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Abstract. It is shown that the examples presented 1998 by A. Walz are special
cases of a more general class of flexible cross-polytopes in E

4. The proof is given
by means of 4D descriptive geometry. Further, a parameterization of the one-
parameter self-motions of Walz’s polytopes is presented.
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1. Introduction

There is a basic and important question concerning the geometry of structures: Is a given
structure rigid or is it not? In the engineering world there is a vigorous interest in rigidity, as
bridges, buildings, mechanical gadgets and countless other things have to be built. This has
been the background for interesting mathematical theories. And there is still a wide field of
open problems left.

A long-standing problem is to prove if a smooth closed surface can continuously flex, i.e.,
one can find a continuous family of smooth surfaces each of which is isometric (in the intrinsic
metric) to any other one and is not obtained from the initial surface by a rigid motion. A first
piece-wise linear flexible embedding of the 2-sphere into the Euclidean 3-space was constructed
1978 by R. Connelly [2]. Two years later a simplified “flexing sphere” was presented by K.

Steffen (see [4]). Both flexible polyhedra are based on Bricard’s octahedra ([1], compare
[6]).

A milestone in the theory of flexible polyhedra was recently the progress with the “Bellows
Conjecture”. This conjecture stated by R. Connelly says that any continuous flexion that
preserves the edge lengths of a closed triangulated polyhedron preserves its volume. A first
proof in E

3 was given 1995 by I. Sabitov. A second proof by R. Connelly et al. ([3])
followed two years later.

If a polyhedron admits a continuous flexion then it admits also an analytical flexion, i.e.,
for each vertex the trajectory under the flexion can be expressed as an analytic function of
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the time t. One can weaken the continuous flexibility by limiting the Taylor series, i.e., by
requiring that the edge lengths stay constant up to a given order of t, only. In this sense,
flexibility of first order means that to each vertex a velocity vector can be assigned such
that these are compatible with constant edge lengths. Additionally one must demand that
these velocity vectors do not originate from a motion of the whole structure like a rigid body.
When also compatible acceleration vectors can be assigned to each vertex then we get second
order flexibility, and so on. Geometric characterizations of octahedra which are infinitesimally
flexible of the orders 1 or 2 are given in [8].

2. A. Walz’s flexible cross-polytopes in E
4

In the Euclidean n-space E
n the analoga of octahedra are called cross-polytopes Cn: These

polytopes have 2n vertices coupled into pairs (pi1,p
i
2) for i = 1, . . . , n. The 4

(
n
2

)
= 2n(n− 1)

edges of Cn are pij1p
k
j2

for i 6= k and j1, j2 ∈ {1, 2}. The 2n hyperfaces of Cn are the simplices
p1
j1
p2
j2
. . .pnjn for any j1, . . . , jn ∈ {1, 2}.

2.1. A descriptive geometry approach

Let a1, a2, . . . ,d1,d2 be the eight vertices of a four-dimensional cross-polytope C4. We parti-
tion the set of 24 edges into the edges of the quadrangles (= C2)

Q := a1b1a2b2, Q := c1d1c2d2,

and the bipartite framework

F := { pp | p ∈ Q, p ∈ Q}.

In 1998 at a conference in Canada1 A. Walz presented a class of continuously flexible
cross-polytopes in E

4. Following Walz, we visualize these polyhedra using two complemen-
tary orthogonal projections of E

4 onto planes: Each point x = (x, y, z, t) ∈ E
4 is mapped onto

its “top view” x′ = (x, y) and the “front view” x′′ = (z, t), thus representing E
4 as E

2×E
2

(compare [7]). Obviously, for any two points x,y ∈ E
4 the distance is given by

‖x− y‖2 = ‖x′ − y′‖2 + ‖x′′ − y′′‖2. (1)

At Walz’s example the quadrangles Q and Q are located in two totally-orthogonal planes,
say, parallel to the xy-plane and the zt-plane, respectively. Therefore we obtain the true size
of Q in the top view, the true size of Q in the front view, and we have o′ := c′1 = . . . = d′2
and o′′ := a′′1 = . . . = b′′2 (see Fig. 1). The quadrangles Q and Q are antiparallelograms2 with
the common circumcenter o. Let ρ, ρ denote the radii of the circumcircles. Then due to (1)

all edges of F have the same length r :=
√
ρ2 + ρ2.

