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Abstract. Plane closed polygons are harmonically analysed, i.e., they are ex-
pressed in the form of the sum of fundamental k-regular polygons. From this
point of view Napoleon’s theorem and its generalization, the so-called theorem of
Petr, are studied. By means of Petr’s theorem the fundamental polygons of an
arbitrary polygon have been found geometrically.
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1. Harmonic analysis of polygons

A plane n-gon Π is an ordered n-tuple of points A0, A1, . . . , An−1, which can be represented
by complex numbers in the complex plane. The points A0, A1, . . . , An−1 are called vertices of
the n-gon Π. We shall write Π = (A0, A1, . . . , An−1). Denote the n-roots of unity by

ωj
ν = eiνj

2π

n = cos νj 2π
n
+ i sin νj 2π

n
,

where ν, j = 0, 1, . . . , n− 1. Then the system of linear equations

Aν =
n−1
∑

k=0

ϑkω
k
ν , ν = 0, 1, . . . , n− 1 (1)

with unknown complex numbers ϑk has a unique solution. The determinant of the system (1)
is a determinant of the Fourier matrix Ω = (ωk

j )
n−1

k,j=0
, which is not vanishing (Vandermonde).

Multiplying each equation from (1) by ω−j
ν and adding these equations for ν = 0, 1, . . . , n− 1

we get
n−1
∑

ν=0

Aνω
−j
ν =

n−1
∑

k=0

n−1
∑

ν=0

ϑkω
k−j
ν =

n−1
∑

k=0

ϑk

n−1
∑

ν=0

ων
k−j = nϑj .
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The Fourier coefficients ϑ0, ϑ1, . . . , ϑn−1 of the polygon Π are then

ϑj =
1

n

n−1
∑

ν=0

Aνω
−j
ν .

We can see that ϑ0 = 1

n

∑n−1

ν=0
Aν , i.e., the coefficient ϑ0 coincides with the centroid of the

n-gon Π. If we place the origin of the coordinate system into the centroid of the n-gon Π, we
get ϑ0 = 0. The system of linear equations (1) may be written in the form

Π = ϑ0Π0 + ϑ1Π1 + . . .+ ϑn−1Πn−1 or Π = Φ0 + Φ1 + . . .+ Φn−1 (2)

with Φk := ϑkΠk.
The right-hand side of (2) is expressed as a linear combination (with complex Fourier

coefficients) of basic k-regular polygons Πj, where Πj = (ω0
j , ω

1
j , . . . , ω

n−1
j ). From (2) it is

seen that every closed plane n-gon Π has been uniquely represented as a sum of fundamental
regular n-gons Φ0,Φ1, . . . ,Φn−1, i.e., it has been analysed harmonically, see Schoenberg [7].

The expansion (2) may also be expressed in the following form:

Π = ϑ0Π0 + (ϑ1Π1 + ϑn−1Πn−1) + (ϑ2Π2 + ϑn−2Πn−2) + . . . . (3)

It is easily seen that the sum ϑkΠk+ϑn−kΠn−k is an affine regular n-gon, i.e., the affine image
of a k-regular n-gon. From (3) we get the fact, that every n-gon Π can be uniquely expressed
as a sum of fundamental affine regular n-gons ϑkΠk + ϑn−kΠn−k. It is a question how to find
the fundamental n-gons of an arbitrary plane n-gon geometrically? For the sake of it, we shall
concern with Napoleon’s theorem and its generalization, the theorem of Petr, see Naas and
Schmid [4]. These theorems are based on polygon to polygon transformation.

