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Abstract. Highway lanes of planar shapes can be defined by specifying an arc or
a straight line called the axis and a geometrical figure such as a disk or a line seg-
ment called the generator that wipes the internal boundary of the lane by moving
along the axis, possibly changing size as it moves. Medial axis transformations of
this type have been considered by Blum, Schwarts, Sharir and others. This
research work considers such transformations for both the generation and the re-
covery processes. For a given highway lane generated in this way, we determine
the medial axis and the generation rule that gave rise to it.
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1. Introduction

There are many authors that have considered methods for describing planar shapes in terms
of an arc called the axis about which the shape is locally symmetric [1,2,3,4]. This paper
considers the highway lanes from the standpoints of both generation (of the lane, given the
axis) and recovery (of the axis, given the lane).

Generally, we are given the center line (or the axis) of the lane and a geometric figure
– called the generator – such as a disk or a line segment that wipes the area of the lane by
moving along the axis, possibly changing size as it moves. More precisely, we assume that
the generator contains a unique reference point, e.g., the center of the disk or the midpoint
of the line segment. At each point O of the axis we place a copy of the generator so that
its reference point coincides with O. The union of all these copies, which may be of different
sizes, is the generated highway lane.

An early use of this approach to define planar shapes, due to Blum [1], used a disk as
generator. He was more interested in description (i.e., recovery) than in generation. Blum’s
method was developed to describe arbitrary shapes that are not necessarily like highway lanes,
using axes or skeletons that are not necessarily simple arcs. We will call Blum’s case lane of
type 1. But in this paper we will define the lane of type 1 as a highway lane only in the case
where its axis is a simple arc or a straight line segment.
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There are two more cases to consider. The lane of type 2 defines a class of highway lane
that uses a line segment as generator and requires it to make a fixed angle with the axis.
Lane of type 2 is more flexible than that of type 1 from a generative point of view, but as we
will see, it does not allow unique recovery.

The third lane shape – lane of type 3 – depends on local symmetry. Here, the generator is
also a line segment, but it is required to make equal angles with the sides of the lane, rather
than making a fixed angle with the axis.

We will refer to these types and methods for defining highway lanes as axial representation,
since they all involve an axis that is a planar arc. Our interest in this paper is in the use of
these methods to define highway lane, and we will consider various ways of restricting them
so that they do indeed tend to define such lanes. We will discuss these types of lanes from
the generation as well as the recovery point of view.

2. General considerations

Before considering specific types of axial representations, we make a few general observations
about them, and introduce some general remarks and notations. Fig. 1 shows a piece of an
axis s and an initial position GO of the generator. We will usually assume that s is a simple,
rectifiable arc with a tangent at every point, and that the generator G is a simply connected
set. The reference point of the generator O will be called its center, and the generator whose
center is at position O on s will be denoted by GO. Then the lane ` is defined as the union
of the generators GO for all O ∈ s.

Since s and G are connected, ` is connected, too. One can get from any point P of any
G1 to any point Q of any G2 by moving within G1 from P to the center O1 ∈ s, then along s
to the center O2 ∈ s, then within G2 from O2 to Q.

Figure 1: The generation process: G
sweeps out the lane ` while O moves
along s

Figure 2: If ` is allowed to intersect itself we
get shapes which do not look like highway
lanes

The generators G are supposed as geometrically similar figures. They all have the same
shape, and differ only in size. We will measure the size of GO by its semidiameter (or radius)
rO. We will usually assume that rO, as well as the orientation of GO, vary continuously and
differentiably as O moves along s.

Since we want ` to form a highway lane, it is reasonable to require that as G moves along
s, it should not intersect any G centered at other parts of s. If such intersections were allowed,
we could get shapes that were not like highway lanes, as illustrated in Fig. 2.
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A closely related requirement, based on the demand that ` looks like a highway lane, is
that no G should contain another one. By requiring this, we assure that the axis s influences
the shape of `. Fig. 3 shows an example of what could happen if we did not impose this
restriction. We will impose the stronger requirement that each G is maximal, in other words,
no G is strictly contained in any G-shaped region which is subset of `. It follows that every
G contains at least two border points of `. Otherwise we could expand it slightly to obtain
a larger G-shaped region still contained in `, contradicting the maximality of G. Conversely,
note that every border point of ` belongs to some G since ` is the union of all Gs.

