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Abstract. Properties of triangles related to so called Gergonne and Nagel points
are know in elementary geometry. In this paper we present a discussion on some
extensions of these theorems. First, we refer to a relation between a tetrahedron
and a sphere inscribed into this tetrahedron in the 3-dimensional space. Next,
we generalize the obtained results to simplices in n-dimensional geometry. The
problem concerning tetrahedra occurs to be no longer as easy to solve as it is for
triangles. It has been shown that there are both tetrahedra, which have Gergonne
and Nagel points, and tetrahedra with no such a point. We give conditions nec-
essary and sufficient for a simplex to satisfy the Gergonne and Nagel property.
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1. Introduction

The theorems on so called Gergonne and Nagel points in a triangle are well known from
literature. These theorems are as follows.

If for a triangle ABC circumscribed to a circle o the sides BC, AC, and AB touch the circle

o at points A′, B′, and C ′, respectively, then the lines AA′, BB′, CC ′ pass through a common

point G, which is called Gergonne point.

In other words, the three segments joining the vertices of a triangle with the points of
tangency with the incircle intersect at a single point which is called Gergonne point. In a
given triangle ABC we can also consider external bisectors of the three angles between sides
of the triangle, each two of them meeting the appropriate internal bisector to produce three
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additional excenters, i.a. centers of the three escribed circles, i.e. excircles. The following
theorem is true:
If for a triangle ABC the points K, L and M are the points of contact between the sides BC,

AC, and AB and the three excircles, respectively, then the segments AK, BL, and CM meet

at one point, which is called Nagel point.
Shortly: The three segments connecting the vertices of a triangle with the corresponding

tangency points of the excircles pass through one point, the Nagel point. The question arises
if similar points exist for a tetrahedron. The problem is not as simple as it is for triangles.
It can be proved that there is a class of tetrahedra for which these points exist, and another
class for which such points do not exist. What conditions should be fulfilled by a tetrahedron
so that Gergonne and Nagel points would exist? In the paper the authors try to answer this
question.

2. Gergonne point in the 3-dimensional space

At the very beginning let us consider if a sphere can be inscribed into an arbitrary tetrahedron.
Let A1A2A3A4 be a tetrahedron. At first, we consider the trihedron with vertex A1, edges

k12(A1A2), k13(A1A3), k14(A1A4), and faces α123(A1A2A3), α124(A1A2A4), and α134(A1A3A4).
It is easy to see, that three bisecting planes of the dihedral angles with the edges k12(A1A2)
k13(A1A3), and k14(A1A4) meet at a single straight line. Actually, bisecting planes δ2324

and δ2334 of corresponding angles ∠(α123, α124), and ∠(α123, α134) meet in a line k1213. The
points on line k1213 are equidistant from the faces α123, α124 and α134. Thus the line k1213

lies in a bisecting plane of the angle ∠(α124, α134). Let us take an arbitrary point O′ ∈ k1213.
Orthogonal projections of O′ onto the planes α123, α124, and α134 will be denoted by O23,
O24, and O34, respectively. The segments O′O23 = O′O24 = O′O34 have equal length. Let
us consider the sphere S(O′, O′O23), which is tangent to the planes α123, α124, and α134.
Subsequently, let us consider the plane α′234, which is tangent to the given sphere S and
parallel to the plane α234(A2A3A4). Let A′2, A

′
3 and A′4 be points in which the plane α′234

intersects the edges A1A2, A1A2, and A1A2, respectively. The tetrahedron A1A
′
2A

′
1A

′
2 is

circumscribed to the sphere S(O′, O′O23). Let C ′1 be the common point of the line A1O
′ and

the plane α′234, and C1 be the common point of the line A1O
′ and the plane α234.

By applying the homothety J

A1C1

A1C′

1

A1
we can write J

A1C1

A1C′

1

A1
(A1A

′
2A

′
3A

′
4) = A1A2A3A4. Thus the

sphere J

A1C1

A1C′

1

A1
(S(O′, O′O23)) is circumscribed to the tetrahedron A1A2A3A4.

