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Abstract. L. Lovász raised the problem in [1] whether 27 congruent bricks of
edge lengths a, b, c (0 < a < b < c, a+b+c = s) can be packed into a cube of edge
length s without overlaps so that the arrangement is universal, in other words,
it should be independent from the choice of a, b and c. If that were possible, we
could obtain a geometric proof of the inequality 1

3
(a + b + c) ≥ 3

√
abc between

the arithmetic and geometric means of three positive numbers. (This would be
an analogous method to the well-known proof of the inequality 1

2
(a + b) ≥

√
ab,

(a, b > 0), concerning the packing or four rectangles of edge lengths a, b into a
square of edge length a+ b.)

Hence, fundamentally, this is a special packing problem: some bricks having
fixed volume must be put into a container of given volume. From the combinatorial
point of view, similar container problems were investigated by D. Jennings in
[2, 3].

The first author has found a possible universal arrangement, and someone else
has found an additional one which has proved to be different under the symmetries
of the cube. In the paper we introduce an algorithm for finding all the different
universal arrangements. As a result we obtain 21 possibilities (listed in Section 4)
by the corresponding computer program. Our method seems to be suitable for
solving the analogous problem in higher dimensions.

Key Words: packing problem, classification problem

MSC 2000: 52C17

1. Introductory definitions

The problem of this paper is whether 27 congruent bricks of edge lengths 0 < a < b < c can
be packed into a cube of edge length s = a + b + c without overlapping in such a way that
the arrangement should be independent from the choice of the lengths. Moreover, if such
arrangements exist, they should be listed.
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2 Á.G. Horváth, I. Prok: Packing Congruent Bricks into a Cube

Because of the inequality between the arithmetic and geometric means, the sum of the
volume of the bricks is smaller then the volume of the containing cube: 27abc < (a+ b+ c)3.
So we have a chance to find such arrangements.

We can realize that 27 congruent bricks whose edge lengths are significantly different can
be put into the cube easily with many freedom. For example, if a, b < 1

9
s, then all bricks can

be placed with the smallest face down like columns on the “horizontal” face of the containing
cube, and additionally they can be tilted a bit. If, however, the differences between the edge
lengths are small enough, then the problem becomes much harder, and the number of the
possible arrangements decreases. In this case, as we will see, the edges of the bricks must be
parallel to the corresponding edges of the containing cube, and the arrangement has a 3×3×3
structure similarly to the trivial dissection of the cube into 27 small cubes of edge length 1

3
s.

The universal (edge length independent) arrangements can be derived exactly from this case.
Considering the 3×3×3 structure, for the simplicity of our formulas, we choose the small

cubes of the trivial dissection as unit cubes, consequently, the edge length of the containing
cube is s = 3. Moreover, in the future we assume that the symbols a, b, c with indices, primes
and stars also mean edge lengths satisfying the original properties (e.g. 0 < a′ < b′ < c′ and
a′ + b′ + c′ = s = 3).

We introduce the notation B(x, y, z) and C(x) for a brick of edge lengths x, y, z and a
cube of edge length x, respectively. The containing cube (C(3)) will be denoted by C. Finally,
A = {Bi(a, b, c), Oi} will denote an arrangement of the 27 bricks of edge lengths a, b, c and
centres Oi (i = 1, 2, . . . , 27).

Definition 1 We say that two bricks B1(a1, b1, c1) and B2(a2, b2, c2) are parallel (B1 ‖B2) if
the edges of lengths a1 and a2, b1 and b2, c1 and c2 are parallel, respectively.

Remark 1 In the description of the relative situation of a unit cube C(1) or C and a brick
B(a, b, c) we also use the terminology of parallelism. In this case we require that each edge of
the brick should be parallel to an edge of the cube.

Definition 2 Let two parallel bricks B1(a1, b1, c1) and B2(a2, b2, c2) be given. Then, the
parallel brick T (|a1− a2|, |b1− b2|, |c1− c2|) (T ‖B1 ‖B2), having common centre with B1, is
called the brick of admissible translations of B1 and B2.

Definition 3 Two arrangements A1 = {B1
i (a1, b1, c1), O1

i } and A2 = {B2
i (a2, b2, c2), O2

i }
are said to be compatible if B1

i ‖ B2
i and O2

i belongs to the closed brick Ti of admissible
translations of B1

i and B
2
i for each i.

Remark 2 It is easy to see that the compatibility is a reflexive and symmetric relation be-
tween two arrangements.

Definition 4 We say that the arrangement A = {Bi(a, b, c), Oi} is universal if there exists
a compatible arrangement A′ = {B′i(a′, b′, c′), O′i} for each choice of edge lengths a′, b′, c′
satisfying the original properties.

2. Universal arrangements

In this section we assume that there exist universal arrangements and examine their structure.
For the time being, we do not know even that the bricks are parallel to the containing cube
C in these arrangements. In Theorem 1, which will be prepared by Lemma 1, we will prove
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this parallelism and the 3×3×3 structure. Then, on the basis of Lemma 2, we will prove
in Theorem 2 that in these arrangements there are only finitely many possible positions of a
brick in C.

Figure 1: Steps of packing the universal arrangement no. 1

In order to demonstrate these statements, in Fig. 1 we display some steps of packing
according to a universal arrangement. The faces of edge lengths a×b, a×c, b×c are denoted
by dark, medium and light shades of gray, respectively. In Section 4 this arrangement will
occur with number 1 in the list of the 21 different universal arrangements, describing with
coordinates. The direction of coordinate axes are displayed in the central small figure.