Let O′ and O′′ be the endpoints of s. Those parts of the border of ` that are in GO′ or
GO′′ , but not in any other G, will be called the ends of `. The rest of the border of ` splits into
two components, the sides of `. These concepts are illustrated in Fig. 4. Since s is smooth
(i.e., differentiable), and since the size and orientation of GO vary smoothly as O moves along
s, it is clear to see that the border of ` must also be smooth. We will denote the border of `
by b`.

Figure 3: If any G contains another one.
Here GO is large, and the Gs get rapidly
smaller as we move away from O, so that
GO is all of `. The shape of ` is not influ-
enced by that of s.

Figure 4: The sides and the ends of `.

We assume that G is symmetric about its center O in the examples coming later. G will
be a disk and O its center, or G will be a line segment and O its midpoint. The symmetry
of G tends to make ` locally symmetric, but it does not imply any type of global symmetry,
since the axis may be curved, and the orientation of G relative to the axis may vary.

3. Lanes of type 1

Lemma 1: Let the lane ` be simply connected and let its borderline b` be smooth. Then any

maximal disk D contained in ` is tangent to b`.

Proof: D must intersect b` somewhere, say at P . If D is not tangent to b` at P , it would cross
b` and so contain points not in ` — contradiction.

Lemma 1 holds not only for disks, but for any class of shapes that have smooth borders.
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Lemma 2: If ` is a lane of type 1, every maximal disk D contained in ` is one of the Gs and
in particular has its center on s. Thus the set of maximal disks equals the set of its generators.

Proof: Let D be tangent to b` at P . As P must be contained in some GO and GO is maximal,
due to Lemma 1 GO is tangent to b` at P , too. Thus D and GO are both tangent to b` at P ,
and since both are maximal disks, they must be identical.

Lemma 3: If ` is a lane of type 1, then the axis and the set of generators of ` are uniquely
determined.

Proof: For every P ∈ b` we can construct the set of disks tangent to b` and contained in `.
Let DP be the largest of these disks, so that DP is a maximal disk. According to Lemma 1,
the set {DP | P ∈ b`} contains all maximal disks. By Lemma 2, this is the set of generators
G, and the axis is the locus of their centers.1

We thus see that lanes of type 1 are very well behaved with respect to their recoverability.
However, they are more limited or harder to deal with in other respects. One limitation is that
a thick lane of type 1 cannot have points of high positive curvature (=convex) on its border,
provided the border b` is oriented such that the interior of ` lies left hand. For example, the
shape shown in Fig. 5a cannot be a lane of type 1; the set of centers of its maximal disks is
not a simple arc. On the other hand, points of high negative curvature are admitted, as Fig.
5b shows.

Figure 5: A thick lane of type 1 can have points of high negative curvature
on its border (b), but not points of high positive curvature (a).

Figure 6: When the axis is curved, then two touching disks need not touch on the axis.

There are several ways to exclude self-intersection for lanes of type 1. One approach is to
require that the sides do not intersect themselves or each other. To define this concept more
precisely, note that by the proof of Lemma 3, there is a one-to-one correspondence between
the points P on one side of ` and the points O on the axis. Hence, if the side intersects itself,
two different centers O will correspond to the same P .

1A descriptive geometry approach to the construction of the axis is presented in [1] and [6].



H. Abdelmoez: Generation and Recovery of Highway Lanes 133

From the purely generative point of view, it would be more appropriate to define non-
self-intersection in terms of the generators themselves. But it is not easy to do this. For lanes
generated by straight line segments, we could simply require that no two generators intersect,
but we cannot require this in the case of disk generators, since disks having sufficiently close
centers on the axis must intersect as long as their radii are bounded away from zero.