2. Polygon transformation

Let Π = (A0, A1, . . . , An−1) be an arbitrary plane n-gon. Let us suppose that P is a such poly-
gon to polygon transformation that assigns to the n-gon Π an n-gon Π′ = (A′

0, A
′
1, . . . , A

′
n−1),

whose vertices are a linear combination of two consecutive vertices of the n-gon Π, i.e.,

A′
j = aAj + bAj+1, j = 0, 1, . . . , n− 1, (4)

where coefficients a, b are complex. We shall concern with a special type of (4) whose coef-
ficients a, b fulfil a + b = 1. This condition assures, that all the triangles with vertices A′

k

erected on sides AkAk+1 of the original triangle, are similar.
If isocseles triangles with the angle j 2π

n
are constructed on sides of an arbitrary n-gon Π,

we get the relation

(Ak − A′
k)ωj = Ak+1 − A′

k. (5)

From (5) we obtain that for a, b in (4)

a =
−ωj
1− ωj

and b =
1

1− ωj

holds (Fig. 1).
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Figure 1: Petr’s construction

If we denote a transformation, which maps a j-regular polygon Πj into the origin, by Pj

instead of P , we may write the image of Π in the form of the expansion

Pj(Π) = ϑ0Pj(Π0) + ϑ1Pj(Π1) + . . . + ϑn−1Pj(Πn−1), (6)

where

Pj(Πν) =
ων − ωj

1− ωj
Πν , j = 1, 2, . . . , n− 1. (7)

From (6) and (7) we see that Pj(Π0) = Π0 and Pj(Πj) = 0. Let Pk be another polygon
transformation with k 6= j. The Fourier expansion of the image of Pj(Π) in the transformation
Pk is

PkPj(Π) =
n−1
∑

ν=0

ϑν
ων − ωj

1− ωj

ων − ωk

1− ωk
Πν . (8)

From (8) it is seen that two of the regular polygons Πj,Πk of the Fourier expansion of the
polygon PkPj(Π) vanished. Continuing this process, after n − 1 steps of using the polygon
transformation Pν for all values ν = 1, 2, . . . , n−1, we arrive at the point ϑ0Π0 — the common
centroid of all polygons, which occur in this process. We have proved the theorem that was
established by the Czech mathematician K. Petr in 1905 [6].

Petr’s Theorem: On the sides of any closed plane n-gon Π construct isosceles triangles
with vertex angle j1

2π
n
, where j1 ∈ {1, 2, . . . , n−1}. The resulting vertices form a new polygon

Πj1 . On the sides of this polygon construct isosceles triangles with vertex angle j2
2π
n
, where

j2 ∈ {1, 2, . . . , n−1}\{j1}. We get a polygon Πj1,j2 . Continue this construction for all values
1, 2, . . . , n − 1. Then the final polygon Πj1,j2,...,jn−1

is a point — the common centroid of all
polygons Π,Πj1 ,Πj1,j2 , . . . ,Πj1,j2,...,jn−1

and the polygon Πj1,j2,...,jn−2
is jn−1-regular.

Petr’s theorem has been rediscovered several times. This theorem has often been at-
tributed to J. Douglas [2] and B.H. Neumann [5], but it seems the priority belongs to K.

Petr. We shall call a polygon to polygon transformation, described in Petr’s theorem, the
Petr’s construction P .

Now we will investigate polygons, which we obtain from the original n-gon Π using suc-
cessively n− 2 polygon transformations Pν for different values ν ∈ {1, 2, . . . , n− 1}. Denote
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such an n-gon by P j(Π), where the upper index j denotes the value, which has been omitted
in this process. According to (8) we have

P j(Π) = ϑ0Π0 + ϑj

n−1
∏

k=1,k 6=j

ωj − ωk

1− ωk
Πj , (9)

and after a short calculation we get

P j(Π) = ϑ0Π0 − ϑjω
−jΠj . (10)

From (8) and (9) we see that the n-gon P j(Π) doesn’t depend on the order of polygon
transformations Pν and therefore to a given n-gon Π there exist the only n-gon P j(Π) for
every j = 1, 2, . . . , n−1. In this way we can assign to an arbitrary plane n-gon Π n−1 firmly
determined n-gons P j(Π). If we place the origin of the coordinate system into the centroid of
Π, then ϑ0 = 0 and instead of (10) we may write P j(Π) = −ϑjω

−jΠj . The polygon P j(Π) is
a j-regular n-gon, which differs from the fundamental n-gon ϑjΠj in the Fourier expansion (2)
of the n-gon Π only by the multiply −ω−j . This means that P j(Π) is a centrally symmetric
image of ω−jϑjΠj, which has the same vertices as ϑjΠj. With respect to this fact, we can
state:

Theorem: Let Π be an arbitrary plane closed n-gon, whose centroid is placed at the origin
of the Cartesian coordinate system. By the construction described above, we can assign to
an arbitrary plane n-gon Π n−1 firmly determined regular n-gons P j(Π) for every j =
1, 2, . . . , n − 1. A centrally symmetric image of P j(Π) shifted by ωj gives the fundamental
n-gon Φj and Π can be expressed as the sum of n-gons Φj, j = 1, 2, . . . , n− 1.

2.1. The case n = 3

As an application of the above theory we will mention Napoleon’s theorem:

If equilateral triangles are erected externally (or internally) on the sides of an arbitrary tri-
angle, their centers form an equilateral triangle.

This well known theorem has been attributed to Napoleon Bonaparte, although there
is some doubt whether its proof is due to him1. In the recent survey by Martini [3], more
than hundred references to this theorem and its generalizations are collected.

According to this theorem we can assign to an arbitrary triangleABC two regular triangles
A′B′C ′ and A′′B′′C ′′, which are called outer and inner Napoleon triangles (Fig. 2). Our
theory says that images of these Napoleon triangles in a point reflection with center T are
fundamental triangles Φ1,Φ2 of the original triangle. In Fig. 3 it is shown, that the original
triangle Π = (A,B,C) is a sum of its two fundamental triangles Φ1 = (A1, B1, C1) and
Φ2 = (A2, B2, C2), i.e., Π = Φ1 +Φ2. For a better view a decomposition of a triangle is shown
in Fig. 4.

A generalization of Napoleon’s theorem is the following

Theorem: If similar triangles are constructed on the sides of an arbitrary triangle ABC, their
vertices form a new triangle whose fundamental triangles arise from fundamental triangles of
ABC in a similar way (Fig. 5).

For isosceles triangles with the angle of 120◦, we get the subcase of Napoleon’s theorem.
1see J. Fischer: Napoleon und die Naturwissenschaften, Franz Steiner Verlag Wiesbaden, Stuttgart 1988
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Figure 2: Outer Napoleon triangle Inner Napoleon triangle

B

C

B

A

C

C
A

B

A

1

2

1

1
2

2

Figure 3: The triangle ABC is a sum of two fundamental triangles A1B1C1 and A2B2C2.

2.2. The case n = 4

Similarly as in the case of triangles we can assign to an arbitrary quadrangle ABCD three
fundamental regular quadrangles (squares), one of which is a segment (Fig. 6).

A decomposition of a quadrangle into three regular quadrangles is shown in Fig. 7.

In Fig. 8 isosceles right angled triangles are erected on the sides of a quadrangle ABCD.
We obtain a new quadrangle which is the sum of A′

1B
′
1C

′
1D

′
1 (square) and A′

2B
′
2C

′
2D

′
2 (segment)

whereas the third fundamental quadrangle vanished. From this decomposition it is easy to
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Figure 4: A decomposition of a triangle into two fundamental triangles
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Figure 5: The construction of similar triangles on the sides of an
arbitrary triangle is preserved
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Figure 6: The quadrangle ABCD as the sum of the three squares
A1B1C1D1, A2B2C2D2, A3B3C3D3.

see that diagonals of the quadrangle A′B′C ′D′ are perpendicular and have equal length.
If isosceles triangles with vertex angle 180◦ are erected on the sides of a quadrangle ABCD,

i.e., A′B′C ′D′ is formed by centers of sides of ABCD, then a quadrangle A′B′C ′D′ is a sum
of two oppositely oriented squares A′

1B
′
1C

′
1D

′
1 and A′

3B
′
3C

′
3D

′
3, whereas the third A′

2B
′
2C

′
2D

′
2

vanished. A′B′C ′D′ is clearly a parallelogram (Fig. 9).
The outward (or inward) erection of right angled isosceles triangles on the sides of a

parallelogram gives the fundamental square as it is shown in Fig. 10, whereas the other
square from the decomposition described in Fig. 10 vanishes. This is a special case of a more
general theorem, often called Barlotti theorem (see Barlotti [1]), but it has already been
mentioned by J. Douglas [2]:

A B

C
D

= + + B

CD

A

B =D

D C

B
A1

1

1

1

22

22

3

3
3

3

A =C

Figure 7: Decomposition of a quadrangle into three fundamental squares
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Figure 8: Decomposition of a quadrangle with equal and perpendicular diagonals
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Figure 9: A parallelogram as a sum of two squares

Erecting regular n-gons outwardly (or inwardly) on the sides of any affinely regular n-gon,
their centers form a regular n-gon.
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Figure 10: Centers of squares erected on the sides of a parallelogram form a square

From the decomposition of a quadrangle into four fundamental quadrangles as displayed
in Fig. 7 another expression of a quadrangle follows. Summing up two squares A1B1C1D1

and A3B3C3D3 we obtain a parallelogram A′B′C ′D′. The quadrangle ABCD is the sum of
a parallelogram A′B′C ′D′ and a four times calculated segment with endpoints A3 = C3 and
B3 = D3 (Fig. 11).
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Figure 11: Decomposition of a quadrangle ABCD into a parallelogram and a segment

2.3. The case n = 5

A plane pentagon ABCDE could be expressed as a sum of its fundamental pentagons
Φ1,Φ2,Φ3,Φ4 which consist of two convex regular pentagons with the opposite order of ver-
tices and two nonconvex star regular pentagons (Fig. 12). A pentagon ABCDE may also be
expessed as a sum of two affine regular pentagons Φ1 + Φ4 and Φ2 + Φ3 (see Schoenberg

[7] and Fig. 13).
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Figure 12: Decomposition of a pentagon into four fundamental pentagons
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Figure 13: Decomposition of a pentagon into two affine regular pentagons

3. Spatial case

It is possible to transfer our constructions into 3-space:
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3.1. The case n = 4

Let ABCD be an arbitrary skew and closed quadrangle. It is easy to show that it can be
expressed as sum of three squares, two of which lie in the plane of a parallelogram A′B′C ′D′

which is formed by centers of sides of ABCD, the other fundamental square coincides with
a segment S1S2, whose endpoints are centers of diagonals which join opposite vertices of
ABCD. In Fig. 14 it is shown that a quadrangle ABCD is the sum of a segment S1S2 and
a parallelogram, whose centers of sides are vertices of A′B′C ′D′. Two of the fundamental
squares lie in the plane of A′B′C ′D′ and are formed by the centers of squares erected on the
sides of A′B′C ′D′ outwardly and inwardly.

A

B

C

D

D´
C´

B´
A´

S

S

1

2

Figure 14: Decomposition of a skew quadrangle into a segment and a parallelogram

3.2. The case n = 5

Let ABCDE be an arbitrary skew and closed pentagon. We shall construct pentagons
A′B′C ′D′E ′ and A′′B′′C ′′D′′E ′′ in the following way: Denote by M1M2M3M4M5 the cen-
ters of the sides of ABCDE. The vertices A′ and A′′ lie on the line AM3 (outwardly and
inwardly AM3) with A′−M3 =

1√
5
(M3−A) and A′′−M3 = −

1√
5
(M3−A). Then A′B′C ′D′E ′

and A′′B′′C ′′D′′E ′′ are plane convex and star affine regular pentagons (see Douglas [2] and
Fig. 15). In order to arrive at fundamental pentagons of ABCDE, erect in the plane of
A′B′C ′D′E ′ on its sides isosceles triangles with vertex angle 2π

5
(outwardly and inwardly).

We obtain two regular pentagons. By a homothety with the center at the common centroid of
all the pentagons and the ratio 3−

√
5

2
we get two of the fundamental pentagons of ABCDE.

We obtain from A′′B′′C ′′D′′E ′′ the other two (lying in a different plane) in the same way.
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Figure 15: Construction of two plane affine regular pentagons to any pentagon ABCDE
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