Lemma 1 Let A = {Bi(a, b, c), Oi} be a universal arrangement and A? = {C?
i (1), O?

i }
be the trivial dissection of the cube into 27 unit cubes C?

i (1). Then there exists an infinite
sequence of arrangements Ak = {Bk

i (ak, bk, ck), O
k
i } from A0 ≡ A tending to A? so that Ak

is compatible with A for each k (k = 0, 1, 2, . . .).

Proof: We construct the claimed sequence of arrangements. First we define the edge lengths
of Bk

i in Ak in the following way:

ak = 1−
1− a

2k
, bk = 1−

1− b

2k
, ck = 1−

1− c

2k

(preserving the original properties: ak + bk + ck = 3 and 0 < ak < bk < ck ). Thus the
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differences between the edge lengths of Bk
i and Bi are

|ak − a| = 2
k − 1
2k

|1− a|, |bk − b| = 2
k − 1
2k

|1− b|, |ck − c| = 2
k − 1
2k

|1− c|.

We can see that these differences are less than |1− a|, |1− b|, |1− c|, respectively.
Since A is universal, a compatible arrangement Ak = {Bk

i (ak, bk, ck), Ok
i } must exist

for each k (by Definition 3), so that the brick centre Ok
i belongs to the closed brick Ti(|1 −

a|, |1− b|, |1− c|) of centre Oi. Thus, there is a subsequence of arrangements Ak` in which
the corresponding centres Ok`

i have a limit point O
′
i for each i, simultaneously.

Since the edge lengths of Bk`

i tend to 1, the limit brick B
′
i is a unit cube with centre O

′
i

for each i. As Ak` is an arrangement in C for each k`, the limit system A′ = {B′i(1, 1, 1), O′i}
must also be an arrangement. However, 27 unit cubes can be packed into C only in the trivial
manner, which means that A′ is identical with the trivial dissection A?, moreover B′i ≡ C?

i

and O′i ≡ O?
i for each i.

Theorem 1 Let A = {Bi(a, b, c), Oi} be a universal arrangement. Then the bricks Bi of A
are parallel to the containing cube C (see Remark 1). Furthermore, if |1− a|, |1− b|, |1− c|
are sufficiently small, then the bricks have a 3×3×3 structure in C. In other words, they can
be partitioned into 3 layers containing 3×3 bricks one by one, or into 3×3 columns containing
3 bricks one by one.

Proof: By Lemma 1, there exists a sequence of arrangement Ak = {Bk
i (ak, bk, ck), O

k
i } which

tends to the trivial dissection A? = {C?
i (1), O

?
i } and contains only elements being compatible

with A. Thus, the limit arrangement A? is also compatible with A (Definition 3, Remark 2).
In this way Bi ‖C?

i ‖C, which means that Bi is parallel to C for each i, as we stated. Moreover,
the centre Oi belongs to the closed brick of admissible translation Ti(|1− a|, |1− b|, |1− c|)
of centre O?

i for each i. These bricks are disjoint if max(|1− a|, |1− b|, |1− c|) < 1
2
. In this

case Oj ∈ Ti if and only if j = i. Thus, we get a one-to-one correspondence between the sets
of centres {O?

i } and {Oi}, and similarly, between the cubes C?
i and the bricks Bi . Therefore,

A gets the 3×3×3 structure of A?.

Lemma 2 Let A = {Bi(a, b, c), Oi} be a universal arrangement. Then there is no brick in A
having a free face. In other words, each face of a brick Bi has a common rectangular surface

with a face of another brick Bj or that of the containing cube C for each i.

Proof: Considering the equation a+b+c = 3, we can determine the edge lengths of the bricks
by two independent parameters µ and ν as follows:

a := 1− µ, c := 1 + ν, b := 1 + µ− ν.

The inequalities 0 < a < b < c yield the permissible values of µ and ν (Fig. 2a):

0 < µ < 1, 0 < ν < 2,
1

2
µ < ν < 2µ.

Let δ denote the difference between the volume of C and the summarized volume of the
27 bricks. Then

1

27
δ(µ, ν) = 1− abc = µ2ν − µν2 + µ2 + ν2 − µν.
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In contrast with the statement, we suppose that a face f of a brick Bi of A is free. Since
A is universal, there exists a compatible arrangement A′ with A for each pair (µ, ν), satisfying
the same incidence properties. In this way the corresponding face f ′ in A′ is also free.

Let us consider the rays intersecting f perpendicularly. These rays form a prism of height
3 in the cube. Let δ? denote the summarized empty volume in the interior of the prism. We
will see that δ? > δ for certain values of µ and ν, and this fact will be a contradiction.

First of all, we determine the minimal total length λ(µ, ν) of free segments along a ray
intersecting f perpendicularly. Because of the 3×3×3 structure of the bricks (see Theorem 1)
a ray can go through at most 3 bricks. In this way

λ ∈ {3− p, 3− p− q, 3− p− q − r | p, q, r ∈ {a, b, c}} ∩ R+.

Looking for the minimal positive λ, we have to solve a system of linear inequalities. The
result is a partition of the parameter domain (µ, ν). In Fig. 2a the shading of sub-domains
refers to the minimal positive expression of λ(µ, ν).

a) b)

Figure 2: Partition of the parameter domain for (µ, ν)

The area of the face f is at least a(µ)b(µ, ν) = 1− ν − µ2 + µν, so we obtain that

δ? ≥ (1− ν − µ2 + µν) · λ(µ, ν).