Another possibility would be to require that whenever two generators intersect, their
intersection contains a part of the axis. But this does not work either in the case of disk
generators since (cf. Fig. 6) at a curved axis two touching generators need not touch at a
point of the axis.

A better definition seems to be the following: Let s be the set of centers of all the
generators that intersect any given generator G. Then s is an arc. This excludes cases like
those displayed in Figs. 7 and 8. The case of Fig. 7 is forbidden in any case because not all
generators are maximal disks. But Fig. 8 cannot be excluded by non-maximality. Note that
Fig. 7 also shows that thick lanes of type 1 are limited in the rate at which they can turn.
A concave side of a lane of type 1 can turn rapidly, as we see in Fig. 5b. An even simpler
example is that of a thick annulus with a very small inner radius.

Figure 7: This example violates the con-
dition of non-self-intersection and that of
non-maximality, too.

Figure 8: This example violates non-self-
intersection

Another approach for defining non-self-intersection would be to regard the generator not
as a disk, but as a pair of arcs terminating at the points where the disk is tangent to the sides,
as in the proof of Lemma 3, and to require that no two of these arc pairs intersect. It is not
easy to define a generation process purely in terms of these arc pairs. The arc-pair approach
is more interesting from the recovery point of view: If P and P ′ are corresponding points on
the two sides, the normals at P and P ′ will intersect each other at point O equidistant to P
and P ′. This will be the first time that any of these normals meets a normal that has not
itself met any other normal previously. In this case, O is the axis point corresponding to P
and P ′.
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4. Lanes generated by line segments

Suppose next that the generator is a line segment with its midpoint on the axis s. In general,
we can allow both the length and the direction of the segment (relative to the axis) to vary
as it moves along the axis. We will call a shape ` generated in this way an L-lane. Note that
by maximality, the endpoints of any generator must both lie on the border of `. In fact, the
sides of ` are just the loci of the two endpoints, while the ends of ` are just the generators at
the two ends of the axis.

It is trivial to formulate the non-self-intersection condition for L-lanes: We simply demand
that no two generators intersect. Thick L-lanes are also not strongly limited in their ability
to turn, due to the fact that the direction of the generators relative to the axis is allowed to
vary (see Fig. 9).

L-lanes can also have points of high positive or negative curvature on their borders. Thus
they are also more flexible in this respect than lanes of type 1. An L-lane can have arbitrary
long edges (protuberances) on its border (Figs. 10a,b), provided every point on the edge is
visible from the axis, in contradiction to (Figs. 10c,d). Since the slope of the generator is
supposed variable, an L-lane can even have edges with overhangs (Fig. 10b). On the other
hand, some combinations of edges may be impossible even if they are all visible from the
axis, as the generators would have to cross one another in order to generate the lane (Fig.
10e). We learn from Fig. 10 that the class of L-lanes is somehow too large. It contains shapes
that no longer look like simple lanes. Some of these examples wil be out of discussion by the
restrictions that we will impose in the next two sections.

Figure 9: Thick L-lanes can make sharp turns

The problem with the most basic example Fig. 10a is that when we regard a shape as
being axially generated, we prefer to choose the axis such that it has maximal length relatively
to the thickness of the shape. For example, a rectangle can be generated as an L-lane (with
generators perpendicular to the axis) in two ways, as shown in Figs. 11a,b , but we strongly
prefer Fig. 11a because it has greater elongatedness. Similarly, we prefer not to regard the
edges in Fig. 10 as being generated from the axis of the main part of the shape, even when
this can be done legally, because the edges have much greater elongatedness w.r.t. their axis
(Fig. 12).

Another serious difficulty with L-lanes is that they are highly ambiguous. The same shape
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Figure 10: L-lanes can have long edges on their borders (a, b), but not
if they look like in c, d, or e.