Suppose that both antiparallelograms Q,Q flex simultaneously like four-bar linkages in
their planes such that the common center o of the circumcircles remains fixed and the radii
ρ, ρ obey the condition

r2 = ρ2 + ρ2 = const. (2)

1”Canadian Mathematical Society Winter 1998 Meeting” held at Queen’s University and the Royal Military
College, December 13-15, 1998. See http://www.cms.math.ca/Events/winter98/w98-abs/node20.html .

2These are nonconvex quadrangles with opposite sides of equal lengths. Antiparallelograms have always a
line of symmetry. If the four vertices are not aligned, there is a circumcircle.
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Figure 1: A. Walz’s four-dimensional flexible cross-polytope C4 represented
in top view and front view

Then all edges of C4 preserve their lengths. Since all 2-faces of C4 are triangles, the planar
motions define a continuous selfmotion of the cross-polytope.3

2.2. Analytic representation of the flexion

For obtaining an analytic representation of this flexion, we use a coordinate frame such that

a1 = (−α, 0, 0, τ), b1 = (α, 0, 0, τ), c1 = (0, η,−γ, 0), d1 = (0, η, γ, 0) (3)

with α, γ > 0. We keep the top views of a1 and b1 fixed as well as the front views of c1 and d1.
Hence α and γ are constant4 while the coordinates η and τ vary. This induces translations of
the planes spanned by Q and Q, respectively.

Let
2β := ‖b2 − a1‖ = ‖b1 − a2‖ > 2α = ‖b1 − a1‖ = ‖b2 − a2‖,
2δ := ‖d2 − c1‖ = ‖d1 − c2‖ > 2γ = ‖d1 − c1‖ = ‖d2 − c2‖.

It is well known (e.g. [9]) that in any position of the four-bar linkage Q′ in the xy-plane the
coupler a′2b

′
2 is the image of the frame link a′1b

′
1 under the reflection in any tangent line l of

the ellipse e (=fixed polode) with focal points a′1,b
′
1 and semi-axes β and

√
β2 − α2 (see Fig.

2).
Let the tangent line l touch the ellipse e at the instantaneous pole

(
β sinϕ,

√
β2 − α2 cosϕ

)
. (4)

Then l intersects the minor axis (x = 0) at the point (0, η) with

η =
√
β2 − α2/ cosϕ. (5)

3When we replace the condition (2) either by cos ρ cos ρ = const. or by cosh ρ cosh ρ = const., we obtain
flexible cross-polytopes in the elliptic or hyperbolic 4-space, respectively.

4Under these conditions the hyperface S1 := a1b1c1d1 of C4 is still movable in E
4. It performs an elliptic

motion parallel to the yt-plane. The trajectories of the vertices a1, . . . ,d1 are located on straight lines (note
(7) and (5)).
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Figure 2: The antiparallelogram-motion as a symmetric rolling of ellipses

This point is the center o′ of the circumcircle of Q′. Therefore the radius obeys

ρ2 = α2 + η2 = β2 + (β2 − α2) tan2 ϕ ≥ β2.

In the same way the flexes of Q
′′
in the front view are obtained under a symmetric rolling

of ellipses with semi-axes δ and
√
δ2 − γ2. We set for the instantaneous pole of this motion

in the zt-plane (
δ sinψ,

√
δ2 − γ2 cosψ

)
. (6)

Hence the circumcircle of Q
′′
has the center o′′ = (0, τ) with

τ =
√
δ2 − γ2/ cosψ, (7)

and its radius obeys
ρ2 = γ2 + τ 2 = δ2 + (δ2 − γ2) tan2 ψ ≥ δ2.