It is enough to show that there is a pair (µ, ν) for which δ? > δ(µ, ν). Let µ0 = 0.01 and
ν0 = 0.0075 (Fig. 2b). The pair (µ0, ν0) belongs to the sub-domain in which λ(µ, ν) =
3− 2b− a = −µ+ 2ν , and so

δ? − δ ≥ −µ+ 2ν − 27µ2 − 29ν2 + 28µν + µ3 − 30µ2ν + 29µν2.

Substituting µ0 and ν0, we get exactly 0.027 635 625 on the right side, which means that
δ? > δ(µ0, ν0).
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The universal arrangement A should also be realized with bricks of edge lengths a =
1 − µ0 = 0.99, b = 1 + µ0 − ν0 = 1.0025, c = 1 + ν0 = 1.0075. However, assuming the
existence of a free face f in A, we obtain that there is a larger empty space in the prism with
cross-section f than in the whole C. This is a contradiction.

Remark 3 By detailed elementary computations, the inequality a(µ)b(µ, ν)λ(µ, ν) > δ(µ, ν)
can be solved. In Fig. 2b the domains coloured black contain the points whose coordinates
(µ, ν) satisfy the inequality. The edges of partition support the curves at the origin: the
equations of tangent lines are µ− 2ν = 0, µ− ν = 0, 2µ− ν = 0 . Moreover, the line segment
OP belongs to the domain.

Theorem 2 Let the origin of a cartesian coordinate system be fixed at a vertex of the

containing cube C, and let the positive half-axes be determined by the edges joining this
vertex. If A = {Bi(a, b, c), Oi} is a universal arrangement, then the coordinates of vertices
of the bricks Bi belong to the set S = {0, a, b, c, 3− c, 3− b, 3− a, 3} for each i.

Proof: By Theorem 1, the bricks of A are parallel to C, therefore, the faces of the bricks
are perpendicular to the corresponding coordinate axes. Choosing an arbitrary brick B of A,
we consider its opposite faces f and g normal to the axis x. Let xf and xg denote the first
coordinates of points of these faces, respectively. We can suppose that xf < xg. Then the
difference xg−xf belongs to {a, b, c}. By Lemma 2, nor f neither g can be free. The following
cases must be distinguished:
1. f joins C in the plane x = 0 . Then xf = 0 and xg ∈ {a, b, c}.
2. g joins C in the plane x = 3 . Then xg = 3 and xf ∈ {3− c, 3− b, 3− a}.
3. Neither f nor g join C. Then there are two bricks Bf and Bg of A joining f and g,
respectively. Let us consider the opposite faces f ′ and g′ of Bf and Bg, respectively. By
Theorem 1, f ′ and g′ cannot join another brick (in the 3×3×3 structure each column
contains exactly 3 bricks). In this way, by Lemma 2, f ′ and g′ must join C along its
opposite faces, so xf ∈ {a, b, c} and xg ∈ {3− c, 3− b, 3− a}.

Collecting the possible first coordinates above, we get S. Similarly, we obtain that the second
and third coordinates also belong to S.

3. Data structures and procedures of the algorithm

Data 1 Coordinates. We will use the following notations: u = 3−a = b+c, v = 3−b = a+c,
w = 3−c = a+b. By Theorem 2, the coordinates of vertices belong to S = {0, a, b, c, w, v, u, 3}.
In our algorithm we will use only these symbols for the coordinates and consider S as a set of

symbols. Assuming that the differences between a, b and c are sufficiently small and so c < w
(c < 3

2
), the list 0, a, b, c, w, v, u, 3 is a strictly monotonic sequence. Thus we will be able

to compare two coordinates determining their positions in the list. Similarly, we can assume
that w < c. Then our strictly monotonic sequence is 0, a, b, w, c, v, u, 3 . However, as we
will see in Procedure 4, this ordering leads not only to universal arrangements.

The addition (and subtraction) of symbolic coordinates can be determined by an 8×8
table (or matrix) M indexing on S. Considering the symbols p, q ∈ S, the element mpq of
M contains the sum p+ q if it belongs to S, or the symbol “∗” if p+ q /∈ S . It is easy to see
thatM is independent from the relation between c and w.
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Data 2 Bricks. By Theorem 1, a brick B can be represented uniformly by its nearest and
farthest (so-called canonic) vertices, V1 and V2, from the origin. Moreover, by Theorem 2, the
coordinates of V1 and V2 belong to S. In this way, a brick B will be represented by two triples
of symbols, and we will use the notation B(V1, V2). Finally, we mention that the coordinates

of the canonic diagonal vector
−−→
V1V2 form a permutation of a, b, c.

Procedure 1 Intersection of two bricks. It is easy to verify that two closed intervals [e1, e2]
and [f1, f2] have common inner points if and only if e1 < f2 and f1 < e2 . From this fact we
get the simple condition for deciding whether two bricks B ′(V ′1(x

′
1, y

′
1, z

′
1), V

′
2(x

′
2, y

′
2, z

′
2)) and

B′′(V ′′1 (x
′′
1, y

′′
1 , z

′′
1 ), V

′′
2 (x

′′
2, y

′′
2 , z

′′
2 )) have common inner points. Indeed, those exist if and only

if the inequalities x′1 < x′′2, x
′′
1 < x′2, y

′
1 < y′′2 , y

′′
1 < y′2, z

′
1 < z′′2 , z

′′
1 < z′2 hold simultaneously.