Figure 11: We prefer the generation (a) against (b) because it is more elongated.

can be generated in many different ways, even using the same axis, as illustrated in Fig. 13. Of
course, we strongly prefer the generation process in Fig. 13a against that of Fig. 13b because
the former is much simpler. In Fig. 13a both the size and the direction of the generator remain

Figure 12: The edges have much greater elongatedness with respect to axis of their own.
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Figure 13: L-lanes are highly ambiguous; a given shape can be generated
in many different ways.

constant, while in Fig. 13b they both vary. For an arbitrary shape, however, it would not be
easy to formulate a certain measure of simplicity. For example, which would be prefered –
constant size and variable slope, or constant slope and variable size? The priority between
simplicity and degree of elongatedness is also far from being clear.

Figures 11 and 13 show that L-lanes are not recoverable. For a given highway lane, the
axis and the set of generators are both far from being uniquely determined. Even if we had
reliable criteria, based on simplicity and elongatedness, for preferring one generation process
against another, we would still not have a constructive method for determining the best
generation process for a given lane.

We can reduce the ambiguity of L-lanes if we require additional constraints. In the next
two sections we consider two such constraints:
(1) requiring the generators to make a fixed angle with the axis, and

(2) requiring them to make equal angles with the sides of the lane.

5. Lanes of type 2

Our first restriction on L-lanes is that the generator is required to make a fixed angle with
the axis. We will assume here, for simplicity, that the angle between the generators and the
axis is always 90◦.

Figure 14: The thickness of a lane of type 2 cannot exceed twice the
radius of curvature of its axis.

Fixing the angle has the undesirable consequence of limiting the ability of lanes of type 2
to make sharp turns. In fact, as Fig. 14 shows, the thickness of a lane of type 2 cannot exceed
twice the radius of curvature of its axis. Lanes of type 2 still allow some pathological cases,
such as that in Fig. 10a.



H. Abdelmoez: Generation and Recovery of Highway Lanes 137

A shape can be globally ambiguos w.r.t. the type 2-generation, as we saw in Fig. 11.
However, the ambiguity in Fig. 11 results from interchanging the roles of the end and the
sides. If we specify which are the sides, Fig. 11 becomes unambiguous.

Lemma 4: If the sides of the lane of type 2 are straight and parallel, its axis and generators

are uniquely determined. In fact, the axis is the line parallel to the sides and midway between

them.

Proof: Let GO be any generator, as illustrated in Fig. 15. Since O is the midpoint of GO

and the sides are parallel, by similar triangles O is midway between the sides. As this is true
for any O, the axis must be the line parallel to the sides and midway between them, and the
generators must thus be perpendicular to the axis and the sides.

Figure 15: If a lane of type 2 has parallel straight sides, its axis must be parallel
to them and midway between them.

Figure 16: A parallelogram (6=rectangle) is not a lane of type 2.

Figure 17: A lane of type 2 with straight sides.

Note that due to Lemma 4 a parallelogram cannot be a lane of type 2 (in our restricted
sense) unless it is a rectangle. Since the generator must be perpendicular to the sides, it
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cannot generate the oblique ends (Fig. 16). To generate oblique parallelograms, we must
allow the generator to make an oblique angle with the axis. In the following, we will ignore
what happens at the ends of a lane, and consider only the problem of generating the parts of
the sides away from the ends.

Let us now consider the case where the sides are straight but not parallel. Evidently, we
can generate parts of these sides by taking the axis to be part of the straight line that bisects
the angle between the sides, as shown in Fig. 17. However, this is not the only possibility. In
fact, as we will next prove:

Figure 18: Deriving the differential equation of the axis y = h(x).

Lemma 5: A lane of type 2 with straight sides need not have a straight axis.

Proof: Consider first the general case where the sides are arbitrary curves y = f(x) and
y = g(x), as shown in Fig. 18. Let the known equation of the axis be y = h(x). Let the
generator centered at point [x0, h(x0)] of the axis meet the sides at points [x1, f(x1)] and
[x2, g(x2)]. Since the midpoint of the generator is on the axis, we must have

x0 =
x1 + x2

2
and h(x0) =

f(x1) + g(x2)

2
.

