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Abstract. A point like light source in Rd induces a certain illumination intensity
at hypersurface elements of Rd. Manifolds of such elements with the same inten-
sity of illumination are called isophotic. As shown in [9], a uniformly radiating
light source causes isophotic strips along sinusoidal spirals. In the present paper
this investigation is extended in two directions.
First all isophotic C2-hypersurfaces are found, and also manifolds of hypersurface
elements which are isophotic with respect to two and more central illuminations
are discussed. It suggests itself to treat such illumination problems also in non-
Euclidean spaces.
The second part of the paper deals with the generating curves of isophotic strips.
They belong to the well-known families of Clairaut curves and sinusoidal spirals.
Their known relations to each other and to other curve families (such as Ribaucour
curves and roses) are extended by some perhaps new aspects.
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1. Introduction

In [8], [9] and [10] G. Geise and H. Martini investigated families and strips of hypersurface
elements in the Euclidean d-space Rd, d ≥ 2, which are isophotic (i.e., have equal intensity
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of illumination) with respect to a given central illumination. As basic curves of such fami-
lies and strips they derived Clairaut curves and sinusoidal spirals, respectively. So it was
also possible to explain known kinematical relations between these curve classes in terms
of classical illumination geometry (see also [18] and [16] for related investigations). This
motivates the question whether also relations of other curve classes to sinusoidal spirals can
be explained in the spirit of illumination geometry, yielding our results in Section 2 and in
Subsection 6.3 below.

Among other things, our investigations will also reflect the geometry of projections.
Namely, we will interpret planar curves (which are important in illumination geometry) as
images of suitable spatial curves under (orthogonal and parallel) projections, cf. Subsections
6.1 and 6.2.

Essentially, [9] and [10] investigated one-dimensional families of isophotic surface elements,
whereasH.-P. Paukowitsch [18] derived isophotic surfaces in R3, without giving a complete
list of them. Therefore (to our best knowledge) a complete description of isophotic (d−1)-
surfaces in Rd is still missing (see our Section 3 below).

One might also ask for “k-fold isophotic” manifolds in R
d, i.e., for manifolds being

isophotic with respect to k light sources. Exemplarily, we will discuss in Section 4 twofold
isophotic strips in R3.

It is natural to look for analogous problems in non-Euclidean spaces. In particular, those
(Euclidean) functions of illumination intensity are interesting, which are constant in the sense
of a certain non-Euclidean geometry. Such questions are shortly discussed in Section 5.

2. Geometric Central Illumination

Let C be a point like light source in Euclidean d-space Rd, d ≥ 2, having constant luminous
intensity I over all directions. The classical photometric law (extended to d-space) regulates
the connections between the following quantities:
• the illumination intensity E of a hypersurface element (X,n), (x being the position

vector of point X, c that of the light source C and n the normed normal vector of the
oriented hypersurface element),

• the length r := ‖x− c‖ of the “main light ray”, and

• its angle ϕ =<) [(x− c),n] of incidence.
This law (cf. [9]) is given by

E(x,n) = I · ‖x− c‖1−d · cosϕ . (1)

At the beginning we will only consider families of elements in a sufficiently small neighbor-
hood U of an illuminated hypersurface element. Thus we may assume that, without loss of
generality, cosϕ > 0 in U .

a) Taking X as the pole and ϕ as the polar angle of a polar coordinate system we get from
(1) a Clairaut curve as position of all light sources (in a 2-plane passing through X)
generating the same illumination intensity at a fixed element (X0,n0), where X0 is the
pole and n0 the direction vector of the symmetry axis of that curve.

b) Vice versa, isophotic families of elements, whose fixed normal vector n and whose posi-
tion vectors x lie in a 2-plane ε through C, belong to an arc ε ∩ U which continues to
the same Clairaut curve m from a), namely to

m . . . rd−1 = am · cosϕ (2)
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with am = const. and (r, ϕ) as polar coordinates with pole C in ϕ.
Thus, the physical fact (1) directly yields the curves geometrically determined by (2)
(≡ (1)).

c) The generating curves of isophotic C1-strips, whose position vectors x and direction
vectors n are again from a fixed 2-plane ε through C, are essentially cassinoids, i.e.,
special (algebraic) sinusoidal spirals s

s . . . rp = as · cos pϕ (3)

with as = const. and p = d − 1, cf. [9]. If an isophotic sinusoidal spiral slides through
a fixed line element then, following a), its pole runs through a Clairaut curve m (see
[10]).