The necessary condition (2) implies

r2 − β2 − δ2 = (β2 − α2) tan2 ϕ+ (δ2 − γ2) tan2 ψ ≥ 0 ,

i.e.,
β2 − α2

r2 − β2 − δ2
tan2 ϕ+

δ2 − γ2

r2 − β2 − δ2
tan2 ψ = 1 . (8)

This equation couples the parameters ϕ and ψ and gives rise to a closed one-parameter flexion
of C4: We set for 0 ≤ t < 2π

ϕ = arctan

(√
r2 − β2 − δ2

β2 − α2
cos t

)
, ψ = arctan

(√
r2 − β2 − δ2

δ2 − γ2
sin t

)
. (9)
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Then by reflecting a1,b1 in the tangent line l of the ellipse e at the pole (4) we obtain

a2 =

(
−α +

2(β2 − α2) sinϕ

β − α sinϕ
,
2β
√
β2 − α2 cosϕ

β − α sinϕ
, 0, τ

)
,

b2 =

(
α +

2(β2 − α2) sinϕ

β + α sinϕ
,
2β
√
β2 − α2 cosϕ

β + α sinϕ
, 0, τ

)
.

(10)

In the same way (6) results in

c2 =

(
0, η,−γ +

2(δ2 − γ2) sinψ

δ − γ sinψ
,
2δ
√
δ2 − γ2 cosψ

δ − γ sinψ

)
,

d2 =

(
0, η, γ +

2(δ2 − γ2) sinψ

δ + γ sinψ
,
2δ
√
δ2 − γ2 cosψ

δ + γ sinψ

)
.

(11)

The reflection of the top view in the tangent line l can be extended to a reflection of the
4-space in a hyperplane L being orthogonal to the xy-plane and passing through l. As l
contains the top views c′i = d′i for i = 1, 2, the 4D-reflection maps

a1 7→ a2, b1 7→ b2, ci 7→ ci, di 7→ di.

In the same way the reflection of the front view leads to a reflection of E
4 in a hyperplane L

mapping
ai 7→ ai, bi 7→ bi, c1 7→ c2, d1 7→ d2.

L ist orthogonal to L. Hence in any position of the flexing cross-polytope the two comple-
mentary hyperfaces S1 = a1b1c1d1 and S2 = a2b2c2d2 of C4 are mirror images with respect
to a 2-plane L ∩ L.

3. A new class of flexible cross-polytopes in E
4

It turns out that Walz’s polytopes are special cases in a larger class of flexible cross-polytopes:

Theorem 1: Let C4 be a cross-polytope with the quadrangle Q = a1 . . .b2 in the hyperplane
z = 0 and symmetric with respect to x = 0, and the complementary quadrangle Q = c1 . . .d2

in x = 0 and symmetric with respect to z = 0, i.e. (see Fig. 3),

a1,2 = (±α1, α2, 0, α4), b1,2 = (±β1, β2, 0, β4), c1,2 = (0, γ2,±γ3, γ4), d1,2 = (0, δ2,±δ3, δ4)

for α1, β1, γ3, δ3 > 0, |β2 − α2|+ |β4 − α4| 6= 0 and |γ2 − δ2|+ |γ4 − δ4| 6= 0.

Then C4 can flex while the quadrangles Q, Q remain in their hyperplanes and the symmetries
are preserved.

Remark 1: The vertices a1, . . . ,b2 in the 3-space z = 0 form a planar antiparallelogram Q
because of the symmetry with respect to x = 0 (Fig. 4). After adapting the xyt-coordinates
in this hyperplane, the affine span of Q can be defined as xy-plane. This implies α4 = β4 = 0
and α2 6= β2 in Theorem 1.

Remark 2: Also Q = c1d1c2d2 is an antiparallelogram. Its affine span within x = 0 is
orthogonal to the affine span of Q but needs not be totally orthogonal as it is the case at
Walz’s example. Total orthogonality is characterized by

(β2 − α2)(δ2 − γ2) + (β4 − α4)(δ4 − γ4) = 0.
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Figure 3: The flexible cross-polytope C4 of Theorem 1, orthogonally projected
into the xz-plane

3.1. Proof of Theorem 1

We prefer a constructive proof based again on top view and front view. According to Remark
1 we specify α4 = β4 = 0. This implies a′′i = b′′k for all i, k ∈ {1, 2}, and the top view shows
Q in true size.

