alpha \cap \Theta_i$ (i = 1, ..., n + 1) of \mathbb{E}^n . Note that dim $\beta_i = n - 2$. First let us exam the subspace β_{n+1} . The points B_{ij} , i = 1, ..., n - 1, j = i + 1, ..., n, belong to β_{n+1} . Applying the induction hypothesis to these points and the hyperplane (in \mathbb{E}^{n-1}) β_{n+1} we get the conditions (2) for i = 1, ..., n - 2, j = 2, ..., n - 1, k = 3, ..., n, i < j < k, respectively. To obtain the next equations (from (2)) it remains to consider the subspaces β_i , i = 1, ..., n, analogously.

Sufficiency:

Now let us assume that our hypothesis is true for every integer smaller than n. Define subspaces (of \mathbb{E}^n)

$$\alpha_k := \operatorname{span}\{B_{ij} \mid i = 1, \dots, n, \ j = i+1, \dots, n+1, \ i, j \neq k\}, \quad k = 1, \dots, n+1$$

and take into account the (n-1)-simplex Θ_1 in \mathbb{E}^{n-1} . Clearly, the points B_{ij} , $i = 2, \ldots, n, j = i+1, \ldots, n+1$, generating the subspace α_1 lie on the 1-dimensional edges of Θ_1 . Furthermore, by the inductive hypothesis these points belong to one hyperplane in \mathbb{E}^{n-1} (whose dimension equals (n-2)). Conducting in the same way for all α_k , we get that dim $\alpha_k = n-2$ ($k = 1, \ldots, n+1$). Without loss of generality, we may consider only three of the α_k , say $\alpha_1, \alpha_2, \alpha_3$. Observe that all the points B_{ij} , $i = 1, \ldots, n, j = i+1, \ldots, n+1$, belong to $\alpha_1 \cup \alpha_2 \cup \alpha_3$. Applying the inductive assumption for \mathbb{E}^{n-2} and \mathbb{E}^{n-3} , we note:

$$\dim(\alpha_1 \cap \alpha_2) = \dim(\alpha_1 \cap \alpha_3) = \dim(\alpha_2 \cap \alpha_3) = n - 3 \text{ and } \dim(\alpha_1 \cap \alpha_2 \cap \alpha_3) = n - 4,$$

respectively. Finally we obtain that each two of the three (n-2)-dimensional subspaces of \mathbb{E}^n intersect in an (n-3)-dimensional subspace, and the intersection of all three is an (n-4)-dimensional subspace. Hence $\alpha_1, \alpha_2, \alpha_3$ are contained in one hyperplane of \mathbb{E}^n . Thus all the points B_{ij} , $i = 1, \ldots, n$, $j = i + 1, \ldots, n + 1$, lie on this hyperplane.

References

- B. GRÜNBAUM, G.C. SHEPHARD: Some new transversality properties. Geom. Dedicata 71, 179–208 (1998).
- [2] K. WITCZYŃSKI: Ceva's and Menelaus' theorems for tetrahedra. Zeszyty Naukowe "Geometry" 21, 98–107 (1995).
- [3] K. WITCZYŃSKI: Ceva's and Menelaus' theorems for tetrahedra (II). Zeszyty Naukowe "Geometry" 29, 233–235 (1996).

- 118 M. Buba-Brzozowa: Ceva's and Menelaus' Theorems for the n-Dimensional Space
- [4] M.S. KLAMKIN, A. LIU: Simultaneous generalizations of the theorems of Ceva and Menelaus. Math. Magazine 65, 48–53 (1992).

Received August 1, 2000; final form December 12, 2000