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1. Introduction

There are many generalizations of well known Ceva’s and Menelaus’ theorems. In par-
ticular, Witczyński (see [2] and [3]) considered a tetrahedron A1A2A3A4 and six points
B12, B13, B14, B23, B24, B34 on its edges (Bij ∈ AiAj for i, j = 1, . . . , 4, i < j). Then he gave
two propositions:
P1. A necessary and sufficient condition for six planes, each of them determined by an edge

and the point Bij on the opposite edge, to have a common point.

P2. A necessary and sufficient condition for the points Bij to be coplanar.
Additional examples of similar theorems (which concerns the products of the ratios of
the respective lengths) can be found in [1] and [4].

In this paper we refer to n-dimensional Euclidean space, denoted by E n, and an n-simplex Θ
(n > 3). Let A1, . . . , An+1 be the vertices of Θ, and Bij be the points lying on 1-dimensional
edges AiAj of Θ, different from Ai, Aj (i = 1, . . . , n, j = i+1, . . . , n+1). For k = 1, . . . , n+1
the symbol Θk denotes the hyperplane A1 . . . Ak−1Ak+1 . . . An+1 and, at the same time, the
corresponding (n − 1)-dimensional face of Θ.

2. A generalization of Ceva’s Theorem

Theorem 1: The hyperplanes Ai1 . . . Ain−1
Bkm for i1 < i2 < . . . < in−1, ij, k,m ∈

{1, . . . , n + 1}, and k < m, ij 6= k,m (there exist Cn+1
2 such subspaces) have a common
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point if and only if the following (n+1)!
3!

equalities are fulfilled:

AiBij

BijAj

·
AjBjk

BjkAk

·
AkBik

BikAi

= 1 (1)

for i = 1, . . . , n − 1, j = 2, . . . , n, k = 3, . . . , n+ 1, and i < j < k. 1

Proof: The proof is by induction on the dimension n. Theorem 1 is clearly true for n = 2
and n = 3.

Necessity:

The induction hypothesis implies that if the (n − 2)-dimensional subspaces Ai1 . . . Ain−2
Bkm

(i1 < . . . < in−2; ij, k,m = 1, . . . , n; k < m; ij 6= k,m) in En−1 have a common
point, then n!

3!
conditions analogous to (1) hold. Let S be a common point of the hy-

perplanes Ai1 . . . Ain−1
Bkm; hence the hyperplanes A1Ai1 . . . Ain−2

Bkm (i1 < . . . < in−2;
ij, k,m = 2, . . . , n+ 1; k < m; ij 6= k,m) have a common line A1S.

Let A1S ∩ Θ1 = S1 and A1Ai1 . . . Ain−2
Bkm ∩ Θ1 = Ai1 . . . Ain−2

Bkm. These (n − 2)-
dimensional subspaces Ai1 . . . Ain−2

Bkm contain a point S1. So by the assumption a subset of
the conditions (1), where i, j, k = 2, . . . , n + 1, i < j < k, is fulfilled. Conducting the same
observations for the faces Θ2, . . . ,Θn+1 of the n-simplex Θ, we get the necessary part of our
thesis.

Sufficiency:

We have to assume that our Theorem 1 is true for all dimensions smaller than n. Define the
set Γ of Cn+1

2 hyperplanes according to

Γ := {Ai1 . . . Ain−1
Bkm | i1 < . . . < in−1, ij, k,m = 1, . . . , n+ 1, k < m, ij 6= k,m}.

Let Γj (j = 1, . . . , n + 1) be such a subset of Γ which contains only these hyperplanes with
the vertex Aj . Without loss of generality it is enough to consider the sets Γ1,Γ2,Γ3 only
(Γ1 ∩ Γ2 ∩ Γ3 6= ∅, Γ1 ∪ Γ2 ∪ Γ3 = Γ).

We may treat the face Θ1 of Θ as an (n−1)-dimensional simplex with (n−2)-dimensional
faces. The conditions (1) hold, so from the inductive assumption for E n−2 we know that for
i = 2, . . . , n+1 there exist points S1

i which are the common points of the (n− 3)-dimensional
subspaces Ai1 . . . Ain−3

Bkm, where i1 < . . . < in−3, k < m, ij 6= k 6= m 6= 1, i. We shall call
them the Cevian points. Every Cevian point S1

i , i = 2, . . . , n + 1, belongs to the face of Θ1

which is opposite to the vertex Ai, i = 2, . . . , n+ 1.
Due to the inductive hypothesis for E n−1, the (n−2)-dimensional subspacesAi1 . . . Ain−2

Bkm

(i1 < . . . < in−2; k < m; ij 6= k 6= m 6= 1) intersect in one point, say S1. It can be
proved that S1 =

⋂n+1
i=2 AiS

1
i . Similarly, taking into account the faces Θ2 and Θ3, we get

points S2
i (i = 1, 3, . . . , n + 1), S

2 =
⋂n+1

i=1,i6=2 AiS
2
i and points S

3
j (j = 1, 2, 4, . . . , n + 1),

S3 =
⋂n+1

j=1,j 6=3 AiS
3
i .