The slope of the generator at [x0, h(x0)] is −1/h′(x0). Thus its equation is

x0 − x

y − h(x0)
= h′(x0) ,

so that the intersection points with the sides satisfy

f(x1) =
x0 − x1

h′(x0)
+ h(x0) and g(x2) =

x0 − x2

h′(x0)
+ h(x0).

We can solve these equations for x1 and x2 in terms of x0, h(x0) and h′(x0) and substitute
the results in the equation x0 =

1
2
(x1 + x2) to obtain an equation involving only x0, h(x0)

and h′(x0), i.e., a first-order differential equation for the unknown function h.
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As an example, let the sides be portions of straight lines, say with equations y = 0 and
x = 0. Thus the intersection points satisfy

0 =
x0 − x1

h′(x0)
+ h(x0) and mx2 =

x0 − x2

h′(x0)
+ h(x0).

This yields

x1 = x0 + h(x0)h
′(x0) and x2[mh′(x0) + 1] = x0 + h(x0)h

′(x0).

Thus

x0 =
x1 + x2

2
=

x0 + h(x0)h
′(x0)

2

[

1 +
1

1 +mh′(x0)

]

or
2[1 +mh′(x0)]x0 = [x0 + h(x0)h

′(x0)][2 +mh′(x0)]

which simplifies to
mx0h

′(x0) = [2 +mh′(x0)]h(x0)h
′(x0).

Canceling h′(x0) (clearly h is not a constant, so h′ is not identically zero) gives

mh(x0)h
′(x0) + 2h(x0)−mx0 = 0

so that h satisfies the differential equation

myy′ + 2y −mx = 0.

The general solution to this equation is found as follows: The substitution y := xw gives after
canceling by x

mw(w + xw′) + 2w −m = 0.

Thus

xww′ =
m− 2w −mw2

m
or

1

x
+

ww′

w2 + 2 w

m
− 1 = 0 .

It can be verified that
ww′

w2 + 2 w

m
− 1 =

aw′

w + c
+

bw′

w + d

where

a =

√
m2 + 1 + 1

2
√
m2 + 1

, b =

√
m2 + 1− 1
2
√
m2 + 1

, c =
1 +

√
m2 + 1

m
, d =

1−
√
m2 + 1

m
.

Hence
∫

dx

x
+

∫

aw′

w + c
dw +

∫

bw′

w + d
dw = k

or
log x+ a log(w + c) + b log(w + d) = k

or
x(w + c)a(w + d)b = k′.
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Since
w =

y

x
and a+ b = 1,

this becomes
(y + ck)a(y + dx)b = k′.

If we raise both sides to the power
2
√
m2 + 1

m
, we get

(y + cx)c(y + dx)−d = k′′.

Noting finally that −d = 1
c
, we have

(y + cx)c(y − x

c
)

1

c = k′′.

The line bisecting the angle between the sides is a special case of this solution. Indeed,
the slope of this line is

M = tan

(

1

2
tan−1 m

)

=
−1±

√
m2 + 1

m
= −c or − d,

so that y = Mx is a solution for k′′ = 0 . However, there is also a large family of nonlinear
solutions.

Lemma 6: Specifying parts of the sides of a lane of type 1 does not uniquely determine the

axis.

Proof: Consider the case where the sides are perpendicular, say y = 0 and x = 0. This is not
a special case of our general formulation, since the second side is not of the form y = g(x).
However, we can derive the differential equation for this case by the same method. It turns
out to be

yy′ = x.

This can be obtained from our general differential equation

myy′ + 2y = mx

by dividing through m and letting m→∞. The solution to this equation is simply

y2 = x2 + C.

For C 6= 0, this is a family of hyperbolas asymptotic to the line y = x, and for C = 0 we get
the line y = x itself (see Fig. 19).