The complete classification of Clairaut curves is given in the monograph [12] (see also
[5]), and different applications of these curves (e.g., in connection with the Delian problem)
are collected in [14], §V. 11, [7], §V. 7, and [22].

The large variety of (characterizing) properties and applications of sinusoidal spirals is
described in [14], §V. 18, [21], §18, and [4], §§37–46 (see also the dictionary [20], pp. 333–336,
and [6]1.

3. Further curves with applications in illumination geometry

Depending on the dimension d ≥ 2 we get (planar) algebraic solution curves m and s which,
for p ∈ R in (3), are embedded in families mp, sp of analytical curves satisfying the relation
described in c). So one it motivated to interpret the space Rd as an optically homogeneous
medium, for which the extended photometric law (not directly depending on the dimension
d)

E(x,n) = I · r−p cosϕ , p ∈ R (1′)

holds true.
In the practical situation, the illumination intensity of a surface element clearly depends

on the distance to the light source and on the angle ϕ of incidence, but there are also other
influences (possibly also depending on ϕ), such as roughness, porosity or absorption of the
material. These phenomena could be described by a modified photometric law in which cosϕ
in (1′) is replaced by a suitable function f(ϕ). For example, the case f(ϕ) = cosq ϕ (q ∈ R)
should be investigated. The analogues of the Clairaut curves with respect to this illumination
law are generalized sinusoidal spirals. Due to G. Loria [14], p. 403 and p. 658, the whole
class of such curves is not classified, yet. For q = 1, the Clairaut curves are obtained as a
subclass, and also the family of roses (cf. [14], p. 297), discussed below, belongs to this class
of curves.

Within the considered light plane ε, the (physically motivated) question for isophotic
strips yields a quadratic differential equation of first order, having an extremal circle k (con-
centric to C) as singular solution.

For p > 0, each point X 6= 0 from the interior of k belongs to two open arcs of sinusoidal
spirals as solutions, these arcs being symmetric with respect to CX. Therefore a C0-solution
curve can be composed from such arcs like a Fresnel lens (Fig. 1a). A C1-solution curve can

1Note that the Figures 2 and 5–11 in [6], presenting sinusoidal spirals, are not correct.
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consist of two arcs of sinusoidal spirals which are connected by an arc of k (Fig. 1b). But
C2-solutions have to be open arcs of sinusoidal spirals bounded by C and k, i.e., they have to
be analytic. Analogous relations hold for the solution curves exterior to k if p < 0.

k

Figure 1a: Isophotic curve of class C0

C

k

s

Figure 1b: Isophotic curve of class C1

In [9] it is assumed that the normals n of the hypersurface elements of the considered
strips belong to the 2-plane ε of the basic curve {X}. We will see below in Section 3 that this
convenient assumption is not essential. To see this, we follow E. Bohne and R. Möller

[2]. Their approach for d = 3 can be immediately generalized to arbitrary dimension d ≥ 2.
Namely, let X ∈ Rd be a point different from the light source C. (In the following we

assume that C is the pole and origin of the polar and the cartesian coordinate system, re-
spectively.) Then the hyperplanes of all hypersurface elements (X,n) with equal illumination
intensity are supporting hyperplanes of a (imaginary or real) hypercone ΛX of revolution, or
they coincide with a unique hyperplane which is normal to CX. In the latter case, all these
hyperplanes envelop a hypersphere Sd−1 as integral hypersurface, which is concentric to C

and therefore presents a singular solution of the integration problem referring to the elements
(X,n). In the following we assume the luminous intensity I to be normed such that the radius
of Sd−1 equals one. Then we get with (1′)

cosϕ = ‖4x‖p . (1′′)

Thus, the isophotic hypersurface elements (X,n) of a fixed point X (with ‖x‖ 6= 0, 1) envelop
the rotational hypercone ΛX which is circumscribed to the hypersphere ΦX of radius

ρ = ‖x‖p+1 . (4)