Statement 1 Into each tetrahedron exactly one sphere can be inscribed.

Let us consider a tetrahedron A1A2A3A4 and a sphere S inscribed into this tetrahedron.
Let Bi be a point in which the face AjAkAl touches the sphere S (for 6= (i, j, k, l), where
i, j, k, l = 1, 2, 3, 4). A tetrahedron will be called a Gergonne tetrahedron if the lines AiBi

(i = 1, 2, 3, 4) meet at one common point. Regular triangular pyramids (in particular regular
tetrahedra) are Gergonne tetrahedra.

Can we state that each triangular pyramid is a Gergonne tetrahedron? We shall prove in
the following that the answer to this question is negative.

Let us construct a tetrahedron, which is not a Gergonne tetrahedron. Let a sphere S

and an arbitrary line a, which does not meet the sphere, be given. We get two planes α1,
α3 passing through the line a and tangent to the sphere S in points B1 and B3. Now, let us
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consider another line b skew with respect to line B1B3, but also not meeting the sphere S,
and let α2, α4 be two planes passing through line b and tangent to the sphere S at points
B2 and B4, respectively. The planes α1, α2, α3, α4 determine a tetrahedron circumscribed to
the sphere S. Let us denote the vertices lying on the line b by A1 and A3 and the vertices
lying on the line a by A2, A4. Consider the lines A1B1 and A3B3. From construction it is
clear that these lines are non-coplanar. If contrary, the lines A1A3 and B1B3 could not be
skew as assumed at the beginning of the construction. Thus the lines A1B1 and A3B3 do not
meet at one point. The pyramid we have constructed is not a Gergonne tetrahedron. Fig. 1
shows two overlapping views (top and front views) of such a pyramid. For convenience of the
presentation the edges A1A2 and A3A4 have been assumed as mutually perpendicular. This
pyramid has two symmetry planes and is not regular.

Figure 1: Two overlapping views (top (”) and front (’) view) of a pyramid A1A2A3A4,
which does not have a Gergonne point (P 6= Q)

The lines (A1B1, A2B2) and (A3B3, A4B4) intersect in pairs respectively at points P and
Q and do not meet at one point. So we need to determine necessery and sufficient conditions
to be fulfilled so that a pyramid is a Gergonne tetrahedron. First we formulate a simple
lemma (cf. [2], p. 1073, [3]). Let us consider m straight lines p1, p2, . . . , pm (3 ≤ m) in the
n-dimensional projective space P

n (for 3 ≤ m). We have

Lemma 1 Straight lines p1, p2, . . . , pm (3 ≤ m) intersect each other if and only if they are
coplanar or if they meet at one point (belong to one bundle).

Proof: Let us assume that the lines p1, p2, . . . , pm (3 ≤ m) intersect each other. Consider
two cases:

(1) all lines pass through the same point – and this is the end of the proof.

(2) there exist three lines, which do not pass through the same single point.
In the latter case without loss of generality we can assume that these are the lines p1, p2, p3.

These lines form a triangle and determine a plane π(p1, p2, p3). An arbitrary line pi (4 ≤ i),
intersecting each one of the lines p1, p2, p3 has to belong to the plane π. For if pi did not
belong to the plane π, the line pi would intersect the plane π at a unique point, and this point
should belong to p1, p2, and p3, contrary to the assumption of the case (2). 4

The proof in opposite direction is trivial. 4 ♦

Let (Ai)i=1,2,3,4 be a tetrahedron and let (Bi)i=1,2,3,4 be points, in which the sphere in-
scribed into this tetrahedron touches its faces, such that Bi lies on the face opposite to Ai for
i = 1, 2, 3, 4. The following is true
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Theorem 1 The triangular pyramid (Ai)i=1,2,3,4 is a Gergonne tetrahedron if and only if the
points Ai, Aj, Bi, Bj are coplanar for all possible i, j with i 6= j.