Examining these conditions our procedure decides whether two bricks intersect each other.
However, as we can see, the result may depend on the relation between c and w.

Procedure 2 Possible bricks. We shall collect all the possible bricks (data 2) into a list B. In
the beginning let the list be empty: B = ∅. We enumerate all the 83 = 512 possible positions
of vertices as points, choosing the three coordinates independently from S. Considering
the current point P0(x0, y0, z0) in each step, we translate it by the possible diagonal vectors
(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b) and (c, b, a) on the basis of table M (data 1). So
we get the points Pi(xi, yi, zi) of symbolic coordinates (i = 1, 2, . . . , 6). P0 and Pi determine
a possible brick if and only if xi, yi, zi ∈ S, namely, each of them is different from “∗”. Then
we add the brick B(V1 ≡ P0, V2 ≡ Pi) to our list: B := B ∪ {B}. In this way, finally, we
obtain B containing exactly 288 possible bricks.

According to the 3×3×3 structure of universal arrangements, we classify the possible
bricks into 27 disjoint position classes, associating each brick of B with a unit cube of the
trivial dissection A?. By Theorem 1 and 2, the 27 bricks of a universal arrangement will
belong to different classes.

Definition 5 Let us consider the trivial arrangement A? of 27 unit cubes and the system of
their centres

Opqr(
2p− 1
2

,
2q − 1
2

,
2r − 1
2

),

where p, q, r ∈ {1, 2, 3}. Assuming that c < w and so 0 < 1
2
< a < b < c < 3

2
< w < v <

u < 5
2
< 3, we can define the sets Cpqr ⊂ B by the equation Cpqr = {B |B ∈ B, Opqr ∈ B}.

Then a possible brick can contain exactly one centre Opqr, which means that the sets Cpqr are
disjoint. Thus, we get a classification of B (see also the proof of Theorem 1). The sets Cpqr
are said to be position classes.

Procedure 3 Classification. Taking the possible bricks from B, we form the position classes
Cpqr as lists according to Definition 5. In this way we obtain the class C222, associated to the
central unit cube, containing exactly 48 bricks. The other 8 + 12 + 6 classes, associated to
“vertex-”, “edge-” or “face-fitting” unit cubes, contain exactly 6, 12 or 24 bricks, respectively.

Definition 6 Let Σ denote the symmetry group of the containing cube C. We say that two
arrangements A1 and A2 are essentially different if there is not any symmetry of C (in Σ)
mapping the bricks of A1 onto the bricks of A2.

Remark 4 Let X be a point whose coordinates belong to S. It is easy to see that the
coordinates of the image point Xσ also belong to S for each symmetry σ ∈ Σ. Similarly, if
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B ∈ B is a possible brick, then its image Bσ also belongs to B. Indeed, the vertex coordinates
of Bσ belong to S, moreover, since B is parallel to C, Bσ is also parallel to C. Finally, Bσ is
congruent with B, so the edge lengths of Bσ is a, b and c, too.

Remark 5 Now we consider a brick B1 ∈ C222 ⊂ B . For example (according to our list
of results in Section 4) we choose the brick B1(V1(b, a, c), V2(w, v, u)), whose distinguished
diagonal vector is (a, c, b). Since B1 contains the centre centre of the central unit cube and C
if c < w, the images Bσ

1 also contain that point, so they also belong to the position class C222.
Moreover, an image brick Bσ

1 is identical with B1 if and only if σ is the identity element of Σ
(assuming that 1

2
(a+ c) 6= b, of course). Taking the result of Procedure 3 into consideration,

C222 is just the set of the 48 images of B1 under Σ. It is an important consequence of this fact,
that two different arrangements A1 and A2 containing the same “central” brick from C222 are

essentially different.

Procedure 4 Searching for universal arrangements. By Remark 5, we consider a list Ã
of bricks containing only B1 ∈ C222 in the beginning. Choosing disjoint bricks from the
other position classes Cijk (exactly one brick from each class), we will complete Ã to get
arrangements. The basis of our procedure is the so-called back-track algorithm (see e.g. [4]).

First of all we fix an order of position-classes where C1 = C222 . For example C2 = C111,
C3 = C211, . . ., C27 = C333 , (making distinction between one and three subscript form of

C). B2, B3, . . . , B27 will denote the chosen elements of these classes in Ã, respectively. We
introduce a list of variables n1, n2, . . . , n27 . During the procedure, ni shows that we just
examine whether the ni-th element of Ci fits to the bricks B1, B2, . . . , Bi−1 of Ã. In the
beginning n1 = 1, and ni = 0 for i = 2, 3, . . . , 27. The variable i points the class Ci from
which we just try to choose an appropriate brick Bi into Ã. In the beginning i = 2.
1. We examine the value of i:
– If i = 1, then we cannot create additional essentially different arrangements, so the
procedure comes to an end.

– If i = 28 then Ã contains exactly one brick from each class Ci determining an arrange-
ment A = Ã, so we print the symbolic coordinates (see data 1) of B1, B2, . . . , B27 as a

result. In order to find additional arrangements, we delete the last brick B27 from Ã,
modify i to 27, and go to 2.
– Otherwise we go to 2.

2. We increment ni and examine whether ni > |Ci|.
– If so, then we cannot choose an appropriate new brick Bi from Ci. Thus we modify
ni to 0, delete the brick Bi−1 from Ã, decrease i, and go to 1.
– Otherwise we go to 3.