Hence this hypercone has a (d− 2)-dimensional “base sphere” which is the intersection of ΦX

and the polar hyperplane of X with respect to ΦX . So it is a (d− 2)-dimensional manifold of
linear generators. For d = 3, the whole family of all generators of all cones ΛX , (X ∈ R3\{C})
is forming a line complex (cf. [13], p. 248). The general complex cones ΛX of this line complex
are rotational cones whose axis passes through X, in each case. Choosing coaxial cones
ΛX to be coaxial, they envelop a certain rotational surface. (It should be mentioned that
surfaces of revolution of such a type and with Clairaut curves as meridians were found by W.
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Wunderlich in [22], when he looked for spatial curves which are pseudo-geodesics on two
different (conic) strips.) Taking the common axis as x-axis of a cartesian coordinate system
(C;x, y, z), the meridian m of this rotational surface has the coordinate representation (in
the xy-plane)

m(p, ϕ) . . . (x, y) =

(

1

p
(cosϕ)

1

p · (sin2ϕ+ p),
1

p
(cosϕ)

1

p
+1 · sinϕ

)

, (see Fig. 2). (5)

Thus the meridians m(p, q) are polar reciprocal to Clairaut curves, cf. [22]. Among these
curves m(p, ϕ) (which are three-cusped in the complex extension), one can find the famous
three-cusped hypocycloid of Steiner, namely for p = 1

2
(cf. [20], pp. 344–345). Since the

isophotic sinusoidal spiral with p = 1
2
is a cardioid (see [10]), we get a possibly new remarkable

relation between these two cycloids.

C

p=
1_
2

p=2

p=
1_
4

x

y

Figure 2: Meridians of rotational surfaces en-
veloped by the planes of isophotic elements
with X ∈ x
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Figure 3: Construction of tangents to m(p)
with the help of the parabola (hyperbola)
y = xp

In Fig. 3 a simple construction of m(p) by tangents and with the help of the unit parabola
(or unit hyperbola) y = xp is shown.

4. Isophotic surfaces

Based on the above mentioned principles for the generation of isophotic families and strips of
hypersurface elements we will study now the characteristic strips of the integration problem,
which is determined by the element cones ΛX for X ∈ R

3 \ {C}. Let (X,g) be a starting line
element, consisting of the cone apex X and the direction vector g of a generator.

If n denotes the normal vector of the hyperplane touching ΛX along g, then by ẋ = λg,
λ ∈ R, the vectors {x,n, ṅ} are linearly dependent, and the integral curve is necessarily planar.
This means that the sinusoidal spirals described by [9] are in fact the general characteristic
curves of the integration problem.

For d = 3, this configuration is discussed in [13], p. 510, namely in terms of the geometry

of differences : Infinitesimally neighboring element cones of a characteristic strip of elements
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do not only have a common generator; along this common generator they even have a common
tangential plane.

It is obvious that rotational hypersurfaces with sinusoidal spirals as meridians are isophotic
hypersurfaces, i.e., solution hypersurfaces of the integration problem defined by the hypersur-
face elements (X,n). Each general point X belongs to a (d−2)-dimensional manifold of such
solution hypersurfaces. Due to a theorem of S. Lie (cf. [13], p. 535), we can derive now the
general solution hypersurface (from the mentioned special – but complete – solutions), after
giving an arbitrary function by the operations of differentiation and elimination alone. This
is formulated in our

Theorem 1. Let there be given a central illumination (1′) with light source C ∈ Rd. Then

an isophotic portion of a C2-hypersurface in the neighborhood of a regular point is either a

hypersphere concentric to C, or it is a rotational hypersurface whose meridian is an arc of a

sinusoidal spiral sp of index p, or it is the envelope of such a rotational surface which follows

a C2-bundle movement with center C.

Thus for d = 3 the general isophotic pieces of C2-surfaces are moulding surfaces. They
were not described by Paukowitsch [18]. One can generate them by an arc of a sinusoidal
spiral sp, whose plane is rolling without sliding on an arbitrarily given C1-cone with apex C.
(Obviously, for achieving an isophotic C1-moulding surface, it is already sufficient to demand
a differentiability class r = 0 of this base cone.)