It can be verified that if we draw any perpendicular to such a hyperbola, the distances
along the perpendicular to the two axes are equal. Note, however, that the hyperbola axes do
not yield the entire axes as sides. For example the hyperbola y2 = x2 − C shown in Fig. 19
cannot generate the interval [0, 2C] of the x-axis. Thus, our straight-sided examples imply
the statement.

In the straight-sided examples, there is only one linear solution. All other solutions have
higher degree. This suggests the possibility that in general there might be a unique lowest-
degree solution. Unfortunately, this is not so, as we can see from considering the case where
one side is a straight line and the other is a parabola, e.g., y = 0 and y = ax2.
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Figure 19: A lane of type 2 with straight sides need not have a straight axis.

Lemma 7: If one side of a lane of type 2 is a straight line and the other is a parabola, the

axis is not algebraic.

Proof: Here the intersection points satisfy

0 =
(x0 − x1)

h′(x0)
+ h(x0) and ax2

2 =
(x0 − x2)

h′(x0)]
+ h(x0).

Thus

x1 = x0 + h(x0)h
′(x0) and x2 =

−1±
√

1 + 4ah′(x0)[x0 + h(x0)h′(x0)]

2ah′(x0)
.

The substitution x0 =
x1 + x2

2
gives

x0 = h(x0)h
′(x0) +

−1±
√

1 + 4ah′(x0)[x0 + h(x0)h′(x0)]

2ah′(x0)

so that h satisfies the differential equation

x = yy′ +
−1±

√

1 + 4ay′(x+ yy′)

2ay′
.

Transposing and squaring gives

1 + 4ay′(x+ yy′) = [1 + 2ay′(x− yy′)]
2
= 1 + 4ay′(x− yy′) + 4a2y′

2
(x− yy′)2.

Thus
8ayy′

2
= 4a2y′

2
(x− yy′)2, or 2y = a(x− yy′)2

where we can cancel y′2 since y is not a constant.
It is not difficult to see that this differential equation has no polynomial solution. Note

first that it has no linear solution. In fact, if y = Ax+B were a solution, we would have

2(Ax+B) = a[x− A(Ax+B)]2.
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This must vanish identically in x. Hence the coefficient of each power of x must vanish.
Collecting coefficients, we obtain

a(1− A2)2x2 − 2A[1 + a(1− A2)B]x+ aA2B2 − 2B = 0.

For the coefficient of x2 to vanish we must have A = ±1. But then the coefficient of x does
not vanish — contradiction.

Now suppose the equation has an algebraic solution of degree exactly n > 1, say y =
Axn+ . . . (terms of lower degree), where A 6= 0. Then the coefficient of x2n(n−1) is naA2, and
since this must vanish, we must have A = 0 — contradiction.

It would be useful to obtain explicit solutions for the axis when the sides are polynomials
of low degree, but the differential equation of the axis is extremely complicated when both
sides are non-straight, e.g., even when they are both circular arcs.

6. Lanes of type 3

We consider L-lanes satisfying the condition that the generator always makes equal angles
with the sides of the lane. Note first that it is not obvious how to generate a lane of type 3
from an arbitrary given axis. Let the equation of the axis be y = h(x), and let the generator
centered at point (x0, y0) of the axis have half-length r0 and slope tan θ0. Then the endpoints
of the generator are at (x0 ± r0 cos θ0, y0 ± r0 sin θ0), where y0 = h(x0). The loci of the sides
at the endpoints are the sides of the lane. Thus the slopes at the endpoints are

d(y0 ± r0 sin θ0)

d(x0 ± r0 cos θ0)
=

y′0 ± r′0 sin θ0 ± r0θ
′
0 cos θ0

1 + r′0 cos θ ∓ r0θ′0 sin θ
.

If we denote these slopes by tan θ1 and tan θ2, respectively, then the equal-angle condition
means that we must have 1

2
(θ1 + θ2) = θ0. In principle, we can solve this equation to find

pairs of functions r0 and θ0 that generate lanes of type 3.

Lemma 8: If a lane of type 3 has straight sides, its axis must be a segment of the angle

bisector of the sides, and its generators must be perpendicular to the axis.