3. Applying Procedure 1, we examine whether the ni-th brick B of Ci intersects the existing
bricks B1, B2, . . . , Bi−1 of Ã.
– If so, then B cannot be added to A, so we go to 2.
– Otherwise we add B to Ã as Bi, increment i, and go to 1.

We can see that Step 3 depends on the relation between c and w. In this way we obtain two
sets Ωc<w and Ωw<c containing 21 and 144 essentially different arrangements, respectively.
Considering the symbolic coordinates of bricks, we can compare the arrangements of Ωc<w

and Ωw<c, and we get the result: Ωc<w ⊂ Ωw<c . Moreover, if A is an arbitrary arrangement
of Ωw<c \Ωc<w and we realize A with bricks of edge length condition c < a+ b = w, then we
can always find intersecting bricks in A. Similarly, examining an arbitrary arrangement of
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Ωc<w, we find that the bricks are disjoint independently from the relation between c and w.
Thus, Ωc<w is the complete set of essentially different universal arrangements.

4. Summary. The list of the universal arrangements

Summarizing Theorem: There are exactly 21 essentially different universal arrangements
of 27 congruent bricks of edge lengths a, b and c in a cube of edge length a+ b+ c .
These arrangements are enumerated below, describing the coordinates of canonic vertices of
their bricks, excepting the common central brick B1(V1(b, a, c), V2(w, v, u)) (briefly (b, a, c;
w, v, u)).

1: (0, 0, 0; b, c, a), (b, 0, 0; u, b, a), (u, 0, 0; 3, c, b), (0, c, 0; c, v, b), (c, b, 0; u, w, c), (u, c, 0; 3, u, c), (0, v, 0;
c, 3, a), (c, w, 0; v, 3, b), (v, u, 0; 3, 3, c), (0, 0, a; a, b, v), (a, 0, a; w, a, v), (w, 0, b; 3, b, w), (0, b, b; b, u, w),
(w, b, c; 3, w, u), (0, u, a; c, 3, w), (c, v, b; v, 3, u), (v, w, c; 3, 3, v), (0, 0, v; a, c, 3), (a, 0, v; v, a, 3), (v, 0, w;
3, a, 3), (0, c, w; a, u, 3), (a, a, u; w, v, 3), (w, a, u; 3, w, 3), (0, u, w; b, 3, 3), (b, v, u; u, 3, 3), (u, w, v; 3, 3, 3)
(see also Fig. 1).

2: (0, 0, 0; b, c, a), (b, 0, 0; u, b, a), (u, 0, 0; 3, c, b), (0, c, 0; c, u, a), (c, b, 0; u, w, c), (u, c, 0; 3, u, c), (0, u, 0;
c, 3, b), (c, w, 0; v, 3, b), (v, u, 0; 3, 3, c), (0, 0, a; a, c, w), (a, 0, a; w, a, v), (w, 0, b; 3, b, w), (0, c, a; b, v, v),
(w, b, c; 3, w, u), (0, v, b; c, 3, w), (c, v, b; v, 3, u), (v, w, c; 3, 3, v), (0, 0, w; a, b, 3), (a, 0, v; v, a, 3), (v, 0, w;
3, a, 3), (0, b, v; a, u, 3), (a, a, u; w, v, 3), (w, a, u; 3, w, 3), (0, u, w; b, 3, 3), (b, v, u; u, 3, 3), (u, w, v; 3, 3, 3).

3: (0, 0, 0; b, c, a), (b, 0, 0; u, b, a), (u, 0, 0; 3, c, b), (0, c, 0; c, v, b), (c, b, 0; u, w, c), (u, c, 0; 3, u, c), (0, v, 0;
c, 3, a), (c, w, 0; v, 3, b), (v, u, 0; 3, 3, c), (0, 0, a; a, b, v), (a, 0, a; v, a, w), (v, 0, b; 3, a, u), (0, b, b; b, u, w),
(w, a, c; 3, w, v), (0, u, a; c, 3, w), (c, v, b; v, 3, u), (v, w, c; 3, 3, v), (0, 0, v; a, c, 3), (a, 0, w; w, a, 3), (w, 0, u;
3, b, 3), (0, c, w; a, u, 3), (a, a, u; w, v, 3), (w, b, v; 3, w, 3), (0, u, w; b, 3, 3), (b, v, u; u, 3, 3), (u, w, v; 3, 3, 3).

4: (0, 0, 0; b, c, a), (b, 0, 0; u, b, a), (u, 0, 0; 3, c, b), (0, c, 0; c, u, a), (c, b, 0; u, w, c), (u, c, 0; 3, u, c), (0, u, 0;
c, 3, b), (c, w, 0; v, 3, b), (v, u, 0; 3, 3, c), (0, 0, a; a, c, w), (a, 0, a; v, a, w), (v, 0, b; 3, a, u), (0, c, a; b, v, v),
(w, a, c; 3, w, v), (0, v, b; c, 3, w), (c, v, b; v, 3, u), (v, w, c; 3, 3, v), (0, 0, w; a, b, 3), (a, 0, w; w, a, 3), (w, 0, u;
3, b, 3), (0, b, v; a, u, 3), (a, a, u; w, v, 3), (w, b, v; 3, w, 3), (0, u, w; b, 3, 3), (b, v, u; u, 3, 3), (u, w, v; 3, 3, 3).