5. Twofold isophotic strips in R
d

The existence of isophotic (hyper-)surfaces suggests the question for manifolds of elements
(i.e., for element sets resp. strips, cf. [13], p. 523) which are isophotic at the same time with
respect to two or more light sources C1, . . . , Ck and illumination intensities E1, . . . , Ek. Such
a manifold is said to be k-fold isophotic. In general, element sets resp. strips of such a type
are (d−k+1)-dimensional and (d−k)-dimensional, respectively.

In particular, one can expect that there exist certain strips in R
3 which are isophotic with

respect to two light sources C1, C2. The solution of this problem is obvious: One has to look
for strips which are isophotic regarding to C2(E2) and which belong to a surface Φ1 that is
“1-isophotic” with respect to C1(E1). Then the tangential strip of Φ1 along a 2-isophotic
curve in Φ1 must be a twofold isophotic strip.

If, in particular, Φ1 ⊂ R3 is a rotational surface and C2 is a point at infinity (i.e., in this
case the second illumination is a parallel illumination), then the 2-isophotic strips of Φ1 can
be found by graphic-constructive methods, cf. [17], p. 307. For central illumination from C2,
only computer-aided numerical approaches are known, see [1], p. 165.

It is geometrically obvious that in Rd a conic hyperplanar strip is twofold isophotic if and
only if it belongs to a rotational hypercone whose axis a passes through the light sources C1

and C2. Then, for each point C ∈ a different from C1 and C2, every such strip is isophotic
with respect to a suitably chosen illumination intensity E.

We continue with considering in R
3 the manifold of surface elements (X,n) which are

isophotic with respect to three central illuminations Ci(Ei), i = 1, 2, 3. This manifold has
(in general) a discrete set of elements in common with each 1-isophotic moulding surface Φ1.
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Therefore the set of required supporting points X is one-dimensional. The lines through X

with direction n generate a ruled surface which can be determined by the following arguments:
For each illumination Ci(Ei) the normals n of the isophotic surface elements (X,n) satisfy a

line complex Ki with rotational cones Λ
(i)
X as complex cones of general points X (see Fig. 3).

Hence the normal n of an element (X,n) that is twofold isophotic with respect to C1(E1)
and C2(E2) must belong to both line complexes K1, K2 and therefore is a common generator

of the complex cones Λ
(1)
X and Λ

(2)
X . Hence the element normals of twofold isophotic elements

form the line congruence common to both the line complexes K1, K2. The element normals
of threefold isophotic elements then belong to a certain ruled surface Ψ = K1 ∩K2 ∩K3. The
determination of these normals {n} = Ψ and of the corresponding points {X} ⊂ Ψ will be
presented in a subsequent paper.

6. Non-Euclidean central illumination

The investigations of central illuminations in Euclidean d-space above also motivate two
approaches in non-Euclidean spaces.

First, the Euclidean hypersphere Sd−1 having a fixed light source C as its center (and
presenting a singular solution regarding the determination of isophotic hypersurfaces) might
be interpreted as the absolute quadric of a hyperbolic geometry. Then the Euclidean illumi-
nation law (1) can be rewritten in such a manner that r and ϕ are replaced by the hyperbolic
quantities rH and ϕH , respectively. Due to [15], p. 89, [3], p. 140, and [11], p. 177, we have

rH = 1
2
ln

1 + r

1− r
, 0 ≤ r < 1 ,

ϕH = <)H gh := 2 arctan
√

−CR (G1G2, H1H2) ,
(6)

where CR means the “cross-ratio” and Gi, Hi are the ideal points (in C) of the lines g and h,
respectively.

The second possibility is the following: From the beginning we might aim at a non-
Euclidean space and leave the original (physically justified) illumination law (1) as it is.

As an example, we mention here only the isotropic case. For the planar situationH. Sachs
[19], p. 101, gives corresponding results which (in view of our investigations above) can be ex-
tended to d-dimensional spaces, too. Then the isotropic analogues to the Euclidean sinusoidal
spirals are the (general) parabolas and hyperbolas

y = xp, p ∈ R . (7)

Another related isotropic analogue, i.e., the curve analogous with the Euclidean logarith-
mic spiral, is the curve presented in Fig. 4, namely
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y = ax log(x). (8)

(The centrally symmetric continuation of
this curve through its pole, given in [19],
p. 96, does not make sense and gives con-
fusion regarding the Euclidean analogue.)
Hence all the curves occurring as isotropic-
isophotic ones are orbits of one-parameter
groups of affinities, i.e., they are W -curves.
It is remarkable that the construction of Eu-
clidean line complex cones, presented in Fig.
3, is essentially based on these isotropic-
isophotic W -curves.