Proof, “⇒”: Let us assume that the triangular pyramid (Ai)i=1,2,3,4 is a Gergonne tetrahedron.
Then the lines AiBi and AjBj (for i 6= j and i, j = 1, 2, 3, 4) meet at one point. It means that
the points Ai, Aj, Bi, Bj are coplanar. 4

“⇐”: Let the points Ai, Aj, Bi, and Bj be coplanar for all possible i, j with i 6= j. Thus the
lines AiBi (for i, j = 1, 2, 3, 4) intersect each other. The points A1, . . . , A4, B1, . . . , B4 can not
lie in one plane, as the tetrahedron (Ai)i=1,2,3,4 (and also (Bi)i=1,2,3,4) is not a planar figure.
Consequently, the lines AiBi for i = 1, 2, 3, 4 are not contained in a plane. Applying Lemma
1 we see that the lines AiBi for i, j = 1, 2, 3, 4 belong to a bundle, so the triangular pyramid
(Ai)i=1,2,3,4 is a Gergonne tetrahedron. 4 ♦

Corollary 1 Each regular triangular pyramid is a Gergonne tetrahedron.

Proof: Let a pyramid A1A2A3A4 be a regular triangular pyramid with the equilateral triangle
A1A2A3 as the basis. Let a sphere inscribed into this pyramid be tangent to its faces A1A2A4,
A2A3A4, A1A3A4, A1A2A3 at points B3, B1, B2, B4, respectively. The segments B3B1,
B1B2, and B2B3 are parallel, respectively, to the edges A1A3, A2A1, A3A2, and hence the
followig pairs of segments are coplanar: B3B1, A1A3; B1B2, A2A1; B2B3, A3A2. Similarly,
the segments B4B3, B4B1, B4B2 span planes respectively with parallel segments A3A4, A1A4,
A2A4. These planes are the planes of symmetry for a tetrahedron. Theorem 1 holds in this
case. ♦

The question arises if there are other Gergonne tetrahedra? The answer is negative. We
will refer to Fig. 2 and Fig. 3 in the following discussion. In Fig. 2 the idea for creating
Fig. 3 and Fig. 4 has been presented. Let A1, k12, k13 denote the vertex and two edges of
the triangular pyramid. Let O′, B′2, B

′
3 denote the orthogonal projection of the center O of

the sphere and of two tangency points B2, B3 onto the plane (face) A1A2A3, and let B0
2 , O

0
II ;

B0
3 , O

0
III be two distinct revolved sections of points B2, O; B3, O onto the plane (face) A1A2A3.

We will first examine a regular pyramid (Ai)i=1,2,3,4 for which the face A2A3A4 is an
equilateral triangle (Fig. 3). Its face A1A2A3 lies in an arbitrary plane. A sphere has been
inscribed into this pyramid. Let us now move the face A2A3A4 around the sphere in such
a way that it remains tangent to the sphere. At least one of the following pairs of edges
A2A3,B3B2; A3A4,B4B3; or A2A4,B4B2 becomes skew (see Fig. 3: lines B3B2 and A2A3 are
not parallel). In case the face A1A2A3 is an isosceles triangle, similar considerations are based
on drawings in Fig. 1, while the edge A2A3 remains parallel to the line B3B2. Each distortion
of a regular triangular pyramid contradics assumptions of Theorem 1.