Proof: Let the sides have slopes tan θ1 and tan θ2. An arbitrary line of slope tan θ makes
angles (θ − θ1) and (θ− θ2) with the sides. Thus there is only one slope for which the angles
are equal, namely tan θ, where θ = 1

2
(θ1 + θ2). Thus all generators must be parallel, and

evidently they are perpendicular to the angle bisector. If θ1 = θ2, the angle bisector becomes
the line parallel to the two sides and midway between them.

Lemma 8 shows that if a lane of type 3 has straight sides, its axis and generators are
uniquely determined. Lemma 8 also holds if just one side is straight.

Lemma 9: If a lane of type 3 has just one straight side, its axis and generators are uniquely

determined.

Proof: Let the straight side have slope tan θ1, let P be any point on the other side, and let
the tangent at P have the slope θ2, where θ2 6= θ1. Just as in the proof of Lemma 8, there is
a unique line through P that makes equal angles with the straight side and with the tangent
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at P – namely, the line having the slope tan θ, where θ = 1
2
(θ1 + θ2). Thus at every P for

which θ2 6= θ1, the generator is uniquely determined. Moreover, at any P for which θ2 = θ1

we must take the generator perpendicular to the two sides in order to assure continuity of
its slope. Thus all the generators are uniquely determined, and the axis is the locus of their
midpoints.

For arbitrarily shaped sides s and t, let P ∈ s. If there exists Q ∈ t such that the normals
to s at P and to t at Q are parallel, then the line segment PQ is a generator, since it makes
equal angles with the normals. And if there exists more than one such Q, there is more than
one generator with endpoint P . On the other hand, as Fig. 20 shows, the normals at P and
Q need not be parallel for PQ being a generator. Thus we cannot say anything simple about
uniqueness in the general case.

Thick lanes of type 3 can make sharp turns. In Fig. 21, if t is very tiny, the generator
PQ will have approximately the same length. Hence the locus of their centers, i.e., the axis,
is approximately a circular arc parallel to s and with about half its radius. Thus the lane
is more than twice as thick as the radius of curvature of its axis, but it is still able to turn
without intersecting itself. This example also shows that there exist lanes of type 3 that are
not of type 2.

Figure 20: Generators of lanes of type 3 do not require parallel normals.

Finally we show that every lane of type 1 is a lane of type 3. Referring to the last
paragraph of Section 3, the triangle OPP ′ is isosceles. Hence PP ′ makes equal angles with
the normals OP and OP ′ to the sides of the lane. Thus PP ′ is a generator for a lane of
type 3, and the locus of its midpoint is an axis for a lane of type 3. Note that this axis is
not necessarily the same as the axis for a lane of type 1, which is the locus of O. If ` is a
lane of type 1, we can recover its generator as in Section 3, for given pairs (P, P ′). Then this
determines a set of generators for lanes of type 3 of `, namely the segments PP ′. However,
there is no guarantee that this set is unique.
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Figure 21: Thick lanes of type 3 can make sharp turns.

7. Special cases

In last two sections we have ignored what happens at the ends of a lane. By definition, the
ends of a lane of type 1 must be circular arcs, while those of a lane of types 2 and 3 must be
straight. In the case of L-lanes (i.e., lanes having line segment generators) we can shape the
ends by attaching to each end what we shall call a generalized sector. This is simply a pencil
of ray segments coming from each endpoint of the segment over a 180◦ sector (in the half-
plane bounded by the last generator of the lane and not containing the adjacent generators).
The lengths of the ray segments can vary in any desired way. In particular, if we make the
segments all equal, the generalized sector becomes a semidisk, so that the ends of the lane are
bounded. Another way of shaping the ends of an L-lane is to attach to each end a generalized
wedge. This is a pencil of ray segments coming from the endpoint of one of the sides, and
covering an angular sector bounded on one side by the last generator of the lane. Generalized
wedges would be a natural way of completing lanes such as that shown in Fig. 16. Note that
in both generalized sectors and generalized wedges, the generating ray segments all have one
endpoint in common, rather than being disjoint as in the lane case.