There are eight edge lengths to distinguish at C4 (see Fig. 3):

lab := ‖ai − bi‖, lab := ‖ai − bj‖, lcd := ‖ci − di‖, lcd := ‖ci − dj‖, i 6= j,

lac := ‖ai − ck‖, lad := ‖ai − dk‖, lbc := ‖bi − ck‖, lbd := ‖bi − dk‖, i, k ∈ {1, 2}.
(12)

In order to prove the continuous flexibility of C4, we look for a flex C̃4 with vertices ã1, . . . , d̃2

and the same edge lengths (12), sufficiently near to the initial position C4, but incongruent.

We suppose that a1 and b1 are kept fixed, i.e., ã′1 = a′1 and b̃
′

1 = b′1, and we still insist

on ã′′i = b̃
′′

k for all i, k ∈ {1, 2}. Now we specify a posture ã′1b̃
′

1ã
′
2b̃
′

2 of the antiparallelogram
Q in the top view (Fig. 4). The equations

‖ã′i − c̃
′
k‖

2 + ‖ã′′i − c̃
′′
k‖

2 = l2ac , ‖b̃
′

i − c̃
′
k‖

2 + ‖b̃
′′

i − c̃
′′
k‖

2 = l2bc

imply together with ã′′i = b̃
′′

i

‖ã′i − c̃
′
k‖

2 − ‖b̃
′

i − c̃
′
k‖

2 = l2ac − l2bc = const. (13)

Let c0,d0 denote the pedal points of c′i and d
′
i on the line a′1b

′
1 (see Fig. 4). Due to (1) and

‖a′1 − c′k‖
2 − ‖b′1 − c′k‖

2 = ‖a′1 − c0‖
2 − ‖b′1 − c0‖

2

the points c0 and analogously d0 must be also the pedal points of c̃′i and d̃
′

i, respectively.
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Figure 4: Generalized flexible cross-polytope C4 in top view and front view

PSfrag replacements

ã
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Figure 5: Flex C̃4 of the cross-polytope C4 displayed in Fig. 4

When c′i and d
′
i happen to coincide, then this holds true for c̃′i and d̃

′

i, too. This means
that total orthogonality between the affine spans of Q and Q in the initial position will be
preserved under the flexion.

After the top view of C̃4 has been fixed, in the front view the dimensions of the antipar-

allelogram c̃
′′
1d̃
′′

1c̃
′′
2d̃
′′

2 as well as the distances ‖ã′′1 − c̃
′′
k‖ and ‖ã′′1 − d̃

′′

k‖ are defined. Because
of γ3δ3 > 0 in Theorem 1 we have lcd < lcd, hence ‖c

′′
1 − d′′1‖ < ‖c

′′
1 − d′′2‖ which implies also

‖c̃′′1 − d̃
′′

1‖ < ‖c̃
′′
1 − d̃

′′

2‖.

We specify c̃′′1 and d̃
′′

1 and determine ã′′1. As ã
′′
1 has to be located on the axis of symmetry

of the antiparallelogram c̃
′′
1d̃
′′

1c̃
′′
2d̃
′′

2, we construct a line l̃ through ã′′1 tangent to the ellipse ẽ,
the fixed polode of the antiparallelogram motion (compare Fig. 2). Continuity guarantees

uniqueness. The reflection in the tangent line l̃ gives c̃′′2 and d̃
′′

2 (Fig. 5).

The conditions c̃′1 = c̃
′
2 and d̃

′

1 = d̃
′

2 imply that the minor semi-axis of the ellipse ẽ is
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constant, as due to (1)

‖c̃′′1 − d̃
′′

2‖
2 − ‖c̃′′1 − d̃

′′

1‖
2 = ‖c̃1 − d̃2‖

2 − ‖c̃1 − d̃1‖
2 = l

2

cd − l2cd = const. > 0 . (14)

In the same way as for Walz’s examples one can prove that in any position of the new flexing
cross-polytope the two complementary hyperfaces S1 = a1b1c1d1 and S2 = a2b2c2d2 are
mirror images with respect to a 2-plane.