Let us now examine the case of an arbitrary tetrahedron (Fig. 4). We will also assume that
its face A1A2A3 lies in an arbitrary plane, while the faces A1A2A4, A1A3A4 make arbitrary
angles with the face A1A2A3. The line B2B3 intersects the plane A1A2A3 at a point P231.
Again, let us move the face A2A3A4 around, so that it remains tangent to the sphere. One
of the boundary positions of the edge A2A3 is to be parallel to B ′3B

′
2. If the point A3 is

approaching A1 then the lines A2A3 and B3B2 will positively not intersect (Fig. 4). Therefore
only such positions are possible in which point A2 approaches A1. Continuing our discussion
we notice that the only possible positions for B3 are such in which B′3 belongs to the hatched
area in Fig. 4. Then, for an arbitrary position, which does not produce a regular pyramid, the
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Figure 2: The orthogonal projections (B ′2, B
′
3, O

′) and revolved sections (B0
2 , O

0
II ;B0

3 , O
0
III) of

the tangency points B2, B3 and the center O of the sphere. The elements without strokes lie
in the projection plane (A1A2A3)

Figure 3: The orthogonal projection of two tetrahedra (Ai)i=1,2,3,4, (Bi)i=1,2,3,4 and the sphere
with center O. The elements without strokes lie in the projection plane (A1A2A3)

segments of at least one pair among A2A3, B3B2; A1A3, B3B1; A1A2, B2B1 do not intersect
each other. In our discussion we take into consideration the incidence of the point B3 to the
hatched area presented in Fig. 4 and the inclination of pairs of lines A2A3, B

′
3B

′
2; A1A3, B

′
3B

′
1;

A1A2, B
′
2B

′
1.

Hence we conclude that the only Gergonne tetrahedra are regular triangular pyramids.
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Figure 4: The graphical idea of cases of the examination of Gergonne tetrahedra

3. Polar transformation

Theorem 1 has close connections with a certain polar transformation induced by a sphere (cf.
[1], pp. 355–357, [4], p. 334). Let P

3 be the 3-dimensional projective space over the field R

with points at infinity distinguished. Let SubmP
3 be the set of m-dimensional subspaces of

the space P
3 (0 ≤ m ≤ 3), and let S be an arbitrary sphere in the space P

3. Let L be the
set Sub1P

3 (so called a space of lines), we write ’|’ for the incidence relation which may hold
between a point and a line, or a point and a plane, or a line and a plane, or between line
and another line (the last relation is equivalent to lines intersection). Let us now consider the
polar correlation Φ: Sub0P

3 7−→ Sub2P
3 induced by a sphere. The transformation Φ induces

an other transformation Φ1: Sub1P
3 7−→ Sub1P

3. The last transformation is an automorphism
of the structure 〈L, |〉 (cf. [2], p. 1077). The following properties of the maps Φ and Φ1 become
crucial: Φ1(x)⊥x, and Φ(X)|X ⇐⇒ X ∈ S for each x ∈ L, X ∈ P

3. Let the tetrahedron
(Ai)i=1,2,3,4 be circumscribed to the sphere S and let the correlation Φ be determined by the
sphere S, let Φ1 be defined as above. We have Φ1(AiAj) = BkBl and Φ1(BiBj) = AkAl for
6= (i, j, k, l). If we assume that the lines AiAj and BiBj are coplanar for all 6= (i, j), then
there exist lines pl such that pl|AiAj ,BiBj ; AiAk,BiBk; AjAk,BjBk (i.e. each triplet of lines
(pl, AiAj , BiBj), (pl, AiAj , BiBj), (pl, AiAj , BiBj) belongs to one bundle) for 6= (i, j, k, l) and
each triplet of lines is related to planes αl(AiAjAk), βl(BiBjBk). Based on properties of the
transformation Φ1 we have: Φ1(pl)|BkBl,AkAl; BjBl,AjAl; BiBl,AlAl. Hence Φ1(pl) = AlBl.
Consequently, the lines (AiBi)i=1,2,3,4 have one common point if and only if lines (pi)i=1,2,3,4

are coplanar. By the above we have

Theorem 2 The triangular pyramid (Ai)i=1,2,3,4 is a Gergonne tetrahedron if and only if the
lines (pi)i=1,2,3,4 are coplanar.
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Let us now generalize our observations. Let P
n be the n-dimensional projective space over

the field R with points at infinity distinguished. Let SubmP
n be the set of m-dimensional

subspaces of P
n (0 ≤ m ≤ n). Let us consider a simplex (Ai)i=1,2,...,n+1 and a sphere S in-