If we do not ignore what happens at the ends, our three special classes of lanes types 1, 2,
3 are all incomparable. Lanes of type 1 have rounded ends, while lanes of type 2 and 3 have
flat ends. There exist lanes of type 3 that are not of type 2, as we saw at the end of Section
6. Conversely, a lane of type 2 such as that in Fig. 19 is not a lane of type 3, the method of
the lane of type 3 can generate straight-sided lanes, but the sides must be symmetric around
their angle bisector.

Even if we ignore the ends, there are many types of lanes of type 2 or 3 that are not of
type 1, e.g. Fig. 10a. And there are lanes of type 3 that are not of type 2 or 3, as we saw at
the end of Section 6.

The remaining questions are: Ignoring the ends, is every lane of type 1 a lane of type 2 ?
Is every lane of type 2 a lane of type 3 ? We will not settle these questions here in general,
but we will settle them in the case where the axis is straight.

Lemma 10: If the axis is straight, and we ignore the ends, every lane of type 1 is a lane of

type 2, too.
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Proof: Let ` be a lane of type 1 whose axis lies along the x-axis, and let O be any point
on the axis. Since ` is a union of disks centered on the x-axis, it is clear that the vertical
line through O can only meet ` in a single connected segment. Let P and Q be the border
points of ` directly above and below O. Any disk centered on the x-axis that contains P also
contains Q, and vice versa. Hence the unique generator of ` that touches the boundaries b`

at P also touches it at Q, so that P and Q are equidistant from the x-axis. At each point O
of the axis, PQ is a generator for a lane of type 2, since it is perpendicular to the axis and O
is its midpoint. The lane of type 2 generated by this set of generators is evidently ` (except
at the ends).

Lemma 11: If the axis is straight, every lane of type 2 is a lane of type 3.

Proof: Let ` be a lane of type 2 with a straight axis, say, located on the x-axis. Let G(x)
be the generator of ` at x so that G(x) is a vertical line segment with x as its midpoint, and
let r(x) be the half-length of G(x). The slopes of the sides of ` at the endpoints of G(x) are
evidently ±r′(x). Hence the sides make equal angles with G(x), so that ` is a lane of type 3.

Even if the axis is straight, a lane of type 3 need not be a lane of type 2 (see Fig. 10b).
Similarly, a lane of type 2 need not be a lane of type 1 (Fig. 10a). Thus for straight axes,
ignoring the ends, the three classes of lanes are strictly nested; that is

type 1 ⊂ 6= type 2 ⊂ 6= type 3 .

8. Conclusion

We have discussed various ways of defining generalized highway lanes. In particular, we have
considered three specific models, due to lanes of types 1, 2 and 3, respectively. The model of
type 1 seems to have the least generative capacity. But it has unique recoverability. Lanes
of type 1 are limited in their flexibility (e.g., in terms of turn radius), but they are also
limited in their ability to generate not lane-like shapes. The model of type 3 has somehow
more generative capacity than that of type 2, and its recoverability properties also seem to
be better. Its main disadvantage is that the generation is not a straightforward process. It
is not easy to specify how to define the set of generators so as to assure that they satisfy the
equal angle condition of lanes of type 3.

It would be of interest to generalize the results of this research work to three dimensions
by defining and comparing various classes of generalized cylinders (or cones). In 3D the axis
is a space curve (or rather arc). The 3D analog of type-1-lanes uses a sphere as generator,
while the analoges of the 2D schemes based on line segment generators use a planar figure
(such as a disk) as generators. Here we can consider lanes of type-2-restriction in which the
disk is required to remain at a fixed angle to the axis. It is less obvious how to define a 3D
analog of the equal angle restriction of lanes of type 3. Note that if we use a line segment as
generator in 3D, and allow its length and spatial orientation to vary, we obtain generalized
space lanes rather than cylinders or cones.
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