We ought to show that A1S
1∩A2S

2∩A3S
3 6= ∅. To do this, we note that S1

2 = S2
1 , S

1
3 = S3

1 ,
S3

2 = S2
3 . Thus S

1 ∈ A3S
1
3 = A3S

3
1 and S3 ∈ A1S

3
1 , hence A1S

1 ∩ A3S
3 = P1 6= ∅. Similarly,

A1S
1∩A2S

2 = P2 6= ∅ and A2S
2∩A3S

3 = P3 6= ∅. Moreover, P1 ∈ ∆A1A2S
2
1∩A2A3S

2
3 = A2S

2

and P1 ∈ ∆A1A3S
3
1 ∩ A2A3S

2
3 = A3S

3 (where symbols ∆ denote 2-dimensional subspaces of
En). Then the points P1, P2, P3 coincide.

1Compare [1], where similar sets of equations, but for n-gons in the affine plane, are given.
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3. A generalization of Menelaus’ Theorem

Theorem 2: The points Bij for i, j = 1, . . . , n + 1 and i < j (there exist Cn+1
2 such points)

lie on one hyperplane of E n if and only if the following conditions hold:

AiBij

BijAj

·
AjBjk

BjkAk

·
AkBik

BikAi

= −1 (2)

for i = 1, . . . , n − 1, j = 2, . . . , n, k = 3, . . . , n+ 1, i < j < k.

Proof: Again, the proof is inductive. Our Theorem 2 is obviously true for n = 2 and 3.

Necessity:

Assume that the points Bij, i, j = 1, . . . , n + 1, i < j are on one hyperplane, say α. Now we
introduce subspaces βi = α ∩ Θi (i = 1, . . . , n + 1) of En. Note that dim βi = n − 2. First
let us exam the subspace βn+1. The points Bij , i = 1, . . . , n − 1, j = i+ 1, . . . , n, belong to
βn+1. Applying the induction hypothesis to these points and the hyperplane (in E n−1) βn+1

we get the conditions (2) for i = 1, . . . , n − 2, j = 2, . . . , n − 1, k = 3, . . . , n, i < j < k,
respectively. To obtain the next equations (from (2)) it remains to consider the subspaces βi,
i = 1, . . . , n, analogously.

Sufficiency:

Now let us assume that our hypothesis is true for every integer smaller than n. Define
subspaces (of En)

αk := span{Bij | i = 1, . . . , n, j = i+ 1, . . . , n+ 1, i, j 6= k}, k = 1, . . . , n+ 1

and take into account the (n−1)-simplex Θ1 in En−1. Clearly, the points Bij , i = 2, . . . , n, j =
i+1, . . . , n+1, generating the subspace α1 lie on the 1-dimensional edges of Θ1. Furthermore,
by the inductive hypothesis these points belong to one hyperplane in E n−1 (whose dimension
equals (n − 2)). Conducting in the same way for all αk, we get that dimαk = n − 2 (k =
1, . . . , n+1). Without loss of generality, we may consider only three of the αk, say α1, α2, α3.
Observe that all the points Bij, i = 1, . . . , n, j = i + 1, . . . , n + 1, belong to α1 ∪ α2 ∪ α3.
Applying the inductive assumption for E n−2 and En−3, we note:

dim(α1 ∩ α2) = dim(α1 ∩ α3) = dim(α2 ∩ α3) = n − 3 and dim(α1 ∩ α2 ∩ α3) = n − 4,

respectively. Finally we obtain that each two of the three (n − 2)-dimensional subspaces of
En intersect in an (n−3)-dimensional subspace, and the intersection of all three is an (n−4)-
dimensional subspace. Hence α1, α2, α3 are contained in one hyperplane of E n. Thus all the
points Bij , i = 1, . . . , n, j = i+ 1, . . . , n+ 1, lie on this hyperplane.
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