5: (0, 0, 0; b, c, a), (b, 0, 0; u, a, b), (u, 0, 0; 3, b, c), (0, c, 0; c, v, b), (c, a, 0; v, w, c), (v, b, 0; 3, w, c), (0, v, 0;
c, 3, a), (c, w, 0; v, 3, b), (v, w, 0; 3, 3, a), (0, 0, a; a, b, v), (a, 0, b; w, a, u), (w, 0, c; 3, a, u), (0, b, b; b, u, w),
(w, a, c; 3, w, v), (0, u, a; b, 3, v), (b, v, b; u, 3, w), (u, w, a; 3, 3, w), (0, 0, v; a, c, 3), (a, 0, u; v, b, 3), (v, 0, u;
3, c, 3), (0, c, w; a, u, 3), (a, b, u; w, u, 3), (w, c, v; 3, v, 3), (0, u, v; c, 3, 3), (c, u, w; u, 3, 3), (u, v, w; 3, 3, 3).

6: (0, 0, 0; b, c, a), (b, 0, 0; u, a, b), (u, 0, 0; 3, b, c), (0, c, 0; c, v, b), (c, a, 0; v, w, c), (v, b, 0; 3, w, c), (0, v, 0;
c, 3, a), (c, w, 0; v, 3, b), (v, w, 0; 3, 3, a), (0, 0, a; a, b, v), (a, 0, b; w, a, u), (w, 0, c; 3, b, v), (0, b, b; b, u, w),
(w, b, c; 3, w, u), (0, u, a; b, 3, v), (b, v, b; u, 3, w), (u, w, a; 3, 3, w), (0, 0, v; a, c, 3), (a, 0, u; w, c, 3), (w, 0, v;
3, a, 3), (0, c, w; a, u, 3), (a, c, u; v, u, 3), (v, a, u; 3, v, 3), (0, u, v; c, 3, 3), (c, u, w; u, 3, 3), (u, v, w; 3, 3, 3).

7: (0, 0, 0; b, c, a), (b, 0, 0; u, a, b), (u, 0, 0; 3, b, c), (0, c, 0; c, v, b), (c, a, 0; v, w, c), (v, b, 0; 3, w, c), (0, v, 0;
c, 3, a), (c, w, 0; u, 3, a), (u, w, 0; 3, 3, b), (0, 0, a; a, b, v), (a, 0, b; w, a, u), (w, 0, c; 3, a, u), (0, b, b; b, u, w),
(w, a, c; 3, w, v), (0, u, a; c, 3, w), (c, v, a; v, 3, v), (v, w, b; 3, 3, w), (0, 0, v; a, c, 3), (a, 0, u; w, c, 3), (w, 0, u;
3, b, 3), (0, c, w; b, v, 3), (b, c, u; u, u, 3), (u, b, v; 3, u, 3), (0, v, w; a, 3, 3), (a, u, v; v, 3, 3), (v, u, w; 3, 3, 3).

8: (0, 0, 0; b, c, a), (b, 0, 0; u, a, b), (u, 0, 0; 3, b, c), (0, c, 0; c, v, b), (c, a, 0; v, w, c), (v, b, 0; 3, w, c), (0, v, 0;
c, 3, a), (c, w, 0; u, 3, a), (u, w, 0; 3, 3, b), (0, 0, a; a, b, v), (a, 0, b; w, a, u), (w, 0, c; 3, a, u), (0, b, b; b, u, w),
(w, a, c; 3, w, v), (0, u, a; c, 3, w), (c, v, a; v, 3, v), (v, w, b; 3, 3, w), (0, 0, v; a, c, 3), (a, 0, u; v, b, 3), (v, 0, u;
3, c, 3), (0, c, w; a, u, 3), (a, b, u; w, u, 3), (w, c, v; 3, v, 3), (0, u, w; b, 3, 3), (b, u, v; u, 3, 3), (u, v, w; 3, 3, 3).

9: (0, 0, 0; b, c, a), (b, 0, 0; u, a, b), (u, 0, 0; 3, b, c), (0, c, 0; c, v, b), (c, a, 0; v, w, c), (v, b, 0; 3, w, c), (0, v, 0;
c, 3, a), (c, w, 0; u, 3, a), (u, w, 0; 3, 3, b), (0, 0, a; a, b, v), (a, 0, b; w, a, u), (w, 0, c; 3, b, v), (0, b, b; b, u, w),
(w, b, c; 3, w, u), (0, u, a; c, 3, w), (c, v, a; v, 3, v), (v, w, b; 3, 3, w), (0, 0, v; a, c, 3), (a, 0, u; w, c, 3), (w, 0, v;
3, a, 3), (0, c, w; a, u, 3), (a, c, u; v, u, 3), (v, a, u; 3, v, 3), (0, u, w; b, 3, 3), (b, u, v; u, 3, 3), (u, v, w; 3, 3, 3).