C

p

p

ϕ

ϕ

x

y 1

1

Figure 4: Isotropic spiral y = ax log(x)

7. Relations of the considered curve classes to each other and to

other types of curves

7.1. Clairaut and Ribaucour curves as images of spatial curves under parallel

projections

There are various interesting relations between Clairaut curves, sinusoidal spirals and Ribau-

cour curves.2 For example, we have the following relation: If a sinusoidal spiral slides through
one of its (fixed) dihedrals (X0; p1, p2), then its pole runs through a Clairaut curve of the same
index, with the dihedral apex X0 as its own pole, and with the tangent [p1] of the spiral as
tangent at its own pole, cf. [9]. On the other hand, if a sinusoidal spiral is rolling on one of
its (fixed) tangents, e.g. on [p1], then its pole runs through a Ribaucour curve of the same
index, see [21], p. 299.

Among the Clairaut curves we have the circle, and the ordinary cycloid is a special
Ribaucour curve. These two special curves can be interpreted as images of an ordinary helix
under orthogonal or oblique parallel projection onto the normal plane of the helical axis. The
“intermediate cases”, namely prolate and curtate cycloids, can also be explained as images
of the helix under oblique parallel projection. But there is still another interpretation: They
are resulting curves of a “roll-and-slide procedure” of a circle accomplishing both movements
on a tangent of it (with constant ratio of the rolling velocity and sliding velocity). The
corresponding connection between Clairaut curves, sinusoidal spirals and Ribaucour curves
can be explained as follows: Starting with a Clairaut curve m in the xy-plane, one has to erect
an orthogonal cylinder over m. In this cylinder one has to construct a spatial curve c whose
z-coordinate is proportional to the arc length of the sinusoidal spiral s which corresponds
to m. A suitable oblique projection of c into the xy-plane yields planar curves which arise
from s by a “roll-and-slide procedure” on a poltangent of m. A detailed investigation of this
“roll-and-slide procedure” is also postponed to a subsequent paper.

2For the definition of Ribaucour curves and many of their interesting properties and relations to other
curve classes, in particular to sinusoidal spirals, the interested reader is referred to [14], pp. 521–530, [21],
pp. 309–311, and [4], pp. 54–66.
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7.2. Generating roses, sinusoidal spirals and Clairaut curves as images of spatial

curves under normal projection

A further class of curves connected with our investigations is that of roses, cf. [14], pp. 297–
306, [21], pp. 123–124, and [20], pp. 304–307. One usual way to introduce these curves is to
consider them as special trochoids, see [14], p. 297, and [23], p. 153. In polar coordinates they
are described by

r = a cos pϕ , with constant a, p ∈ R \ {0} , (9)

and thus one can interpret them as normal projections of certain spherical curves c which
themselves result from the superposition of two proportional rotations around orthogonal
diameters of the respective sphere.

Namely, if ϕ and ϕ are the spherical parameters (roughly speaking, the geographic lon-
gitude and latitude), then the parametric representation of c in cartesian coordinates of the
(unit) sphere S2 ⊂ R3 is given by

x(ϕ) = (cosϕ · cosϕ(ϕ), sinϕ · cosϕ(ϕ), sinϕ(ϕ)) , (10)

where ϕ(ϕ) = pϕ+ϕ0. Let S
q ⊂ Rq+1 be the unit hypersphere, and ϕ1, . . . , ϕq be the spherical

Gaussian parameters of Sq. Then the parametric representation of Sq analogously to (10)
reads



















x1

x2

x3
...
xq

xq+1



















=



















cosϕ1 · cosϕ2 · cosϕ3 · . . . · cosϕq

sinϕ1 · cosϕ2 · cosϕ3 · . . . · cosϕq

sinϕ2 · cosϕ3 · . . . · cosϕq

...
sinϕq−1 · cosϕq

sinϕq



















. (11)

In particular, for ϕi(ϕ) := ϕ, i = 1, . . . , q, this yields in the x1x2-plane the Clairaut curve

m . . . r = cosq−1 ϕ

as top view of the spherical curve c determined by ϕi = ϕ.
For ϕ1(ϕ) := ϕ and ϕi(ϕ) := p ·ϕ with i = 2, . . . , q we obtain for example the generalized

sinusoidal spiral
s . . . r = cosq−1 pϕ

as top view of the corresponding hyperspherical curve c. Thus, for suitably chosen values of
p ∈ N one can generate certain algebraic sinusoidal spirals by projection.