3.2. Analytic representation of the flexion, an outline

Our construction of the posture C̃4 is the basis for an analytic representation of the continuous
flexion. However, we cannot present it in explicit form.

We replace the coordinate system given in Theorem 1 (Figs. 3 and 4) by that used in
Subsection 2.2 (compare Fig. 1). Again, we fix a′1 and b′1 in the top view. The front views

c̃
′′
1 and d̃

′′

1 remain in a symmetric position on the fixed z-axis. Starting from the given
initial position, we parametrize by the angle ϕ which defines the instantaneous pole of the

antiparallogram-motion in the top view (cf. (4)) and the reflected points ã′2 and b̃
′

2 (see first
two coordinates in (10)). For each ϕ sufficiently near to the initial value we compute the

distances showing up in the front view, the position of ã′′1 and the tangent line l̃ which defines
the parameter ψ for the ellipse ẽ (with varying dimensions). Finally we get the points c̃′′2 and

d̃
′′

2 by reflecting c̃′′1 and d̃
′′

1 in l̃ (compare (11)).
The limits for the angle ϕ are much more complex than that of Walz’s example. The

following three conditions must hold, and it depends on the given dimensions of C4 which of
these conditions are essential.

1. ‖a′1 − c̃
′
i‖ ≤ lac and ‖a

′
1 − d̃

′

i‖ ≤ lad defines limits for the points c̃′i and d̃
′

i on the lines
through c0 and d0, respectively. Due to (13), these conditions imply the analogous
conditions for b′1.

2. ‖c̃′i − d̃
′

i‖ ≤ lcd defines limits for the inclination of the tangent line l of e (compare Fig.
2). This gives −π

2
< −ϕl ≤ ϕ ≤ ϕl <

π
2
for a certain positive ϕl . In the limiting cases

ϕ = ±ϕl, hence c̃
′′
1 = d̃

′′

1 in Fig. 5, the ellipse ẽ becomes a circle with radius 1
2

√
l
2

cd − l2cd
according to (14).

3. In order to guarantee that ã′′1 exists and is not located inside the ellipse ẽ, we have to
obey the conditions

‖ã′′1 − c̃
′′
1‖+ ‖ã

′′
1 − d̃

′′

1‖ ≥ ‖c̃
′′
1 − d̃

′′

2‖ and
∣∣∣‖ã′′1 − c̃

′′
1‖ − ‖ã

′′
1 − d̃

′′

1‖
∣∣∣ ≤ ‖c̃′′1 − d̃

′′

1‖.

In the limiting case of the first inequality ã
′′
1 coincides with the point of intersection

between the lines c̃′′1d̃
′′

2 and d̃
′′

1c̃
′′
2. When in the second inequality we have equality then

ã
′′
1 lies on the z-axis – outside the segment c̃′′1d̃

′′

1.

4. Conclusion

In this paper flexible cross-polytopes in E
4 have been presented. There are many open

problems left around this topic:
The characterization of first-order infinitesimal flexibility for cross-polytopes Cn in E

n

seems to be similar to that in E
3 (compare [8], Theorem 1): We decompose the vertex set of
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Cn into two subsets which – in analogy to Q and Q in E
4 – define two sub-cross-polytopes P

and P of types Cn/2 for even n and of type C(n+1)/2 and C(n−1)/2 for odd n. Then infinitesimal
flexibility of order 1 is given if and only if the two complementary substructures P and P
are located on the same quadric Q ⊂ E

n, provided P is affinely independent.5 However, a
complete proof is open.

The cross-polytopes presented in Theorem 1 seem to be the only flexible cross-polytopes in
E

4, and no nontrivially flexible cross-polytopes are expected for higher dimensions. However,
a proof of these conjectures is left for future research, too.
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