scribed into this simplex. Let Bk be the point in which the hyperplane determined by the
vertices A1, A2, . . . , Ak−1, Ak+1, . . . , An+1 is tangent to the sphere S, for k = 1, 2, . . . , n + 1.
The existence of a sphere inscribed into the simplex (circumscribed to an arbitrary simplex)
can be proved similarly as it was done previously in 3-dimensional geometry. The simplex
(Ai)i=1,2,...,n+1 will be called the Gergonne simplex if the lines AkBk (k = 1, 2, . . . , n+ 1) meet
at a common point. Let us consider the polar correlation Φ: Sub0P

n 7−→ Subn−1P
n induced

by the sphere S (cf. [1], pp. 355–357, [4], p. 334). The correlation Φ induces a set of tranforma-
tions Φm: SubmP

n 7−→ Subn−m−1P
n for 0 ≤ m ≤ n− 1. Let Hn−1

i be the hyperplane tangent
to the sphere S at point Bi, and determined by the vertices A1, A2, . . . , Ai−1, Ai+1, . . . , An+1

of the simplex (Ai)i=1,2,...,n+1. Obviously, Hn−1
i ∈ Subn−1P

n and Ai 6∈ Hi
n−1 for 1 ≤ i ≤ n+ 1.

Notice that the lines AiBi for 1 ≤ i ≤ n + 1 do not all belong to one hyperplane and, by
Lemma 1, they have a common point if and only if each pair of them intersect each other.
Consider an arbitrary k with 1 ≤ k ≤ n + 1. Every two lines (AiBi, AjBj), with i 6= j,
i, j 6= k intersect each other. The lines AiBi, AjBj have a common point if and only if
the lines AiAj, BiBj have a common point, so there exists a common point Pij of the lines
AiAj, BiBj for all i 6= j, i, j 6= k. All the points Pij belong to a space γn−2

k = Hn−2

k which
is the common part of the hyperplanes αn−1

k = Hn−1

k (A1, A2, . . . , Ak−1, Ak+1, . . . , An+1) and
βn−1

k = Hn−1

k (B1, B2, . . . , Bk−1, Bk+1, . . . , Bn+1). But Φ(αn−1

k ) = Bk (point Bk is a tangency
point of the hyperplane αn−1

k and the sphere S) and Φ(βn−1

k ) = Ak (βn−1

k is a polar hyper-
plane of the point Ak in reference to the sphere S) for 1 ≤ k ≤ n + 1. Then it follows that
Φ1(γn−2

k ) = AkBk for 1 ≤ k ≤ n + 1. All the lines AkBk with 1 ≤ k ≤ n + 1 meet in a
common point if and only if the subspaces γn−2

k are incident with a certain hyperplane. We
obtain here

Theorem 3 The simplex (Ai)i=1,2,...,n+1 is a Gergonne simplex if and only if the spaces
(γn−2

i )i=1,2,...,n+1 are incident with a single hyperplane.

Let us notice that if in a certain simplex (Ai)i=1,2,...,n+1 the hyperplanes αn−1

k , βn−1

k are
parallel for all 1 ≤ k ≤ n+ 1, then the spaces γn−2

k including only infinite points of the space
P

n are incident with the hyperplane at infinity of the space P
n. Such simplex is a Gergonne

simplex. Since it follows that all simplices which have exactly (n+1)! own isometries (regular

simplices), and simplices which have exactly n! own isometries (semi-regular simplices) are
Gergonne simplices in P

n. Notice that the above n! own isometries of the semi-regular simplex
in P

n coincide with all isometries of the base of this semi-regular simplex, which is a regular
simplex in P

n−1.