The relations between the spherical curves c and roulettes of higher order (see, e.g., [23],
p. 164) and between projections of the curves c into different coordinate planes should be
taken into deeper consideration.

7.3. Geometric transformations of sinusoidal spirals and Clairaut curves

There exists a lot of mathematical literature about transformations which transfer curves of
a given family into other representatives of the same family. In this sense we will discuss
relations between Clairaut curves and also between sinusoidal spirals.

a) It is well-known that Clairaut curves m1 and m2, whose respective coefficients satisfy
p1 = −p2, are inverse with respect to the unit circle having their common pole C as
its center. One can interpret this unit circle as borderline case of a Clairaut curve with
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m(-1)

(   )m  p
11

(   )m  p2 2

2

r1

r3

y

m(  )
x

8

C

(   )m   p3 3

r

Figure 5: Inversion of a Clairaut curve m1(p1) at a Clairaut curve m3(p3)

index p = ∞. This gives the motivation to extend the notion of inversion such that
Clairaut curves themselves are taken as basic curves of inversion (Fig. 5).

Two Clairaut curves m1(p1),m2(p2) of the family described by (1′′) (where the exponent

p ∈ R is the parameter of this family) are said to be inverse to each other with respect

to a third Clairaut curve m3(p3) if the exponents satisfy the relation

1

p1
+

1

p2
=

1

p3
.

This means that the radius r3 is the geometric mean of the radii r1 and r2, as in the
case of usual inversion. In Fig. 5 the generalized inversion at a Clairaut curve m3(p3) is
displayed.

b) The pedal curve of a sinusoidal spiral s (cf. (3)) of index p with respect to its pole C

is a sinusoidal spiral s1 of index q =
p

p+ 1
, see [14], p. 675, and [21], p. 137. Fig. 6

presents a simple construction of the series of pedal curves of a sinusoidal spiral.
Let P1 be the foot of the tangent t of s at a point P , and P ∗ ∈ t be the reflection of P
at P1, cf. Fig. 6. Then a simple calculation shows the following (up to now seemingly
unknown) connection between s and its second pedal curve s2 (as well as all the subse-
quent pedal curves).

Theorem 2. If one reflects a point P of a sinusoidal spiral s at the polar normal g1 to

the tangent t of P , then the tangent t1 of the first pedal curve s1 at P1 = t · g1 is normal

to the reflex g∗ of the polar ray g = OP , and it will intersect g∗ at a point P2 of the

second pedal curve s2 of s, where

CP · CP 2 =
(

CP 1

)2
. (12)
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Figure 6: Successive construction of the family of pedal spirals to a given sinusoidal spiral s.

It is obvious that this construction can easily be used to derive sinusoidal spirals (cf.
once more Fig. 6), and this construction is an extension of a well known one applied to
logarithmic spirals which are borderline cases of sinusoidal spirals.

Finally we remark that the point P ∗ (depending on P ∈ s) runs through the generalized
sinusoidal spiral s∗ given by

rp = a · cos
p

2p+ 1
ϕ , (13)

and that the sequence of feet . . . , P−2, P−1, P, P1, P2, . . . corresponding with a fixed start-
ing point P belongs to a logarithmic spiral.
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[8] G. Geise, H. Martini: Natürlich-kinematische Erzeugung isophotischer Element-

scharen aus ebensolchen bei klassischer geometrischer Zentralbeleuchtung. Beitr. Algebra
Geom. 20, 137–146 (1985).

[9] G. Geise, H. Martini: Bekannte Kurvenklassen in der Beleuchtungsgeometrie des Ed

(d ≥ 2). Elem. Math. 46, Nr. 3, 73–78 (1991).

[10] G. Geise, H. Martini: Kinematik in der Beleuchtungsgeometrie des E
d (d ≥ 2). Elem.

Math. 46, Nr. 6, 158–165 (1991).
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