10: (0, 0, 0; b, c, a), (b, 0, 0; u, a, b), (u, 0, 0; 3, b, c), (0, c, 0; c, u, a), (c, a, 0; v, w, c), (v, b, 0; 3, w, c), (0, u, 0;
c, 3, b), (c, w, 0; u, 3, a), (u, w, 0; 3, 3, b), (0, 0, a; a, c, w), (a, 0, b; w, a, u), (w, 0, c; 3, a, u), (0, c, a; b, v, v),
(w, a, c; 3, w, v), (0, v, b; c, 3, w), (c, v, a; v, 3, v), (v, w, b; 3, 3, w), (0, 0, w; a, b, 3), (a, 0, u; v, b, 3), (v, 0, u;
3, c, 3), (0, b, v; a, u, 3), (a, b, u; w, u, 3), (w, c, v; 3, v, 3), (0, u, w; b, 3, 3), (b, u, v; u, 3, 3), (u, v, w; 3, 3, 3).
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11: (0, 0, 0; b, c, a), (b, 0, 0; u, a, b), (u, 0, 0; 3, b, c), (0, c, 0; c, u, a), (c, a, 0; v, w, c), (v, b, 0; 3, w, c), (0, u, 0;
c, 3, b), (c, w, 0; u, 3, a), (u, w, 0; 3, 3, b), (0, 0, a; a, c, w), (a, 0, b; w, a, u), (w, 0, c; 3, b, v), (0, c, a; b, v, v),
(w, b, c; 3, w, u), (0, v, b; c, 3, w), (c, v, a; v, 3, v), (v, w, b; 3, 3, w), (0, 0, w; a, b, 3), (a, 0, u; w, c, 3), (w, 0, v;
3, a, 3), (0, b, v; a, u, 3), (a, c, u; v, u, 3), (v, a, u; 3, v, 3), (0, u, w; b, 3, 3), (b, u, v; u, 3, 3), (u, v, w; 3, 3, 3).

12: (0, 0, 0; a, c, b), (a, 0, 0; v, a, b), (v, 0, 0; 3, a, c), (0, c, 0; b, v, c), (b, a, 0; w, w, c), (w, a, 0; 3, w, a), (0, v, 0;
c, 3, a), (c, w, 0; u, 3, a), (u, w, 0; 3, 3, b), (0, 0, b; a, b, u), (a, 0, b; w, a, u), (w, 0, c; 3, b, v), (0, b, c; b, u, v),
(w, b, a; 3, w, w), (0, u, a; c, 3, w), (c, v, a; v, 3, v), (v, w, b; 3, 3, w), (0, 0, u; c, b, 3), (c, 0, u; u, c, 3), (u, 0, v;
3, c, 3), (0, b, v; a, u, 3), (a, c, u; v, u, 3), (v, c, w; 3, v, 3), (0, u, w; b, 3, 3), (b, u, v; u, 3, 3), (u, v, w; 3, 3, 3).

13: (0, 0, 0; a, c, b), (a, 0, 0; v, a, b), (v, 0, 0; 3, a, c), (0, c, 0; b, v, c), (b, a, 0; w, w, c), (w, a, 0; 3, w, a), (0, v, 0;
c, 3, a), (c, w, 0; v, 3, b), (v, w, 0; 3, 3, a), (0, 0, b; a, b, u), (a, 0, b; w, a, u), (w, 0, c; 3, b, v), (0, b, c; b, u, v),
(w, b, a; 3, w, w), (0, u, a; b, 3, v), (b, v, b; u, 3, w), (u, w, a; 3, 3, w), (0, 0, u; c, b, 3), (c, 0, u; u, c, 3), (u, 0, v;
3, c, 3), (0, b, v; a, u, 3), (a, c, u; v, u, 3), (v, c, w; 3, v, 3), (0, u, v; c, 3, 3), (c, u, w; u, 3, 3), (u, v, w; 3, 3, 3).

14: (0, 0, 0; b, c, a), (b, 0, 0; w, b, c), (w, 0, 0; 3, a, b), (0, c, 0; c, v, b), (c, b, 0; u, w, c), (u, a, 0; 3, w, c), (0, v, 0;
c, 3, a), (c, w, 0; v, 3, b), (v, w, 0; 3, 3, a), (0, 0, a; a, b, v), (a, 0, c; v, a, u), (v, 0, b; 3, a, u), (0, b, b; b, u, w),
(w, a, c; 3, w, v), (0, u, a; b, 3, v), (b, v, b; u, 3, w), (u, w, a; 3, 3, w), (0, 0, v; a, c, 3), (a, 0, u; v, b, 3), (v, 0, u;
3, c, 3), (0, c, w; a, u, 3), (a, b, u; w, u, 3), (w, c, v; 3, v, 3), (0, u, v; c, 3, 3), (c, u, w; u, 3, 3), (u, v, w; 3, 3, 3).

15: (0, 0, 0; b, c, a), (b, 0, 0; w, b, c), (w, 0, 0; 3, a, b), (0, c, 0; c, v, b), (c, b, 0; u, w, c), (u, a, 0; 3, w, c), (0, v, 0;
c, 3, a), (c, w, 0; u, 3, a), (u, w, 0; 3, 3, b), (0, 0, a; a, b, v), (a, 0, c; v, a, u), (v, 0, b; 3, a, u), (0, b, b; b, u, w),
(w, a, c; 3, w, v), (0, u, a; c, 3, w), (c, v, a; v, 3, v), (v, w, b; 3, 3, w), (0, 0, v; a, c, 3), (a, 0, u; w, c, 3), (w, 0, u;
3, b, 3), (0, c, w; b, v, 3), (b, c, u; u, u, 3), (u, b, v; 3, u, 3), (0, v, w; a, 3, 3), (a, u, v; v, 3, 3), (v, u, w; 3, 3, 3).