4. About the Nagel point

A sphere S is said to be escribed to a tetrahedron if it is tangent to one of its faces and
tangent to three planes which are extensions of the other faces, and which is not inscribed
into this tetrahedron. Is it possible to escribe a sphere to each tetrahedron? The answer to
this question is positive. Let (A)i=1,2,3,4 be a tetrahedron. Into the trihedron with the vertex
A1 we escribe a sphere S ′ and, in the following, we construct two planes α′1, α

′
2 parallel to

the plane A2A3A4. One of these planes determines on the edges A1Ai (for i = 2, 3, 4) points



126 E. Koźniewski, R.A. Górska: Gergonne and Nagel Points for Simplices

(A′i)i=2,3,4 such that the sphere S ′ is escribed into the tetrahedron A1A
′
2A

′
3A

′
4. By using the

homothety J

A1A2

A1A′

2

A1
we transform the sphere S ′ into the sphere S escribed onto the tetrahedron

A1A2A3A4.

Let us now take into considerations the tetrahedron A1A2A3A4 and four spheres escribed
to this tetrahedron. Let B ′1, B

′
2, B

′
3, B

′
4 be the tangency points of these spheres and the

tetrahedron (B′i lies in the face AjAkAl for 6= (i, j, k, l)). The tetrahedron A1A2A3A4 we will
called a Nagel tetrahedron if and only if the lines AiB

′
i are concurrent for i = 1, 2, 3, 4. Each

regular triangular pyramid is a Nagel tetrahedron. The proof for the following theorem can
be done in much same way as for Theorem 1.

Theorem 4 The tetrahedron (Ai)i=1,2,3,4 is a Nagel tetrahedron if and only if points Ai, Aj,
B′i, B

′
j are coplanar for all possible i, j with i 6= j.

One can show an example of tetrahedron which is not a Nagel tetrahedron. In an analo-
gous way we prove that each regular triangular pyramid is a Nagel tetrahedron.

A generalization of the idea of the Nagel point in the n-dimensional space is based on
the concepts formulated in paragraph 3. The similar reasoning on the correlation Φ will be
applied here. But now a correlation is defined in a slightly different manner:

Let (Ai)i=1,2,...,n+1 be a simplex and S be an inscribed sphere in the n-dimensional space.
Let αn−1

i be the hyperplane tangent to the sphere S and determined by the vertices A1, A2, . . . ,

Ai−1, Ai+1, . . . , An+1 of the simplex (Ai)i=1,2,...,n+1, for 1 ≤ i ≤ n + 1. Let us consider n + 1
spheres Si escribed into the simplex (Ai)i=1,2,...,n+1; each Si is tangent to the corresponding
face αn−1

i , not containing Ai, at a point B′i. Let β′n−1

i be the hyperplane determined by the
vertices B′1, B

′
2, . . . , B

′
i−1, B

′
i+1, . . . , B

′
n+1 of the simplex (B′i)i=1,2,...,n+1, for 1 ≤ i ≤ n + 1. Let

us consider a correlation Ψ: Sub0P
n 7−→ Subn−1P

n, which is determined on the points Ai by
the condition: Ψ(Ai) := β′

n−1

i for i = 1, . . . , n+1. Then Ψ(αn−1
i ) = B′i, so Ψ(B′i) = αn−1

i for all
1 ≤ i ≤ n+ 1. Consequently, B ′i ∈ Ψ(B′i). The correlation Ψ induces a set of transformations
Ψm: SubmP

n 7−→ Subn−m−1P
n for 0 ≤ m ≤ n− 1. If we write γ ′

n−2

k for the common part of
the hyperplanes αn−1

k and β′
n−1

k , we obtain results similar to those established in Theorem 3.
All lines (AiB

′
i) with 1 ≤ i ≤ n+ 1 go through a common point if and only if the spaces γ ′n−2

k

are included in a certain hyperplane. Thus we obtain

Theorem 5 The simplex (Ai)i=1,2,...,n+1 is a Nagel simplex if and only if all the spaces
(γ′n−2

i )i=1,2,...,n+1 are contained in one single hyperplane.

Is a Gergonne simplex also a Nagel simplex? Is it a right simplex? These questions remain
to be answered.
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