16: (0, 0, 0; b, c, a), (b, 0, 0; w, b, c), (w, 0, 0; 3, a, b), (0, c, 0; c, v, b), (c, b, 0; u, w, c), (u, a, 0; 3, w, c), (0, v, 0;
c, 3, a), (c, w, 0; u, 3, a), (u, w, 0; 3, 3, b), (0, 0, a; a, b, v), (a, 0, c; v, a, u), (v, 0, b; 3, a, u), (0, b, b; b, u, w),
(w, a, c; 3, w, v), (0, u, a; c, 3, w), (c, v, a; v, 3, v), (v, w, b; 3, 3, w), (0, 0, v; a, c, 3), (a, 0, u; v, b, 3), (v, 0, u;
3, c, 3), (0, c, w; a, u, 3), (a, b, u; w, u, 3), (w, c, v; 3, v, 3), (0, u, w; b, 3, 3), (b, u, v; u, 3, 3), (u, v, w; 3, 3, 3).

17: (0, 0, 0; b, c, a), (b, 0, 0; w, b, c), (w, 0, 0; 3, a, b), (0, c, 0; c, u, a), (c, b, 0; u, w, c), (u, a, 0; 3, w, c), (0, u, 0;
c, 3, b), (c, w, 0; u, 3, a), (u, w, 0; 3, 3, b), (0, 0, a; a, c, w), (a, 0, c; v, a, u), (v, 0, b; 3, a, u), (0, c, a; b, v, v),
(w, a, c; 3, w, v), (0, v, b; c, 3, w), (c, v, a; v, 3, v), (v, w, b; 3, 3, w), (0, 0, w; a, b, 3), (a, 0, u; v, b, 3), (v, 0, u;
3, c, 3), (0, b, v; a, u, 3), (a, b, u; w, u, 3), (w, c, v; 3, v, 3), (0, u, w; b, 3, 3), (b, u, v; u, 3, 3), (u, v, w; 3, 3, 3).

18: (0, 0, 0; a, c, b), (a, 0, 0; w, a, c), (w, 0, 0; 3, b, a), (0, c, 0; b, v, c), (b, a, 0; w, w, c), (w, b, 0; 3, w, b), (0, v, 0;
c, 3, a), (c, w, 0; u, 3, a), (u, w, 0; 3, 3, b), (0, 0, b; a, b, u), (a, 0, c; v, a, u), (v, 0, a; 3, a, v), (0, b, c; b, u, v),
(w, a, b; 3, w, w), (0, u, a; c, 3, w), (c, v, a; v, 3, v), (v, w, b; 3, 3, w), (0, 0, u; c, b, 3), (c, 0, u; u, c, 3), (u, 0, v;
3, c, 3), (0, b, v; a, u, 3), (a, c, u; v, u, 3), (v, c, w; 3, v, 3), (0, u, w; b, 3, 3), (b, u, v; u, 3, 3), (u, v, w; 3, 3, 3).

19: (0, 0, 0; a, c, b), (a, 0, 0; w, a, c), (w, 0, 0; 3, b, a), (0, c, 0; b, v, c), (b, a, 0; w, w, c), (w, b, 0; 3, w, b), (0, v, 0;
c, 3, a), (c, w, 0; v, 3, b), (v, w, 0; 3, 3, a), (0, 0, b; a, b, u), (a, 0, c; v, a, u), (v, 0, a; 3, a, v), (0, b, c; b, u, v),
(w, a, b; 3, w, w), (0, u, a; b, 3, v), (b, v, b; u, 3, w), (u, w, a; 3, 3, w), (0, 0, u; c, b, 3), (c, 0, u; u, c, 3), (u, 0, v;
3, c, 3), (0, b, v; a, u, 3), (a, c, u; v, u, 3), (v, c, w; 3, v, 3), (0, u, v; c, 3, 3), (c, u, w; u, 3, 3), (u, v, w; 3, 3, 3).

20: (0, 0, 0; c, a, b), (c, 0, 0; v, b, c), (v, 0, 0; 3, c, a), (0, a, 0; a, w, c), (a, b, 0; w, w, c), (w, c, 0; 3, u, a), (0, w, 0;
b, 3, a), (b, w, 0; w, 3, b), (w, u, 0; 3, 3, b), (0, 0, b; b, a, u), (b, 0, c; u, a, u), (u, 0, a; 3, b, v), (0, a, c; b, v, v),
(w, b, a; 3, w, w), (0, v, a; a, 3, v), (a, v, b; v, 3, w), (v, w, b; 3, 3, w), (0, 0, u; c, b, 3), (c, 0, u; u, c, 3), (u, 0, v;
3, c, 3), (0, b, v; a, u, 3), (a, c, u; v, u, 3), (v, c, w; 3, v, 3), (0, u, v; c, 3, 3), (c, u, w; u, 3, 3), (u, v, w; 3, 3, 3).

21: (0, 0, 0; a, b, c), (a, 0, 0; v, a, b), (v, 0, 0; 3, c, a), (0, b, 0; b, w, c), (b, a, 0; w, w, c), (w, c, 0; 3, u, a), (0, w, 0;

b, 3, a), (b, w, 0; w, 3, b), (w, u, 0; 3, 3, b), (0, 0, c; c, a, u), (c, 0, b; u, a, u), (u, 0, a; 3, b, v), (0, a, c; b, v, v),

(w, b, a; 3, w, w), (0, v, a; a, 3, v), (a, v, b; v, 3, w), (v, w, b; 3, 3, w), (0, 0, u; c, b, 3), (c, 0, u; u, c, 3), (u, 0, v;

3, c, 3), (0, b, v; a, u, 3), (a, c, u; v, u, 3), (v, c, w; 3, v, 3), (0, u, v; c, 3, 3), (c, u, w; u, 3, 3), (u, v, w; 3, 3, 3).
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